Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (171)

Search Parameters:
Keywords = wgMLST

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1234 KiB  
Article
Genomic Insights of Emerging Multidrug-Resistant OXA-48-Producing ST135 Proteus mirabilis
by Angeliki Mavroidi, Elisavet Froukala, Nick Spanakis, Aikaterini Michelaki, Maria Orfanidou, Vasiliki Koumaki and Athanasios Tsakris
Antibiotics 2025, 14(8), 750; https://doi.org/10.3390/antibiotics14080750 - 25 Jul 2025
Viewed by 227
Abstract
Background/Objectives: Among Enterobacterales, OXA-48-like-producing Proteus mirabilis strains have been scarcely detected. Herein, we characterized a blaOXA-48-harbouring P. mirabilis strain recovered from Greece (Pm GR-1), while phylogenomics and comparative genomics analyses with previously published blaOXA-48 carriers were also assessed. [...] Read more.
Background/Objectives: Among Enterobacterales, OXA-48-like-producing Proteus mirabilis strains have been scarcely detected. Herein, we characterized a blaOXA-48-harbouring P. mirabilis strain recovered from Greece (Pm GR-1), while phylogenomics and comparative genomics analyses with previously published blaOXA-48 carriers were also assessed. Methods: Characterization of Pm GR-1 was performed by the Vitek® Compact and Mass Spectrometry systems, antimicrobial susceptibility testing, detection of beta-lactamases, multilocus-sequence typing (MLST), and whole-genome sequencing (WGS). In silico prediction of mobile genetic elements (MGEs), genomic islands (GIs), antimicrobial resistance genes (ARGs) and virulence factors (VFs), and phylogenetic, core-genome SNP and comparative genomics analyses were executed using bioinformatic tools. Results: Pm GR-1 was isolated from a urine sample of an outpatient in a Greek hospital. It exhibited a multidrug-resistant phenotype, being susceptible only to amikacin and ceftazidime/avibactam. It co-carried several beta-lactamase genes on the chromosome (blaOXA-48, blaCTX-M-14, blaTEM-1) and a plasmid (blaTEM-2) and several other ARGs, but also mutations associated with quinolone resistance in the DNA gyrase and topoisomerase IV subunits. It belonged to the international clone ST135 that has also been detected among OXA-48-producing P. mirabilis strains from Germany and the USA. Pm GR-1 was genetically related to those from Germany, sharing highly similar MGEs, GIs, ARGs and VFs, including the chromosomal blaOXA-48 genetic structure, the O-antigen locus, the flagella locus, the MR/P fimbriae operon, and the urease gene cluster. Conclusions: To our knowledge, this is the first report from Greece of a blaOXA-48-possessing P. mirabilis strain. The emergence of blaOXA-48 among P. mirabilis strains of the international clone ST135 in different geographical regions is worrying. Close monitoring of these strains is required in One Health settings. Full article
(This article belongs to the Special Issue Antimicrobial Resistance Genes: Spread and Evolution)
Show Figures

Figure 1

21 pages, 1726 KiB  
Article
Exploring Virulence Characteristics of Clinical Escherichia coli Isolates from Greece
by Lazaros A. Gagaletsios, Elisavet Kikidou, Christos Galbenis, Ibrahim Bitar and Costas C. Papagiannitsis
Microorganisms 2025, 13(7), 1488; https://doi.org/10.3390/microorganisms13071488 - 26 Jun 2025
Viewed by 355
Abstract
The aim of this study was to examine the genetic characteristics that could be associated with the virulence characteristics of Escherichia coli collected from clinical samples. A collection of 100 non-repetitive E. coli isolates was analyzed. All isolates were typed by MLST. String [...] Read more.
The aim of this study was to examine the genetic characteristics that could be associated with the virulence characteristics of Escherichia coli collected from clinical samples. A collection of 100 non-repetitive E. coli isolates was analyzed. All isolates were typed by MLST. String production, biofilm formation and serum resistance were examined for all isolates. Twenty E. coli isolates were completely sequenced Illumina platform. The results showed that the majority of E. coli isolates (87%) produced significant levels of biofilm, while none of the isolates were positive for string test and resistance to serum. Additionally, the presence of CRISPR/Cas systems (type I-E or I-F) was found in 18% of the isolates. Analysis of WGS data found that all sequenced isolates harbored a variety of virulence genes that could be implicated in adherence, invasion, iron uptake. Also, WGS data confirmed the presence of a wide variety of resistance genes, including ESBL- and carbapenemase-encoding genes. In conclusion, an important percentage (87%) of the E. coli isolates had a significant ability to form biofilm. Biofilms, due to their heterogeneous nature and ability to make microorganisms tolerant to multiple antimicrobials, complicate treatment strategies. Thus, in combination with the presence of multidrug resistance, expression of virulence factors could challenge antimicrobial therapy of infections caused by such bacteria. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

