Comprehensive Genomic Analysis of Pseudomonas aeruginosa PSU9449 Isolated from a Clinical Case in Thailand
Abstract
:1. Introduction
2. Results and Discussion
2.1. Clinical Information and Antimicrobial Susceptibility Profiles
2.2. Genome Characteristics and Species Confirmation
2.3. Functional Annotation
2.4. Mobile Genetic Elements (MGEs)
2.5. Bacteriocin-Encoding Genes
2.6. CRISPR-Cas and R-M Sites
2.7. Antibiotic Resistance Genes and Virulence Factors Profiling
2.8. Pan-Genome Analysis and Phylogenetic Tree
3. Materials and Methods
3.1. Bacterial Strain and Antimicrobial Susceptibility Testing
3.2. Genomic DNA Extraction and Whole-Genome Sequencing (WGS)
3.3. Genomic Assembly, Species Confirmation, and Annotation
3.4. Genomic Analysis
3.5. Genomic Diversity and Pangenome Insights Across Neighboring Countries
3.6. Single Nucleotide Polymorphism (SNP) Phylogenetic Tree Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santajit, S.; Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed. Res. Int. 2016, 2475067. [Google Scholar] [CrossRef] [PubMed]
- Ruekit, S.; Srijan, A.; Serichantalergs, O.; Margulieux, K.R.; Mc Gann, P.; Mills, E.G.; Stribling, W.G.; Pimsawat, T.; Kormanee, R.; Nakornchai, S.; et al. Molecular characterization of multidrug-resistant ESKAPEE pathogens from clinical samples in Chonburi, Thailand (2017–2018). BMC Infect. Dis. 2022, 22, 695. [Google Scholar] [CrossRef]
- Wareth, G.; Brangsch, H.; Nguyen, N.; Nguyen, T.; Pletz, M.; Neubauer, H.; Sprague, L.D. WGS analysis of hypervirulent and MDR Klebsiella pneumoniae from Vietnam reveales an inverse relationship between resistome and virulome. Ger. J. Microbiol. 2024, 4, 15–24. [Google Scholar]
- Ngoi, S.T.; Chong, C.W.; Ponnampalavanar, S.S.L.S.; Tang, S.N.; Idris, N.; Abdul, J.K.; Gregory MJHusain, T.; Teh, C.S.J. Genetic mechanisms and correlated risk factors of antimicrobial-resistant ESKAPEE pathogens isolated in a tertiary hospital in Malaysia. Antimicrob. Resist. Infect. Control 2021, 10, 70. [Google Scholar] [CrossRef] [PubMed]
- Nordmann, P.; Poirel, L. Epidemiology and Diagnostics of Carbapenem Resistance in Gram-negative Bacteria. Clin. Infect. Dis. 2019, 69, S521–S528. [Google Scholar] [CrossRef]
- CDC. Antibiotic Resistance Threats in the United States, 2019; Centers for Diease Control and Prevention (CDC): Atlanta, GA, USA, 2019. [Google Scholar] [CrossRef]
- Al-Orphaly, M.; Hadi, H.A.; Eltayeb, F.K.; Al-Hail, H.; Samuel, B.G.; Sultan, A.A.; Skariah, S. Epidemiology of Multidrug-Resistant Pseudomonas aeruginosa in the Middle East and North Africa Region. Msphere 2021, 6, 10-1128. [Google Scholar] [CrossRef]
- Masoud, S.; Njakoi, G.; Sholla, S.; Renatus, D.; Majigo, M.; Gangji, R.R.; Nyawale, H.; Mawazo, A.; Msafiri, F.; Ntukula, A.; et al. Carbapenem resistance in Pseudomonas aeruginosa and Acinetobacter baumannii in Tanzania. Ger. J. Microbiol. 2024, 4, 1–9. [Google Scholar]
- Lee, Y.-L.; Ko, W.-C.; Hsueh, P.-R. Geographic Patterns of Carbapenem-Resistant Pseudomonas aeruginosa in the Asia-Pacific Region: Results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) Program, 2015–2019. Antimicrob. Agents Chemother. 2022, 66, e02000-21. [Google Scholar] [CrossRef]
- Zhao, Y.; Xie, L.; Wang, C.; Zhou, Q.; Jelsbak, L. Comparative whole-genome analysis of China and global epidemic Pseudomonas aeruginosa high-risk clones. J. Glob. Antimicrob. Resist. 2023, 35, 149–158. [Google Scholar] [CrossRef]
