Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (75)

Search Parameters:
Keywords = wettability heterogeneity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 9458 KiB  
Article
Wettability Characteristics of Mixed Sedimentary Shale Reservoirs in Saline Lacustrine Basins and Their Impacts on Shale Oil Energy Replenishment: Insights from Alternating Imbibition Experiments
by Lei Bai, Shenglai Yang, Dianshi Xiao, Hongyu Wang, Jian Wang, Jin Liu and Zhuo Li
Energies 2025, 18(14), 3887; https://doi.org/10.3390/en18143887 - 21 Jul 2025
Viewed by 328
Abstract
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing [...] Read more.
Due to the complex mineral composition, low clay content, and strong heterogeneity of the mixed sedimentary shale in the Xinjiang Salt Lake Basin, the wettability characteristics of the reservoir and their influencing factors are not yet clear, which restricts the evaluation of oil-bearing properties and the identification of sweet spots. This paper analyzed mixed sedimentary shale samples from the Lucaogou Formation of the Jimsar Sag and the Fengcheng Formation of the Mahu Sag. Methods such as petrographic thin sections, X-ray diffraction, organic matter content analysis, and argon ion polishing scanning electron microscopy were used to examine the lithological and mineralogical characteristics, geochemical characteristics, and pore space characteristics of the mixed sedimentary shale reservoir. Alternating imbibition and nuclear magnetic resonance were employed to quantitatively characterize the wettability of the reservoir and to discuss the effects of compositional factors, lamina types, and pore structure on wettability. Research findings indicate that the total porosity, measured by the alternate imbibition method, reached 72% of the core porosity volume, confirming the effectiveness of alternate imbibition in filling open pores. The Lucaogou Formation exhibits moderate to strong oil-wet wettability, with oil-wet pores predominating and well-developed storage spaces; the Fengcheng Formation has a wide range of wettability, with a higher proportion of mixed-wet pores, strong heterogeneity, and weaker oil-wet properties compared to the Lucaogou Formation. TOC content has a two-segment relationship with wettability, where oil-wet properties increase with TOC content at low TOC levels, while at high TOC levels, the influence of minerals such as carbonates dominates; carbonate content shows an “L” type response to wettability, enhancing oil-wet properties at low levels (<20%), but reducing it due to the continuous weakening effect of minerals when excessive. Lamina types in the Fengcheng Formation significantly affect wettability differentiation, with carbonate-shale laminae dominating oil pores, siliceous laminae contributing to water pores, and carbonate–feldspathic laminae forming mixed pores; the Lucaogou Formation lacks significant laminae, and wettability is controlled by the synergistic effects of minerals, organic matter, and pore structure. Increased porosity strengthens oil-wet properties, with micropores promoting oil adsorption through their high specific surface area, while macropores dominate in terms of storage capacity. Wettability is the result of the synergistic effects of multiple factors, including TOC, minerals, lamina types, and pore structure. Based on the characteristic that oil-wet pores account for up to 74% in shale reservoirs (mixed-wet 12%, water-wet 14%), a wettability-targeted regulation strategy is implemented during actual shale development. Surfactants are used to modify oil-wet pores, while the natural state of water-wet and mixed-wet pores is maintained to avoid interference and preserve spontaneous imbibition advantages. The soaking period is thus compressed from 30 days to 3–5 days, thereby enhancing matrix displacement efficiency. Full article
(This article belongs to the Special Issue Sustainable Development of Unconventional Geo-Energy)
Show Figures