38 pages, 1456 KiB  
Review
A Comprehensive Review of Detection Methods for Staphylococcus aureus and Its Enterotoxins in Food: From Traditional to Emerging Technologies
by Assia Mairi, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Toxins 2025, 17(7), 319; https://doi.org/10.3390/toxins17070319 - 23 Jun 2025
Viewed by 1141
Abstract
Staphylococcus aureus is a leading cause of foodborne intoxication globally, driven by its heat-stable enterotoxins (SEs), which pose significant public health risks. This review critically evaluates modern and traditional methodologies for detecting S. aureus and its enterotoxins in food matrices, emphasizing their principles, [...] Read more.
Staphylococcus aureus is a leading cause of foodborne intoxication globally, driven by its heat-stable enterotoxins (SEs), which pose significant public health risks. This review critically evaluates modern and traditional methodologies for detecting S. aureus and its enterotoxins in food matrices, emphasizing their principles, applications, and limitations. The review includes a dedicated section on sample preparation and pretreatment methods for diverse food substrates, addressing a critical gap in practical applications. Immunological techniques, including ELISA and lateral flow assays, offer rapid on-site screening but face matrix interference and variable sensitivity challenges. Molecular methods, such as PCR and isothermal amplification, provide high specificity and speed for bacterial and toxin gene detection but cannot confirm functional toxin production. Sequencing-based approaches (e.g., WGS and MLST) deliver unparalleled genetic resolution for outbreak tracing but require advanced infrastructure. Emerging biosensor technologies leverage nanomaterials and biorecognition elements for ultra-sensitive real-time detection, although scalability and matrix effects remain hurdles. Mass spectrometry (MALDI-TOF MS) ensures rapid species identification but depends on pre-isolated colonies. Traditional microbiological methods, while foundational, lack the precision and speed of molecular alternatives. The review underscores the necessity of context-driven method selection, balancing speed, sensitivity, and resource availability. Innovations in multiplexing, automation, AI-based methods, and integration of complementary techniques are highlighted as pivotal for advancing food safety surveillance. Standardized validation protocols and improved reporting of performance metrics are urgently needed to enhance cross-method comparability and reliability in outbreak settings. Full article
Show Figures

Figure 1

25 pages, 3666 KiB  
Article
Validation of Core and Whole-Genome Multi-Locus Sequence Typing Schemes for Shiga-Toxin-Producing E. coli (STEC) Outbreak Detection in a National Surveillance Network, PulseNet 2.0, USA
by Molly M. Leeper, Morgan N. Schroeder, Taylor Griswold, Mohit Thakur, Krittika Krishnan, Lee S. Katz, Kelley B. Hise, Grant M. Williams, Steven G. Stroika, Sung B. Im, Rebecca L. Lindsey, Peyton A. Smith, Jasmine Huffman, Alyssa Kelley, Sara Cleland, Alan J. Collins, Shruti Gautam, Eishita Tyagi, Subin Park, João A. Carriço, Miguel P. Machado, Hannes Pouseele, Dolf Michielsen and Heather A. Carletonadd Show full author list remove Hide full author list
Microorganisms 2025, 13(6), 1310; https://doi.org/10.3390/microorganisms13061310 - 4 Jun 2025
Viewed by 996
Abstract
Shiga-toxin-producing E. coli (STEC) is a leading causing of bacterial foodborne and zoonotic illnesses in the USA. Whole-genome sequencing (WGS) is a powerful tool used in public health and microbiology for the detection, surveillance, and outbreak investigation of STEC. In this study, we [...] Read more.
Shiga-toxin-producing E. coli (STEC) is a leading causing of bacterial foodborne and zoonotic illnesses in the USA. Whole-genome sequencing (WGS) is a powerful tool used in public health and microbiology for the detection, surveillance, and outbreak investigation of STEC. In this study, we applied three WGS-based subtyping methods, high quality single-nucleotide polymorphism (hqSNP) analysis, whole genome multi-locus sequence typing using chromosome-associated loci [wgMLST (chrom)], and core genome multi-locus sequence typing (cgMLST), to isolate sequences from 11 STEC outbreaks. For each outbreak, we evaluated the concordance between subtyping methods using pairwise genomic differences (number of SNPs or alleles), linear regression models, and tanglegrams. Pairwise genomic differences were highly concordant between methods for all but one outbreak, which was associated with international travel. The slopes of the regressions for hqSNP vs. allele differences were 0.432 (cgMLST) and 0.966 wgMLST (chrom); the slope was 1.914 for cgMLST vs. wgMLST (chrom) differences. Tanglegrams comprised of outbreak and sporadic sequences showed moderate clustering concordance between methods, where Baker’s Gamma Indices (BGIs) ranged between 0.35 and 0.99 and Cophenetic Correlation Coefficients (CCCs) were ≥0.88 across all outbreaks. The K-means analysis using the Silhouette method showed the clear separation of outbreak groups with average silhouette widths ≥0.87 across all methods. This study validates the use of cgMLST for the national surveillance of STEC illness clusters using the PulseNet 2.0 system and demonstrates that hqSNP or wgMLST can be used for further resolution. Full article
(This article belongs to the Special Issue The Molecular Epidemiology of Infectious Diseases)
Show Figures