- Karlowsky, J.A.; Lob, S.H.; Siddiqui, F.; Akrich, B.; DeRyke, C.A.; Young, K.; Motyl, M.R.; Hawser, S.P.; Sahm, D.F. In vitro activity of ceftolozane/tazobactam against multidrug-resistant Pseudomonas aeruginosa from patients in Western Europe: SMART 2017-2020. Int. J. Antimicrob. Agents 2023, 61, 106772. [Google Scholar] [CrossRef]
- Chukamnerd, A.; Pomwised, R.; Chusri, S.; Singkhamanan, K.; Chumtong, S.; Jeenkeawpiam, K.; Sakunrang, C.; Saroeng, K.; Saengsuwan, P.; Wonglapsuwan, M.; et al. Antimicrobial Susceptibility and Molecular Features of Colonizing Isolates of Pseudomonas aeruginosa and the Report of a Novel Sequence Type (ST) 3910 from Thailand. Antibiotics 2023, 12, 165. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Eggimann, P.; Luyt, C.-E.; Wolff, M.; Tamm, M.; François, B.; Mercier, E.; Garbino, J.; Laterre, P.-F.; Koch, H.; et al. Pseudomonas aeruginosa serotypes in nosocomial pneumonia: Prevalence and clinical outcomes. Crit. Care 2014, 18, R17. [Google Scholar] [CrossRef] [PubMed]
- Rikame, T.; Borde, M. Whole Genome, Functional Annotation and Comparative Genomics of Plant Growth-Promoting Bacteria Pseudomonas aeruginosa (NG61) with Potential Application in Agro-Industry. Curr. Microbiol. 2022, 79, 169. [Google Scholar] [CrossRef] [PubMed]
- Valeeva, L.R.; Pudova, D.S.; Khabipova, N.N.; Shigapova, L.H.; Shagimardanova, E.I.; Rogov, A.M.; Tagirova, T.R.; Gimadeev, Z.G.; Sharipova, M.R. The dataset on the draft whole-genome sequences of two Pseudomonas aeruginosa strains isolated from urine samples of patients with urinary tract diseases. Data Brief. 2023, 51, 109704. [Google Scholar] [CrossRef]
- Dai, Z.; Wu, Z.; Zhu, W.; Wu, G. Amino Acids in Microbial Metabolism and Function. Adv. Exp. Med. Biol. 2022, 1354, 127–143. [Google Scholar]
- Singh, S.; Almuhanna, Y.; Alshahrani, M.Y.; Lowman, D.; Rice, P.J.; Gell, C.; Ma, Z.; Graves, B.; Jackson, D.; Lee, K.; et al. Pseudomonas aeruginosa biofilms display carbohydrate ligands for CD206 and CD209 that interfere with their receptor function. bioRxiv 2020. [Google Scholar] [CrossRef]
- de Sousa, T.; Hébraud, M.; Dapkevicius, M.; Maltez, L.; Pereira, J.E.; Capita, R.; Alonsa-Calleja, C.; Igarejas, G.; Poera, P. Genomic and Metabolic Characteristics of the Pathogenicity in Pseudomonas aeruginosa. Int. J. Mol. Sci. 2021, 22, 12892. [Google Scholar] [CrossRef]
- Al-Nayyef, H.; Guyeux, C.; Petitjean, M.; Hocquet, D.; Bahi, J. Relation between Insertion Sequences and Genome Rearrangements in Pseudomonas aeruginosa 2015. In Bioinformatics and Biomedical Engineering (IWBBIO 2015); Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Galiot, L.; Monger, X.C.; Vincent, A.T. Studying the Association between Antibiotic Resistance Genes and Insertion Sequences in Metagenomes: Challenges and Pitfalls. Antibiotics 2023, 12, 175. [Google Scholar] [CrossRef]
- Pritchard, A.E.; Vasil, M.L. Possible insertion sequences in a mosaic genome organization upstream of the exotoxin A gene in Pseudomonas aeruginosa. J. Bacteriol. 1990, 172, 2020–2028. [Google Scholar] [CrossRef]
- Sokol, P.A.; Luan, M.Z.; Storey, D.G.; Thirukkumaran, P. Genetic rearrangement associated with in vivo mucoid conversion of Pseudomonas aeruginosa PAO is due to insertion elements. J. Bacteriol. 1994, 176, 553–562. [Google Scholar] [CrossRef]