Figure 1

20 pages, 4351 KiB  
Article
Preparation and Enhanced Oil Recovery Mechanisms of Janus-SiO2-Reinforced Polymer Gel Microspheres
by Fei Gao, Baolei Liu, Yuelong Liu, Lei Xing and Yan Zhang
Gels 2025, 11(7), 506; https://doi.org/10.3390/gels11070506 - 30 Jun 2025
Cited by 1 | Viewed by 380
Abstract
In order to improve oil recovery efficiency in low-permeability reservoirs, this study developed amphiphilic Janus-SiO2 nanoparticles to prepare polymer gel microspheres for enhanced oil recovery (EOR). Firstly, Janus-SiO2 nanoparticles were synthesized via surface modification using (3-aminopropyl)triethoxysilane and α-bromoisobutyryl bromide. Fourier-transform infrared [...] Read more.
In order to improve oil recovery efficiency in low-permeability reservoirs, this study developed amphiphilic Janus-SiO2 nanoparticles to prepare polymer gel microspheres for enhanced oil recovery (EOR). Firstly, Janus-SiO2 nanoparticles were synthesized via surface modification using (3-aminopropyl)triethoxysilane and α-bromoisobutyryl bromide. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) characterization confirmed the successful grafting of amino and styrene chains, with the particle size increasing from 23.8 nm to 32.9 nm while maintaining good dispersion stability. The Janus nanoparticles exhibited high interfacial activity, reducing the oil–water interfacial tension to 0.095 mN/m and converting the rock surface wettability from oil-wet (15.4°) to strongly water-wet (120.6°), thereby significantly enhancing the oil stripping efficiency. Then, polymer gel microspheres were prepared by reversed-phase emulsion polymerization using Janus-SiO2 nanoparticles as emulsifiers. When the concentration range of nanoparticles was 0.1–0.5 wt%, the particle size range of polymer gel microspheres was 316.4–562.7 nm. Polymer gel microspheres prepared with a high concentration of Janus-SiO2 nanoparticles can ensure the moderate swelling capacity of the particles under high-temperature and high-salinity conditions. At the same time, it can also improve the mechanical strength and shear resistance of the microspheres. Core displacement experiments confirmed the dual synergistic effect of this system. Polymer gel microspheres can effectively plug high-permeability zones and improve sweep volume, while Janus-SiO2 nanoparticles enhance oil displacement efficiency. Ultimately, this system achieved an incremental oil recovery of 19.72%, exceeding that of conventional polymer microsphere systems by more than 5.96%. The proposed method provides a promising strategy for improving oil recovery in low-permeability heterogeneous reservoir development. Full article
(This article belongs to the Special Issue Gels for Oil and Gas Industry Applications (3rd Edition))
Show Figures

Graphical abstract

17 pages, 3104 KiB  
Article
Investigating the Bond Performance of FRP Bars and Concrete Under Dynamic Loading Conditions
by Wenhui Bao, Yini Tan, Hao Li, Chenglong Liang, Hui Chen and Chuanqing Fu
Coatings 2025, 15(6), 716; https://doi.org/10.3390/coatings15060716 - 13 Jun 2025
Viewed by 529
Abstract
With growing emphasis on sustainable construction, fiber-reinforced polymer (FRP) bars are increasingly being used as alternatives to steel rebars due to their high strength-to-weight ratio, corrosion resistance, and environmental benefits. This study has investigated the bond behavior between FRP bars and concrete of [...] Read more.
With growing emphasis on sustainable construction, fiber-reinforced polymer (FRP) bars are increasingly being used as alternatives to steel rebars due to their high strength-to-weight ratio, corrosion resistance, and environmental benefits. This study has investigated the bond behavior between FRP bars and concrete of different strength grades under dynamic loading conditions. To analyze the microscopic properties of FRP bar surfaces, the study employs a variety of techniques, including scanning electron microscopy (SEM), atomic force microscopy (AFM), and non-contact surface profilometry. In addition, X-ray photoelectron spectroscopy (XPS), water contact angle (WCA) measurements, and energy dispersive spectrometry (EDS) are used to further investigate surface characteristics. The results reveal a direct correlation between the resin surface roughness of FRP bars and their wettability characteristics, which in turn influence the cement hydration process. Pull-out tests under different loading rates and concrete strength grades have been conducted to evaluate the bond–slip behavior and failure modes. The results indicate that bond strength increases with increasing concrete strength. Dynamic pull-out tests further reveal that higher loading rates generate heterogeneous stress fields, which limit the deformation of FRP bars and consequently diminish the contribution of mechanical interlock to interfacial bonding. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