Figure 1

18 pages, 546 KiB  
Article
Outbreak of NDM-5-Producing Proteus mirabilis During the COVID-19 Pandemic in an Argentine Hospital
by Barbara Ghiglione, Ana Paula Rodriguez, María Sol Haim, Laura Esther Friedman, Nilton Lincopan, María Eugenia Ochiuzzi and José Alejandro Di Conza
Antibiotics 2025, 14(6), 557; https://doi.org/10.3390/antibiotics14060557 - 29 May 2025
Viewed by 620
Abstract
Background: During the COVID-19 pandemic, the emergence of multidrug-resistant (MDR) pathogens, driven by heightened antibiotic usage and device-associated infections, has posed significant challenges to healthcare. This study reports an outbreak of Proteus mirabilis producing NDM-5 and CTX-M-15 β-lactamases in a hospital in Buenos [...] Read more.
Background: During the COVID-19 pandemic, the emergence of multidrug-resistant (MDR) pathogens, driven by heightened antibiotic usage and device-associated infections, has posed significant challenges to healthcare. This study reports an outbreak of Proteus mirabilis producing NDM-5 and CTX-M-15 β-lactamases in a hospital in Buenos Aires, Argentina, from October 2020 to April 2021. To our knowledge, this represents the first documented outbreak of NDM-5-producing P. mirabilis in the country. Methods: A total of 82 isolates were recovered from 40 patients, with 41.5% from blood cultures and 18.3% from respiratory and urinary samples, among others. Antimicrobial susceptibility testing, PCR-based methods, and MALDI-TOF MS cluster analysis were conducted. Whole genome sequencing (WGS) was performed to characterize the MLST, resistome and plasmid content. Biofilm formation assays and in vitro rifampicin susceptibility tests were also conducted. Result: Most isolates exhibited resistance to carbapenems, cephalosporins, aminoglycosides, and fluoroquinolones, while retaining susceptibility to aztreonam. Genetic analysis confirmed the co-presence of the blaNDM-5 and blaCTX-M-15 genes. Clonal relationships was supported by PCR-based typing and MALDI-TOF MS cluster analysis. WGS revealed a resistome comprising 25 resistance genes, including rmtB and both β-lactamases, as well as the presence of an incomplete IncQ1 replicon associated with multiple resistance determinants. MLST classified this clone as belonging to ST135. Despite the biofilm-forming capacity observed across strains, rifampicin demonstrated potential for disrupting established biofilms at concentrations ≥32 µg/mL in vitro. The MDR profile of the outbreak strain significantly limited therapeutic options. Conclusions: This study highlights the growing threat of NDM-producing P. mirabilis in Argentina. The absence of surveillance cultures from the index case limits insights into the outbreak’s origin. These findings underscore the importance of integrating genomic surveillance into infection control protocols to mitigate the spread of MDR pathogens. Full article
(This article belongs to the Special Issue Multidrug-Resistance Patterns in Infectious Pathogens)
Show Figures

Figure 1

15 pages, 2035 KiB  
Article
Comprehensive Genomic Analysis of Pseudomonas aeruginosa PSU9449 Isolated from a Clinical Case in Thailand
by Thitaporn Dechathai, Kamonnut Singkhamanan, Thunchanok Yaikhan, Sarunyou Chusri, Rattanaruji Pomwised, Monwadee Wonglapsuwan and Komwit Surachat
Antibiotics 2025, 14(6), 530; https://doi.org/10.3390/antibiotics14060530 - 22 May 2025
Viewed by 727
Abstract
Background/Objectives: Pseudomonas aeruginosa is one of the most significant multidrug-resistant bacteria. It poses considerable challenges in terms of treatment and causes hospital-acquired infections that lead to high morbidity and mortality. Colonization by P. aeruginosa in a patient without clinical signs of infection [...] Read more.
Background/Objectives: Pseudomonas aeruginosa is one of the most significant multidrug-resistant bacteria. It poses considerable challenges in terms of treatment and causes hospital-acquired infections that lead to high morbidity and mortality. Colonization by P. aeruginosa in a patient without clinical signs of infection is a concern in hospital settings, as it is an opportunistic pathogen and can potentially be a multidrug-resistant strain. The objective of this study was to characterize and provide a detailed genomic analysis of this strain of the P. aeruginosa PSU9449 genome, an isolate obtained from a patient at Songklanagarind Hospital, Thailand. Methods: Whole-genome sequencing (WGS) and bioinformatics analysis were employed to examine the genomic features of P. aeruginosa PSU9449. We performed sequence type (ST) determination through multilocus sequence typing (MLST), identified antimicrobial resistance genes (ARGs), virulence factor genes (VFGs), and analyzed the presence of mobile genetic elements (MGEs). Additionally, we compared the PSU9449 genome with strains from neighboring countries to understand its phylogenetic relationship. Results: The P. aeruginosa PSU9449 genome contained five insertion sequences and several ARGs, including fosA, aph (3’)-IIb, blaOXA-50, and catB7. It also harbored VFGs related to flagella (fli, fle, and flg), the type 6 secretion system (hcpA, tssA, and las), and the type 3 secretion system (exoS, exoU, and exoT). MLST identified PSU9449 as ST3777, which was reported in Thailand for the first time. Phylogenetic analysis based on core gene SNPs revealed that PSU9449 was closely related to P. aeruginosa HW001G from Malaysia and P. aeruginosa MyJU45 from Myanmar, forming a distinct clade. Conclusions: This study presents a comprehensive genomic analysis of P. aeruginosa PSU9449, shedding light on its genetic characteristics, antimicrobial resistance profile, and virulence potential. Interestingly, ST3777, the novel STs from the published genomes of P. aeruginosa in Thailand, were assigned in this study. The findings enhance valuable insights into the expanding knowledge of P. aeruginosa PSU9449 and highlight the importance of ongoing surveillance of its genetic diversity. Full article
Show Figures