- Winsor, G.L.; Lo, R.; Sui, S.J.H.; Ung, K.S.E.; Huang, S.; Cheng, D.; Ching, W.K.H.; Hancock, R.E.W.; Brinkman, F.S.L. Pseudomonas aeruginosa Genome Database and PseudoCAP: Facilitating community-based, continually updated, genome annotation. Nucleic Acids Res. 2005, 33, D338–D343. [Google Scholar] [CrossRef] [PubMed]
- Joardar, V.; Lindeberg, M.; Jackson Robert, W.; Selengut, J.; Dodson, R.; Brinkac, L.M.; Daugherty, S.C.; Deboy, R.; Durkin, A.S.; Giglio, M.G.; et al. Whole-Genome Sequence Analysis of Pseudomonas syringae pv. phaseolicola 1448A Reveals Divergence among Pathovars in Genes Involved in Virulence and Transposition. J. Bacteriol. 2005, 187, 6488–6498. [Google Scholar] [CrossRef] [PubMed]
- Denayer, S.; Matthijs, S.; Cornelis, P. Pyocin S2 (Sa) Kills Pseudomonas aeruginosa Strains via the FpvA Type I Ferripyoverdine Receptor. J. Bacteriol. 2007, 189, 7663–7668. [Google Scholar] [CrossRef]
- Sano, Y.; Matsui, H.; Kobayashi, M.; Kageyama, M. Molecular structures and functions of pyocins S1 and S2 in Pseudomonas aeruginosa. J. Bacteriol. 1993, 175, 2907–2916. [Google Scholar] [CrossRef]
- Michel-Briand, Y.; Baysse, C. The pyocins of Pseudomonas aeruginosa. Biochimie 2002, 84, 499–510. [Google Scholar] [CrossRef]
- Elfarash, A.; Wei, Q.; Cornelis, P. The soluble pyocins S2 and S4 from Pseudomonas aeruginosa bind to the same FpvAI receptor. Microbiologyopen 2012, 1, 268–275. [Google Scholar] [CrossRef]
- Smith, K.; Martin, L.; Rinaldi, A.; Rajendran, R.; Ramage, G.; Walker, D. Activity of Pyocin S2 against Pseudomonas aeruginosa Biofilms. Antimicrob. Agents Chemother. 2012, 56, 1599–1601. [Google Scholar] [CrossRef] [PubMed]
- Franz, L.; Kazmaier, U.; Truman, A.W.; Koehnke, J. Bottromycins-biosynthesis, synthesis and activity. Nat. Product. Rep. 2021, 38, 1659–1683. [Google Scholar] [CrossRef]
- Barrangou, R.; Horvath, P. A decade of discovery: CRISPR functions and applications. Nat. Microbiol. 2017, 2, 17092. [Google Scholar] [CrossRef]
- Wheatley, R.M.; MacLean, R.C. CRISPR-Cas systems restrict horizontal gene transfer in Pseudomonas aeruginosa. ISME J. 2021, 15, 1420–1433. [Google Scholar] [CrossRef]
- Rath, D.; Amlinger, L.; Rath, A.; Lundgren, M. The CRISPR-Cas immune system: Biology, mechanisms and applications. Biochimie 2015, 117, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: An international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef] [PubMed]
- Feldman, M.; Bryan, R.; Rajan, S.; Scheffler, L.; Brunnert, S.; Tang, H.; Prince, A. Role of Flagella in Pathogenesis of Pseudomonas aeruginosa Pulmonary Infection. Infect. Immun. 1998, 66, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Bouteiller, M.; Dupont, C.; Bourigault, Y.; Latour, X.; Barbey, C.; Konto-Ghiorghi, Y.; Merieau, A. Pseudomonas Flagella: Generalities and Specificities. Int. J. Mol. Sci. 2021, 22, 3337. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zou, Y.; She, P.; Wu, Y. Composition, function, and regulation of T6SS in Pseudomonas aeruginosa. Microbiol. Res. 2015, 172, 19–25. [Google Scholar] [CrossRef]
- Horna, G.; Ruiz, J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol. Res. 2021, 246, 126719. [Google Scholar] [CrossRef]
- Gómez-Martínez, J.; Rocha-Gracia, R.D.C.; Bello-López, E.; Cevallos, M.A.; Castañeda-Lucio, M.; Sáenz, Y.; Jimenez-Flores, G.; Cortes-Cortes, G.; Lopez-Garcia, A.; LoZano-Zarain, P. Comparative Genomics of Pseudomonas aeruginosa Strains Isolated from Different Ecological Niches. Antibiotics 2023, 12, 886. [Google Scholar] [CrossRef]