15 pages, 5200 KiB  
Article
A Comprehensive Study on the Physicochemical Characterisation of Plant-Based By-Products
by Filipa Costa, Daniel Mendanha, Joana M. Gomes, Juliana A. S. A. Oliveira, Cecília Ribeiro, Ana Francisca Miranda, José R. M. Barbosa, Olívia Salomé G. P. Soares, Manuel Fernando R. Pereira, Jorge Santos, Beatriz Freitas and Carla J. Silva
Materials 2025, 18(9), 2054; https://doi.org/10.3390/ma18092054 - 30 Apr 2025
Cited by 1 | Viewed by 518
Abstract
The rapid growth of the global population has led to significant environmental impacts, driven by the unsustainable extraction of resources and waste generation. To address these challenges, the valorisation of by-products from different industries is crucial for maximising resource efficiency, reducing waste, and [...] Read more.
The rapid growth of the global population has led to significant environmental impacts, driven by the unsustainable extraction of resources and waste generation. To address these challenges, the valorisation of by-products from different industries is crucial for maximising resource efficiency, reducing waste, and promoting sustainable practices. In this study, a comprehensive characterisation of the physicochemical properties of plant-based by-products, including rice husk (RH), oregano stalks (OS), eucalyptus leaves (EL), and almond shells (AS), was conducted. The analyses of the residues showed that, despite the similarities regarding cellulose and lignin content in all materials, RH and OS present a higher cellulose content, while EL and AS contain a greater percentage of oils. Additionally, calcium and potassium were identified as the metals at higher concentrations in all residues. The EL and RH present significant hydrophobic properties compared to the other analysed residues, showcased by their lower wettability. The morphological analyses of the waste residues revealed that OS and RH particles exhibit fibrous characteristics with heterogeneous sizes, while EL is a blend of fibrous and amorphous particles, and AS is composed of smaller particles with irregular shapes. All the residues retained their antioxidant properties over a 12-month storage period, with no degradation due to grinding. The composition and physicochemical properties of these residues highlight their potential to be used in distinct industries, including construction, transport, and textiles, promoting a circular economy and supporting a more sustainable environment. Full article
(This article belongs to the Special Issue Sustainable Materials: Preparation, Characterization and Applications)
Show Figures

Figure 1

20 pages, 8283 KiB  
Review
Heterogeneous Acid Catalysts for Biodiesel Production: Effect of Physicochemical Properties on Their Activity and Reusability
by Jingfeng Hua, Mimi Ji, Ping Jiao, Zhixian Yin, Qineng Xia, Lingchang Jiang, Jing Zhang and Hu Pan
Catalysts 2025, 15(4), 396; https://doi.org/10.3390/catal15040396 - 18 Apr 2025
Cited by 2 | Viewed by 1058
Abstract
Replacing homogeneous acids with heterogeneous acids provides an appealing approach for biodiesel production due to their reusability and easy recycling. The physicochemical properties of heterogeneous acids have a significant influence on catalytic activity and reusability. Herein, the influence of physicochemical properties (i.e., acid [...] Read more.
Replacing homogeneous acids with heterogeneous acids provides an appealing approach for biodiesel production due to their reusability and easy recycling. The physicochemical properties of heterogeneous acids have a significant influence on catalytic activity and reusability. Herein, the influence of physicochemical properties (i.e., acid density, acid strength, acid type, wettability, thermal sensitivity, and magnetism) on catalytic activity and recyclability is elaborately discussed. Characterization techniques for identifying physicochemical properties are elaborated. Methods for regulating physicochemical properties are summarized. Finally, the opportunities and challenges of heterogeneous acid use for biodiesel production are discussed. This review provides theoretical guidance for developing efficient and stable heterogeneous acid catalysts for biodiesel production by adjusting their physicochemical properties. Full article
Show Figures