Figure 1

15 pages, 2567 KiB  
Article
Prevalence and Characterisation of Antimicrobial Resistance, Virulence Factors and Multilocus Sequence Typing (MLST) of Escherichia coli Isolated from Broiler Caeca
by Ah-Ran Lee, Martin John Woodward and Caroline Rymer
Animals 2025, 15(10), 1353; https://doi.org/10.3390/ani15101353 - 8 May 2025
Viewed by 467
Abstract
This study was undertaken to determine the effect of bird age and administering either Lactococcus lactis ssp. lactis 1 (LL) or Limosilactobacillus fermentum 1 (LF) in the drinking water on the prevalence of antimicrobial resistance by phenotypic test, multilocus sequence typing (MLST) and virulence [...] Read more.
This study was undertaken to determine the effect of bird age and administering either Lactococcus lactis ssp. lactis 1 (LL) or Limosilactobacillus fermentum 1 (LF) in the drinking water on the prevalence of antimicrobial resistance by phenotypic test, multilocus sequence typing (MLST) and virulence genes of Escherichia coli (E. coli) isolated from broiler caeca by whole-genome sequencing (WGS) analysis. Male (Ross 308) day-old chicks (240) were reared for 28 days. Water was provided either untreated (CON) or with LL (107/mL) or LF (107/mL) via a nipple drinker on three days each week during the starter phase (days 1, 3, 5, 7, 9 and 11 d) in eight replicate pens per treatment, with initially ten chicks per pen. One chick from each pen was sacrificed when LL or LF was added to the water, and again on d 14 and 28. There was no evidence that LL and LF had any effect on the prevalence of antimicrobial resistance and virulence genes in E. coli isolates. The population density of Lactobacillus sp. and coliforms decreased with age (p < 0.001). The high resistance of E. coli to ampicillin and tetracycline was maintained throughout the life of the broilers. The prevalence of virulence genes was greatest during the starter phase but declined when birds were 28 days of age (p < 0.05). In birds < 14 d of age, E. coli MLST 457, 1640, 1485 and 155 were dominant, and these carried iucD, irp2, astA, iutA and iroN genes. When birds were 28 d of age, MLST 1286, 1112 and 973 predominated, and these carried few virulence genes. This suggests that young birds were more susceptible to putative pathogenic E. coli than older birds. Supporting the development of a healthy microbiome that might control the proliferation of potentially pathogenic E. coli is an area of future research. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

15 pages, 2149 KiB  
Article
Reference Whole Genome Sequence Analyses and Characterization of a Novel Carnobacterium maltaromaticum Distinct Sequence Type Isolated from a North American Gray Wolf (Canis lupus) Gastrointestinal Tract
by C. Cristoph Klews, Jessika L. Bryant, Jennifer McCabe, Ariel N. Atchley, Thomas W. Cousins, Maya Barnard-Davidson, Mark R. Ackermann, Michael Netherland, Nur A. Hasan, Peter A. Jordan, Evan S. Forsythe, Patrick N. Ball and Bruce S. Seal
Vet. Sci. 2025, 12(5), 410; https://doi.org/10.3390/vetsci12050410 - 27 Apr 2025
Viewed by 978
Abstract
We hypothesize that bacteria isolated from free-ranging animals could potentially be useful for practical applications. To meet this objective a Gram-positive bacterium was isolated from the gastrointestinal (GI) tract of a Gray Wolf (Canis lupus) using Brucella broth with hemin and [...] Read more.
We hypothesize that bacteria isolated from free-ranging animals could potentially be useful for practical applications. To meet this objective a Gram-positive bacterium was isolated from the gastrointestinal (GI) tract of a Gray Wolf (Canis lupus) using Brucella broth with hemin and vitamin K (BBHK). By small ribosomal RNA (16S) gene sequencing the bacterium was initially identified as a novel Carnobacterium maltaromaticum strain. The bacterium could be propagated both anaerobically and aerobically and was both catalase/oxidase negative and negative by the starch hydrolysis as well as negative using lipase assays. The reference whole genome sequence (WGS) was obtained using both Illumina and Nanopore sequencing. The genome assembly was 3,512,202 bp in length, encoding core bacterial genes with a GC% content of 34.48. No lysogenic bacteriophage genes were detected, although the genome harbors genes for the expression of bacteriocin and other secondary metabolites with potential antimicrobial properties. Multilocus sequence typing (MLST), WGS phylogenetics, average nucleotide identity (ANI), and single nucleotide polymorphism (SNP) analyses of the isolate’s genome indicate this bacterium is a newly identified Carnobacterium maltaromaticum sequence type (ST). Members of the Carnobacteria have anti-listeria activities, highlighting their potential functional properties. Consequently, the isolate could be a potential probiotic for canids and this is the first report on an axenic C. maltaromaticum culture from the genus Canis. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Graphical abstract