- Subedi, D.; Vijay, A.K.; Kohli, G.S.; Rice, S.A.; Willcox, M. Comparative genomics of clinical strains of Pseudomonas aeruginosa strains isolated from different geographic sites. Sci. Rep. 2018, 8, 15668. [Google Scholar] [CrossRef]
- Freschi, L.; Vincent, A.T.; Jeukens, J.; Emond-Rheault, J.G.; Kukavica-Ibrulj, I.; Dupont, M.J.; Charette, S.J.; Boyle, B.; Levesque, R.C. The Pseudomonas aeruginosa Pan-Genome Provides New Insights on Its Population Structure, Horizontal Gene Transfer, and Pathogenicity. Genome. Biol. Evol. 2019, 11, 109–120. [Google Scholar] [CrossRef]
- Kiratisin, P.; Tucker, K.D.; Passador, L. LasR, a transcriptional activator of Pseudomonas aeruginosa virulence genes, functions as a multimer. J. Bacteriol. 2002, 184, 4912–4919. [Google Scholar] [CrossRef]
- Morgan, R.; Kohn, S.; Hwang, S.-H.; Hassett Daniel, J.; Sauer, K. BdlA, a Chemotaxis Regulator Essential for Biofilm Dispersion in Pseudomonas aeruginosa. J. Bacteriol. 2006, 188, 7335–7343. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Mikheenko, A.; Prjibelski, A.; Saveliev, V.; Antipov, D.; Gurevich, A. Versatile genome assembly evaluation with QUAST-LG. Bioinformatics 2018, 34, i142–i150. [Google Scholar] [CrossRef]
- Jain, C.; Rodriguez, R.L.; Phillippy, A.M.; Konstantinidis, K.T.; Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018, 9, 5114. [Google Scholar] [CrossRef] [PubMed]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M.; et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef]
- Overbeek, R.; Olson, R.; Pusch, G.D.; Olsen, G.J.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Parrello, B.; Shukla, M.; et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 2014, 42, D206–D214. [Google Scholar] [CrossRef]
- Brettin, T.; Davis, J.J.; Disz, T.; Edwards, R.A.; Gerdes, S.; Olsen, G.J.; Olsen, R.; Overbeek, R.; Parrello, B.; Pusch, G.D.; et al. RASTtk: A modular and extensible implementation of the RAST algorithm for building custom annotation pipelines and annotating batches of genomes. Sci. Rep. 2015, 5, 8365. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. eggNOG 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2018, 47, D309–D314. [Google Scholar] [CrossRef]
- Jolley, K.A.; Bray, J.E.; Maiden, M.C.J. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018, 3, 124. [Google Scholar] [CrossRef]
- Thrane Sandra, W.; Taylor Véronique, L.; Lund, O.; Lam Joseph, S.; Jelsbak, L. Application of Whole-Genome Sequencing Data for O-Specific Antigen Analysis and In Silico Serotyping of Pseudomonas aeruginosa Isolates. J. Clin. Microbiol. 2016, 54, 1782–1788. [Google Scholar] [CrossRef] [PubMed]
- Cosentino, S.; Voldby Larsen, M.; Møller Aarestrup, F.; Lund, O. PathogenFinder-Distinguishing Friend from Foe Using Bacterial Whole Genome Sequence Data. PLoS ONE 2013, 8, e77302. [Google Scholar] [CrossRef]
- Van Heel, A.J.; de Jong, A.; Song, C.; Viel, J.H.; Kok, J.; Kuipers, O.P. BAGEL4: A user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 2018, 46, W278–W281. [Google Scholar] [CrossRef]