Graphical abstract

30 pages, 3495 KiB  
Review
Research Progress on Micro/Nanopore Flow Behavior
by Jinbo Yu, Meng Du, Yapu Zhang, Xinliang Chen and Zhengming Yang
Molecules 2025, 30(8), 1807; https://doi.org/10.3390/molecules30081807 - 17 Apr 2025
Viewed by 1035
Abstract
Fluid flow in microporous and nanoporous media exhibits unique behaviors that deviate from classical continuum predictions due to dominant surface forces at small scales. Understanding these microscale flow mechanisms is critical for optimizing unconventional reservoir recovery and other energy applications. This review provides [...] Read more.
Fluid flow in microporous and nanoporous media exhibits unique behaviors that deviate from classical continuum predictions due to dominant surface forces at small scales. Understanding these microscale flow mechanisms is critical for optimizing unconventional reservoir recovery and other energy applications. This review provides a comparative analysis of the existing literature, highlighting key advances in experimental techniques, theoretical models, and numerical simulations. We discuss how innovative micro/nanofluidic devices and high-resolution imaging methods now enable direct observation of confined flow phenomena, such as slip flow, phase transitions, and non-Darcy behavior. Recent theoretical models have clarified scale-dependent flow regimes by distinguishing microscale effects from macroscopic Darcy flow. Likewise, advanced numerical simulations—including molecular dynamics (MD), lattice Boltzmann methods (LBM), and hybrid multiscale frameworks—capture complex fluid–solid interactions and multiphase dynamics under realistic pressure and wettability conditions. Moreover, the integration of artificial intelligence (e.g., data-driven modeling and physics-informed neural networks) is accelerating data interpretation and multiscale modeling, offering improved predictive capabilities. Through this critical review, key phenomena, such as adsorption layers, fluid–solid interactions, and pore surface heterogeneity, are examined across studies, and persistent challenges are identified. Despite notable progress, challenges remain in replicating true reservoir conditions, bridging microscale and continuum models, and fully characterizing multiphase interface dynamics. By consolidating recent progress and perspectives, this review not only summarizes the state-of-the-art but underscores remaining knowledge gaps and future directions in micro/nanopore flow research. Full article
Show Figures

Graphical abstract

15 pages, 11766 KiB  
Article
Occurrence State and Time-Shift Characteristics of Residual Oil in Low-Permeability Reservoirs After Long-Term Waterflooding in Changqing Oilfield
by Yangnan Shangguan, Boying Li, Chunning Gao, Junhong Jia, Yongqiang Zhang, Jinghua Wang and Tao Xu
Energies 2025, 18(8), 2001; https://doi.org/10.3390/en18082001 - 14 Apr 2025
Viewed by 377
Abstract
This study focuses on a low-permeability sandstone reservoir in the Changqing Oilfield, aiming to elucidate the formation mechanism and occurrence state of residual oil during late-stage waterflooding development, thereby providing theoretical guidance for refined residual oil recovery. By integrating scanning electron microscopy (SEM), [...] Read more.
This study focuses on a low-permeability sandstone reservoir in the Changqing Oilfield, aiming to elucidate the formation mechanism and occurrence state of residual oil during late-stage waterflooding development, thereby providing theoretical guidance for refined residual oil recovery. By integrating scanning electron microscopy (SEM), nuclear magnetic resonance (NMR), and digital core analysis, the oil–water occurrence state and dynamic characteristics during waterflooding were systematically investigated. NMR was employed to determine fluid distribution within core pores, while CT scanning was utilized to construct a 3D digital core model, enabling the identification of microscopic residual oil displacement and occurrence states at different flooding stages. The oil displacement efficiency was further analyzed based on variations in oil–water distribution and occurrence states within the core. The results demonstrate that pore and throat size and connectivity are the primary factors governing reservoir permeability. After high-pore-volume (PV) waterflooding, microscopic residual oil predominantly exists as dispersed droplets, films, and small-scale clusters or columns. Although prolonged high-PV waterflooding effectively expands the sweep volume, localized displacement efficiency declines, and reservoir heterogeneity adversely affects sweep volume maintenance. The post-flooding residual oil characteristics are collectively determined by the core’s local connectivity, wettability, and pore–throat morphology. This research systematically analyzes the occurrence patterns and evolutionary trends of residual oil in low-permeability reservoirs during long-term waterflooding, providing critical theoretical insights and technical support for enhanced oil recovery and residual oil exploitation. Full article
(This article belongs to the Special Issue Digitization and Low Carbon Transformation of Petroleum Engineering)
Show Figures