18 pages, 599 KiB  
Article
Mapping Antimicrobial Resistance in Escherichia coli and Klebsiella pneumoniae from Complicated Urinary Tract Infections in Oman: Phenotypic and Genotypic Insights
by Nawal AL Shizawi, Zaaima AL Jabri, Fatima Khan, Hiba Sami, Turkiya AL Siyabi, Zakariya AL Muharrmi, Srinivasa Rao Sirasanagandla and Meher Rizvi
Diagnostics 2025, 15(9), 1062; https://doi.org/10.3390/diagnostics15091062 - 22 Apr 2025
Viewed by 928
Abstract
Background: Mapping the local etiology and susceptibility of common pathogens causing complicated urinary tract infection (cUTI) is important for promoting evidence-based antimicrobial prescribing. Evaluating the prevalence of extended-spectrum beta-lactamase (ESBL), AmpC beta-lactamase (AmpC), and carbapenemase-producing Enterobacterales (CPEs) is equally important as it informs [...] Read more.
Background: Mapping the local etiology and susceptibility of common pathogens causing complicated urinary tract infection (cUTI) is important for promoting evidence-based antimicrobial prescribing. Evaluating the prevalence of extended-spectrum beta-lactamase (ESBL), AmpC beta-lactamase (AmpC), and carbapenemase-producing Enterobacterales (CPEs) is equally important as it informs treatment guidelines and empiric management. Whole genome sequencing (WGS) enhances antimicrobial resistance (AMR) surveillance by complementing phenotypic antimicrobial susceptibility testing, offering deeper insights into resistance mechanisms, transmissions, and evolutions. Integrating it into routine AMR monitoring can significantly improve global efforts to combat antimicrobial resistance. Methods: Antimicrobial susceptibility profiles of isolates from cUTI were collected from patients presenting with Sultan Qaboos University Hospital, Muscat and Suhar Hospital, Suhar, Oman. Automated systems as well as manual methods were used for detection of ESBL, AmpC, and CPE. ESBLs, AmpC β-lactamases, and CPEs were further detected by manual methods: double-disk synergy test for ESBL; disk approximation assay and D69C AmpC detection set for AmpC, and mCIM and KPC/IMP/NDM/VIM/OXA-48 Combo test kit for CPE. WGS was carried out in 11 FOX-resistant E. coli and (22 carbapenem-resistant K. pneumoniae) isolates with varying susceptibilities to identify circulating clades, AMR genes, and plasmids. Bioinformatic analysis was performed using online tools. Results: The susceptibility patterns of E. coli from cUTI were as follows: nitrofurantoin (96%), fosfomycin (100%), fluoroquinolones (44%), aminoglycosides (93%), piperacillin-tazobactam (95%), and carbapenems (98%). In comparison, susceptibility rates of K. pneumoniae were far lower: nitrofurantoin (38%), fosfomycin (89%), aminoglycosides (82%), piperacillin-tazobactam (72%), and carbapenems (83%). K. pneumoniae, however, was more susceptible to fluoroquinolones at 47% in comparison to E. coli. The prevalence of ESBL among E. coli and K. pneumoniae was 37.2% and CRE was 6.2% while the estimated prevalence of AmpC was 5.4%. It was observed that E. coli was the predominant ESBL and AmpC producer, while K. pneumoniae was the major carbapenem-resistant Enterobacterales (CREs) producer. No predominant multi-locus sequence typing (MLST) lineage was observed in AmpC-producing E. coli with nine E. coli MLST lineages being identified from eleven isolates: ST-10, ST-69, ST-77, ST-131, ST-156, ST-167, ST-361, ST-1125, and ST-2520. On the other hand, a less diverse MLST spectrum (ST-2096, ST-231, ST-147, ST-1770, and ST-111) was observed in the CRE K. pneumoniae. Among the five MLST lineages, ST-2096 (twelve isolates) and ST-147 (seven isolates) predominated. WGS revealed that DHA-1 was the predominant plasmid-mediated AmpC gene in E. coli, while OXA-232 and NDM-5 were the most common carbapenemase genes in K. pneumoniae. All E. coli DHA-1-positive isolates co-harbored the quinolone resistance gene qnrB4 and the sulfonamide resistance gene sul1 while no aminoglycoside resistance genes were detected. The majority of CPE CRE K. pneumoniae carried other β-lactamase genes, such as blaCTX-M-15, blaSHV, and blaTEM; all co-harbored the quinolone resistance gene OqxAB; and 77% carried the aminoglycoside resistance gene armA. Conclusions: Our results suggest that fosfomycin is an excellent empiric choice for treating complicated cystitis caused by both E. coli and K. pneumoniae, while nitrofurantoin is an appropriate choice for E. coli cystitis but not for K. pneumoniae. Aminoglycosides and piperacillin-tazobactam are excellent intravenous alternatives that spare carbapenems. DHA-1 was the predominant AmpC in E. coli, while OXA-232 and NDM-5 were the predominant carbapenemases in K. pneumoniae. In AmpC-producing E. coli, no MLST predominated, suggesting a significant flux in E. coli with lack of stable clades in this region. In contrast, ST-2096 and ST-147 predominated in CRE Klebsiella pneumoniae, suggesting a stable circulation of these in Oman. WGS profiling provides a deeper understanding of the genetic basis of resistance and enhances surveillance and offers comprehensive insights into pathogen evolution and transmission patterns. Full article
Show Figures