- Johansson, M.H.K.; Bortolaia, V.; Tansirichaiya, S.; Aarestrup, F.M.; Roberts, A.P.; Petersen, T.N. Detection of mobile genetic elements associated with antibiotic resistance in Salmonella enterica using a newly developed web tool: MobileElementFinder. J. Antimicrob. Chemother. 2020, 76, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Couvin, D.; Bernheim, A.; Toffano-Nioche, C.; Touchon, M.; Michalik, J.; Néron, B.; Rocha, E.P.C.; Vergnaud, G.; Gautheret, D.; Porcel, C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018, 46, W246–W251. [Google Scholar] [CrossRef] [PubMed]
- Roer, L.; Hendriksen Rene, S.; Leekitcharoenphon, P.; Lukjancenko, O.; Kaas Rolf, S.; Hasman, H.; Aarestrup, F.M. Is the Evolution of Salmonella enterica subsp. enterica Linked to Restriction-Modification Systems? Msystems 2016, 1, 10-1128. [Google Scholar] [CrossRef]
- Jia, B.; Raphenya, A.R.; Alcock, B.; Waglechner, N.; Guo, P.; Tsang, K.K.; Lago, B.A.; Dave, B.M.; Pereira, S.; Sharma, A.N.; et al. CARD 2017: Expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017, 45, D566–D573. [Google Scholar] [CrossRef]
- Alcock, B.P.; Huynh, W.; Chalil, R.; Smith, K.W.; Raphenya, A.R.; Wlodarski, M.A.; Edalatmand, A.; Petkau, A.; Syed, S.A.; Tsang, K.K.; et al. CARD 2023: Expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database. Nucleic Acids Res. 2023, 51, D690–D699. [Google Scholar] [CrossRef]
- Chen, L.; Zheng, D.; Liu, B.; Yang, J.; Jin, Q. VFDB 2016: Hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016, 44, D694–D697. [Google Scholar] [CrossRef]
- Page, A.J.; Cummins, C.A.; Hunt, M.; Wong, V.K.; Reuter, S.; Holden, M.T.G.; Fookes, M.; Falush, D.; Keane, J.A.; Parkhill, J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics 2015, 31, 3691–3693. [Google Scholar] [CrossRef]
- Page, A.J.; Taylor, B.; Delaney, A.J.; Soares, J.; Seemann, T.; Keane, J.A.; Harris, S.R. SNP-sites: Rapid efficient extraction of SNPs from multi-FASTA alignments. Microb. Genom. 2016, 2, e000056. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree: Computing Large Minimum Evolution Trees with Profiles instead of a Distance Matrix. Mol. Biol. Evol. 2009, 26, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 2021, 49, W293–W296. [Google Scholar] [CrossRef]
General Features | |
---|---|
Genome size (bp) | 6,195,518 |
GC content (%) | 66.4 |
Number of contigs | 37 |
CDS | 5607 |
Total RNA (tRNA + rRNA + tmRNA) | 73 (68 + 4 + 1) |
N50 | 399,445 |
L50 | 6 |
Number of ARGs | 51 |
Number of VFGs | 284 |
Subsystem Features | Counts | % |
---|---|---|
Phages, prophages, transposable elements, plasmids | 11 | 0.45 |
Cell wall and capsule | 42 | 1.71 |
Cofactors, vitamins, prosthetic groups, pigments | 196 | 7.99 |
Sulfur metabolism | 39 | 1.59 |
Nitrogen metabolism | 53 | 2.16 |
Metabolism of aromatic compounds | 118 | 4.81 |
Fatty Acids, lipids, and isoprenoids | 127 | 5.18 |
Iron acquisition and metabolism | 51 | 2.08 |
Miscellaneous | 45 | 1.84 |
Nucleosides and nucleotides | 102 | 4.16 |
Amino acids and derivatives | 479 | 19.54 |
Stress response | 104 | 4.24 |
Dormancy and sporulation | 2 | 0.08 |
Motility and chemotaxis | 23 | 0.94 |
Respiration | 114 | 4.65 |
Protein metabolism | 219 | 8.93 |
Membrane transport | 165 | 6.73 |
Phosphorus metabolism | 42 | 1.71 |
Regulation and cell signaling | 51 | 1.84 |
Cell division and cell cycle | 0 | 0.00 |
Photosynthesis | 0 | 0.00 |
DNA metabolism | 77 | 3.14 |
RNA metabolism | 57 | 2.32 |
Potassium metabolism | 10 | 0.41 |
Virulence, disease, and defense | 63 | 2.57 |
Secondary metabolism | 4 | 0.16 |
Carbohydrates | 258 | 10.52 |