Figure 1

16 pages, 6026 KiB  
Article
Molecular Characterization and Antimicrobial Resistance Evaluation of Listeria monocytogenes Strains from Food and Human Samples
by Annamaria Castello, Vincenzina Alio, Marina Torresi, Gabriella Centorotola, Alexandra Chiaverini, Francesco Pomilio, Ignazio Arrigo, Anna Giammanco, Teresa Fasciana, Marco Francesco Ortoffi, Antonietta Gattuso, Giuseppa Oliveri, Cinzia Cardamone and Antonella Costa
Pathogens 2025, 14(3), 294; https://doi.org/10.3390/pathogens14030294 - 18 Mar 2025
Cited by 1 | Viewed by 800
Abstract
Listeria monocytogenes is an important foodborne pathogen, markedly persistent even in harsh environments and responsible for high hospitalization and mortality rates. The aim of the present study was to detect the strains circulating in Sicily over a five-year period and characterize their antimicrobial [...] Read more.
Listeria monocytogenes is an important foodborne pathogen, markedly persistent even in harsh environments and responsible for high hospitalization and mortality rates. The aim of the present study was to detect the strains circulating in Sicily over a five-year period and characterize their antimicrobial resistance profiles. The key element of this study was the sharing of data among various entities involved in food control and clinical surveillance of listeriosis in order to develop an integrated approach for this pathogen. A total of 128 isolates were analyzed, including 87 food-source strains and 41 clinical specimens. Whole-genome sequencing (WGS) was performed for sequence type (ST) and clonal complex (CC) identification through multilocus sequence typing (MLST) analysis. Antimicrobial resistance was assessed using the Kirby–Bauer method. The majority of strains belonged to serotype IVb (34/41 and 53/87 of clinical and food-source isolates, respectively) and were subtyped as CC2-ST2 (28/34 and 41/53 of clinical and food-source isolates respectively). Most of the isolates were susceptible to the main antimicrobials recommended for treatment of listeriosis. Resistance (R) and intermediate resistance (I) percentages worthy of attention were found against oxacillin (R: 85.9%) and clindamycin (I: 34.6%) in the food-source isolates and trimethoprim/sulfamethoxazole (R: 29.23%) in the clinical isolates. Also, 7.7% of the food-source isolates were multidrug resistant. Our results highlight how the punctual comparison between food and clinical strains is an essential tool for effectively tracking and preventing foodborne outbreaks. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

12 pages, 1514 KiB  
Article
Genomic Characterization of Multidrug-Resistant Acinetobacter baumannii in Pneumonia Patients in Kazakhstan
by Vitaliy Strochkov, Vyacheslav Beloussov, Shynggys Orkara, Alyona Lavrinenko, Maxim Solomadin, Sergey Yegorov and Nurlan Sandybayev
Diagnostics 2025, 15(6), 704; https://doi.org/10.3390/diagnostics15060704 - 12 Mar 2025
Viewed by 1167
Abstract
Background/Objectives: Acinetobacter baumannii is an increasingly significant nosocomial pathogen causing severe infections globally. The emergence of multidrug-resistant A. baumannii strains has raised concerns about the efficacy of current treatment options. This study aimed to investigate the molecular epidemiology and antimicrobial resistance patterns [...] Read more.
Background/Objectives: Acinetobacter baumannii is an increasingly significant nosocomial pathogen causing severe infections globally. The emergence of multidrug-resistant A. baumannii strains has raised concerns about the efficacy of current treatment options. This study aimed to investigate the molecular epidemiology and antimicrobial resistance patterns of A. baumannii isolates from Kazakhstan. Methods: We collected nine A. baumannii isolates in 2022–2023 in Karaganda, Kazakhstan, which were then subjected to whole-genome sequencing (WGS) using the IonTorrent platform for genome characterization. Multilocus sequence typing (MLST) was used to classify the isolates into distinct clonal complexes. In addition, antibiotic susceptibility testing was conducted using the standard methods for a range of antibiotics commonly used against A. baumannii. Results: Our results revealed a high degree of genomic diversity among isolates from Kazakhstan, with multiple distinct classes identified: ST78 (n = 4, 44.4%), ST15 (n = 2, 22.2%), ST2 (n = 2, 22.2%), and ST193 (n = 1, 11%). MLST analysis showed that ST78Pas/1104Oxf (harboring blaOXA-72 and blaOXA-90 genes) were prevalent among the multidrug-resistant isolates. Based on the results of MLST, KL, and OCL, the analyzed isolates were assigned to specific international clones: IC2—ST2(Pas)-KL2/168-OCL1, IC4—ST15(Pas)-KL9-OCL7, and IC6—ST78(Pas)-KL49-OCL1. Notably, these isolates exhibited resistance to multiple antibiotics including meropenem, imipenem, gentamicin, amikacin, and ciprofloxacin. Conclusions: This study highlighted the complex molecular epidemiology of A. baumannii in Kazakhstan over a two-year period, underscoring the need for targeted surveillance strategies to monitor antimicrobial resistance patterns. The emergence and dissemination of multidrug-resistant strains within this timeframe emphasizes the importance of whole-genome sequencing as a diagnostic tool and underscores the challenges posed by these infections. Full article
(This article belongs to the Special Issue DNA Sequencing of Infectious Diseases)
Show Figures

Figure 1

8 pages, 577 KiB  
Communication
Molecular Characterization of Presumptive Klebsiella pneumoniae Isolates from Companion and Farm Animals in Germany Reveals Novel Sequence Types
by Marwa Bassiouny, Peter A. Kopp, Ivonne Stamm, Hanka Brangsch, Heinrich Neubauer and Lisa D. Sprague
Pathogens 2025, 14(3), 259; https://doi.org/10.3390/pathogens14030259 - 5 Mar 2025
Viewed by 872
Abstract
Klebsiella (K.) pneumoniae is a One Health pathogen that has been isolated from humans, animals, and environmental sources and is responsible for a diverse range of potentially life-threatening infections. In the present study, we analyzed the genomes of 64 presumptive K. [...] Read more.
Klebsiella (K.) pneumoniae is a One Health pathogen that has been isolated from humans, animals, and environmental sources and is responsible for a diverse range of potentially life-threatening infections. In the present study, we analyzed the genomes of 64 presumptive K. pneumoniae strains isolated in 2023 from different companion and farm animals in Germany. Using whole-genome sequencing (WGS) data, 59 isolates (92.2%) were identified as K. pneumoniae and five (7.8%) as K. quasipneumoniae. Multilocus sequence typing (MLST) assigned 53 isolates to 46 distinct sequence types (STs). Eleven isolates could not be assigned to existing STs of the Pasteur classification scheme because they contained novel alleles not previously documented. Thus, these were considered novel and designated as ST7681-ST7689 and ST7697-ST7698. Almost all isolates in this study were assigned unique STs, and only five STs were shared among multiple isolates. This research highlights the genetic diversity among K. pneumoniae strains isolated from different companion and farm animals in Germany, provides information to help in surveillance strategies to mitigate zoonotic transmission risks, and demonstrates the value of WGS and MLST in identifying novel STs of K. pneumoniae. Full article
Show Figures

Figure 1

15 pages, 3930 KiB  
Case Report
Multidrug-Resistant Extraintestinal Pathogenic Escherichia coli Exhibits High Virulence in Calf Herds: A Case Report
by Di-Di Zhu, Xin-Rui Li, Teng-Fei Ma, Jia-Qi Chen, Chuan-Hui Ge, Shao-Hua Yang, Wei Zhang, Jiu Chen, Jia-Jia Zhang, Miao-Miao Qi, Liang Zhang and Hong-Jun Yang
Microbiol. Res. 2025, 16(3), 59; https://doi.org/10.3390/microbiolres16030059 - 28 Feb 2025
Viewed by 888
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a group of Escherichia coli strains that can cause severe infectious diseases outside the gastrointestinal tract, such as urinary tract infections, meningitis, septicemia, etc. We report a case of a calf herd infection by ExPEC with high [...] Read more.
Extraintestinal pathogenic Escherichia coli (ExPEC) is a group of Escherichia coli strains that can cause severe infectious diseases outside the gastrointestinal tract, such as urinary tract infections, meningitis, septicemia, etc. We report a case of a calf herd infection by ExPEC with high rates of morbidity and mortality. The research purpose of this study was to thoroughly investigate the characteristics of the ExPEC responsible for the calf herd infection. Specifically, we aimed to understand the mechanisms underlying its multidrug resistance and high pathogenicity. Clinical samples were collected for the isolation and identification of ExPECs, cultured on MacConkey agar, and further tested by PCR for the uidA gene, 16S rRNA gene sequencing, and adhesion patterns on HEp-2 cells. The antimicrobial activity was determined using the disk diffusion method according to Clinical & Laboratory Standards Institute (CLSI) guidelines. The pathogenicity was assessed through the experimental infection of Kunming mice, tracking their survival and weight changes, and performing autopsies for bacterial counts and histopathological analysis. Additionally, whole-genome sequencing (WGS) and a comprehensive analysis were performed, including multilocus sequence typing (MLST), serotyping, drug-resistance gene analysis, virulence factor analysis, metabolic pathway analysis, and enrichment analysis, using various online tools and databases. An ExPEC strain named RZ-13 was responsible for this case and was identified as ST345 and O134: H21. Among the 14 antibiotics tested, 13 showed resistance, indicating that the RZ-13 strain is a multidrug-resistant (MDR) bacterium. The experimental infection of Kunming mice proved the greater pathogenicity of RZ-13 than that of CICC 24186. The comprehensive WGS revealed the presence of 28 antibiotic resistance genes and 86 virulence-related genes in the genome of the strain, corroborating its clinical manifestations of MDR and high pathogenicity. Our study isolated a MDR ExPEC strain, RZ-13, with a strong pathogenicity. This is the first case report of ExPEC leading to severe mortality in calf herds in China, underscoring the need for the rational use of antibiotics to reduce the risk of the generation and transmission of MDR bacteria from food-producing animals to ensure food safety and public health. Full article
Show Figures