Contig | Position in Contig | Number of MGEs | Type of IS | ARGs | Phenotype |
---|---|---|---|---|---|
NODE 3 | 308,921–309,328 | 3 | ISPa6, ISPa32, ISPa2 | fosA | fosfomycin |
NODE 1 | 38,184–39,377 | 1 | ISPsy29 | blaPAO | ampicillin, amoxicillin, cefepime, ceftazidime |
25,022–25,828 | aph (3’)-IIb | aminoglycoside | |||
NODE 11 | 97,602–98,390 | 0 | blaOXA-50 | ampicillin, amoxicillin | |
NODE 14 | 119,289–119,927 | 0 | catB7 | chloramphenicol | |
NODE 18 | 1 | ISPa22 |
Contig | Element | No. of Spacer/ Cas Gene (Cas Type) | Repeat Consensus/Cas Genes | Evidence Level |
---|---|---|---|---|
Node 1 | CRISPR | 12 | GTTCACTGCCGTATAGGCAGCTAAGAAA | 4 |
Node 24 | CRISPR | 9 | GTTCACTGCCGTATAGGCAGCTAAGAAA | 4 |
Cas cluster | 6 (IF) | cas1, cas3-cas2, cas6, csy1, csy2, csy3 | ||
CRISPR | 12 | TTTCTTAGCTGCCTACACGGCAGTGAAC | 4 | |
Node 2 | CRISPR | 1 | GCGGCGGGTATCGGCGGATAACGCC | 1 |
Node 8 | CRISPR | 1 | TCATACCTTGCCCTCCAGTTCTTTGGCC | 1 |
Node 9 | CRISPR | 1 | GCCGACAACGGCAGCGAGCAGACCGT | 1 |
Predicted Antibiotic Resistance Genes | AMR Gene Family |
---|---|
Antibiotic efflux | |
mexY, mexD, mexA, mexB, mexC, mexE, mexF, mexG, mexH, mexI, mexJ, mexK, mexL, mexV, mexW, mexM, mexN, mexP, mexQ, mexX | Antibiotic efflux pump-type resistance-nodulation-cell division (RND) |
armR | |
muxA, muxB, muxC | |
opmB, ompD, opmH, ompJ, ompM, ompN, opmE | |
parR, parS | |
cpxR | |
triA, triB, triC | |
yajC | |
rsmA | |
pmpM | Multidrug and toxic compound extrusion (MATE) transporter |
emrE | Antibiotic efflux pump type small multidrug resistance (SMR) |
basS | Pmr phosphoethanolamine transferase |
bcr-1 | Antibiotic efflux pump type major facilitator superfamily (MFS) |
cprS, cprR | Pmr phosphoethanolamine transferase |
Reduced permeability to the antibiotic | |
parR, parS | Outer Membrane Porin (Opr) |
Antibiotic inactivation | |
fosA | Fosfomycin thiol transferase |
blaOXA-50 | OXA beta-lactamase |
aph(3’)-IIb | APH(3’) |
pdc-374 | PDC beta-lactamase |
catB7 | chloramphenicol acetyltransferase (CAT) |
Antibiotic target alteration | |
arnA, basS, cprR, cprS | Pmr phosphoethanolamine transferase |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dechathai, T.; Singkhamanan, K.; Yaikhan, T.; Chusri, S.; Pomwised, R.; Wonglapsuwan, M.; Surachat, K. Comprehensive Genomic Analysis of Pseudomonas aeruginosa PSU9449 Isolated from a Clinical Case in Thailand. Antibiotics 2025, 14, 530. https://doi.org/10.3390/antibiotics14060530
Dechathai T, Singkhamanan K, Yaikhan T, Chusri S, Pomwised R, Wonglapsuwan M, Surachat K. Comprehensive Genomic Analysis of Pseudomonas aeruginosa PSU9449 Isolated from a Clinical Case in Thailand. Antibiotics. 2025; 14(6):530. https://doi.org/10.3390/antibiotics14060530
Chicago/Turabian StyleDechathai, Thitaporn, Kamonnut Singkhamanan, Thunchanok Yaikhan, Sarunyou Chusri, Rattanaruji Pomwised, Monwadee Wonglapsuwan, and Komwit Surachat. 2025. "Comprehensive Genomic Analysis of Pseudomonas aeruginosa PSU9449 Isolated from a Clinical Case in Thailand" Antibiotics 14, no. 6: 530. https://doi.org/10.3390/antibiotics14060530
APA StyleDechathai, T., Singkhamanan, K., Yaikhan, T., Chusri, S., Pomwised, R., Wonglapsuwan, M., & Surachat, K. (2025). Comprehensive Genomic Analysis of Pseudomonas aeruginosa PSU9449 Isolated from a Clinical Case in Thailand. Antibiotics, 14(6), 530. https://doi.org/10.3390/antibiotics14060530