Figure 1

20 pages, 3104 KiB  
Article
Worldwide Population Dynamics of Salmonella Saintpaul: Outbreaks, Epidemiology, and Genome Structure
by Pedro Panzenhagen, Devendra H. Shah, Dalia dos Prazeres Rodrigues and Carlos Adam Conte Junior
Genes 2025, 16(3), 254; https://doi.org/10.3390/genes16030254 - 22 Feb 2025
Viewed by 1628
Abstract
Background/Objectives: Salmonella Saintpaul (SSa) is increasingly linked to foodborne outbreaks in Brazil and globally. Despite its rising public health significance, its epidemiology, genomic diversity, and pathogenic potential remain underexplored. This study addresses these gaps through a comprehensive global analysis of SSa population dynamics, [...] Read more.
Background/Objectives: Salmonella Saintpaul (SSa) is increasingly linked to foodborne outbreaks in Brazil and globally. Despite its rising public health significance, its epidemiology, genomic diversity, and pathogenic potential remain underexplored. This study addresses these gaps through a comprehensive global analysis of SSa population dynamics, outbreak patterns, and genetic structures, along with an in-depth phenotypic and genomic characterization of strain PP_BR059, isolated from a hospitalized patient in Ceará, Brazil. Methods: We analyzed 1,953 publicly available SSa genomes using core-genome multi-locus sequence typing (cgMLST), antimicrobial resistance (AMR) profiling, pan-genome analysis, and phylogenetic inference. A genome-wide association study (GWAS) identified genetic determinants of virulence and AMR. The invasiveness and intracellular survival of PP_BR059 were assessed using in vitro macrophage infection assays, while whole-genome sequencing (WGS) provided genetic insights. Results: Phylogenetic analysis identified 49 sequence types (STs), with ST-50 (787 genomes) and ST-27 (634 genomes) being most prevalent. ST-50 included all clinical strains from South America, including PP_BR059. AMR analysis showed 60% of SSa genomes were pan-susceptible, while ST-27 had the highest proportion of AMR strains. GWAS revealed distinct evolutionary lineages within ST-50 and ST-27. PP_BR059 exhibited lower macrophage invasion (3.82%) but significantly higher intracellular survival at 2 h (68.72%) and 20 h (25.68%) post-infection. WGS confirmed a pan-susceptible AMR profile and plasmid absence. Conclusions: This study highlights SSa’s global dissemination, evolutionary trends, and pathogenic variability, emphasizing the need for molecular surveillance to inform public health interventions. Full article
Show Figures

Figure 1

19 pages, 2143 KiB  
Article
Whole-Genome Shotgun Sequencing from Chicken Clinical Tracheal Samples for Bacterial and Novel Bacteriophage Identification
by Klaudia Chrzastek, Bruce S. Seal, Arun Kulkarni and Darrell R. Kapczynski
Vet. Sci. 2025, 12(2), 162; https://doi.org/10.3390/vetsci12020162 - 12 Feb 2025
Viewed by 1313
Abstract
A whole-genome shotgun sequencing (sWGS) approach was applied to chicken clinical tracheal swab samples during metagenomics investigations to identify possible microorganisms among poultry with respiratory diseases. After applying shotgun sequencing, Ornithobacterium rhinotracheale (ORT) and a putative prophage candidate were found in one of [...] Read more.
A whole-genome shotgun sequencing (sWGS) approach was applied to chicken clinical tracheal swab samples during metagenomics investigations to identify possible microorganisms among poultry with respiratory diseases. After applying shotgun sequencing, Ornithobacterium rhinotracheale (ORT) and a putative prophage candidate were found in one of the swab samples. A multi-locus sequence typing (MLST) scheme of the ORT genome involved the adk, aroE, fumC, gdhA, pgi, and pmi genes. Antibiotic resistant analysis demonstrated tetracycline-resistan t ribosomal protection protein, tetQ, the aminoglycoside-(3)-acetyltransferase IV gene, aminoglycoside antibiotic inactivation and macrolide resistance, and the ermX gene in the ORT genome. A putative prophage candidate was predicted using Prophage Hunter and PHAST, while BLAST analyses were utilized to identify genes encoding bacteriophage proteins. Interestingly, genes encoding endolysins were detected in bacteriophage genomes. The gene products encoded in the prophage sequence were most closely related to bacteriophages in the N4-like family among the Authographiviridae in the Caudovirales. This study demonstrates the potential of sWGS for the rapid detection and characterization of etiologic agents found in clinical samples. Full article
Show Figures

Figure 1

Back to TopTop