Figure 1

18 pages, 2202 KiB  
Article
Wettability Assessment of Hydrophobized Granular Solids: A Rheological Approach Using Surfactant Adsorption
by Xilena Villegas Arcos, Juliet Daniela Blanco Mayorga, Arlex Chaves-Guerrero and Ronald Mercado
Materials 2025, 18(6), 1305; https://doi.org/10.3390/ma18061305 - 16 Mar 2025
Viewed by 608
Abstract
The wettability of granular solids is a critical parameter in numerous industrial applications, including enhanced oil recovery, advanced material coatings, and nanotechnology. However, traditional methods for assessing wettability, such as contact angle measurements, face significant challenges when applied to heterogeneous or porous solids. [...] Read more.
The wettability of granular solids is a critical parameter in numerous industrial applications, including enhanced oil recovery, advanced material coatings, and nanotechnology. However, traditional methods for assessing wettability, such as contact angle measurements, face significant challenges when applied to heterogeneous or porous solids. This study proposes a rheological methodology as an alternative approach to determine the wettability of granular solids, focusing on bentonite clay modified via sodium dodecylbenzene sulfonate adsorption. Aqueous and oily suspensions of bentonite with varying degrees of hydrophobicity were characterized using viscosity measurements, oscillatory amplitude sweeps, and thixotropic recovery tests. For the system under study, a bentonite concentration of 8% ensures optimal rheological behavior. Furthermore, the adsorption isotherm provides a reliable means of determining varying degrees of solid coverage. The results demonstrated clear correlations between surface coverage and rheological behavior, with increasing hydrophobicity leading to reduced viscosity and viscoelasticity in aqueous systems and a shift toward Newtonian flow behavior in oily systems. These findings were supported by traditional contact angle measurements, which confirmed the relationship between surfactant adsorption and enhanced hydrophobicity. The proposed rheological methodology overcomes the limitations of conventional wettability assessments and provides a new approach for characterizing and optimizing the interfacial properties of particulate systems. This work has broad implications across industries such as petroleum, coatings, and material science, offering a novel pathway for designing systems with tailored wettability and flow characteristics. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

19 pages, 9957 KiB  
Article
Strong Reservoir Wettability Heterogeneities of an Eocene Tight Oil Play from the Bonan Sag, Bohai Bay Basin as Revealed by an Integrated Multiscale Wettability Evaluation
by Jie Chen, Huimin Liu, Xuqing Fang, Xingzhong Hu, Tao Meng, Lingjie Yu, Zongguang Guo, Guoheng Liu and Keyu Liu
Appl. Sci. 2025, 15(6), 3079; https://doi.org/10.3390/app15063079 - 12 Mar 2025
Viewed by 615
Abstract
Properly determining reservoir wettability is crucial for enhancing oil recovery and optimizing production strategies; this is particularly the case for tight oil reservoirs. The lower-fourth member of the Shahejie Formation (Es4x) in the Bonan Sag of the Bohai Bay Basin is a typical [...] Read more.
Properly determining reservoir wettability is crucial for enhancing oil recovery and optimizing production strategies; this is particularly the case for tight oil reservoirs. The lower-fourth member of the Shahejie Formation (Es4x) in the Bonan Sag of the Bohai Bay Basin is a typical tight sandstone play, which is characterized by a low permeability and poor fluid mobility and quite variable daily production. Despite efforts in reservoir stimulation, the incremental production remains negligible. A detailed investigation of the reservoir wettability was carried out using four representative tight sandstone samples from Es4x to better understand the production behavior of the tight oil reservoir. We employed a suite of analytical methods, including Environmental Scanning Electron Microscopy, contact angle measurement, spontaneous imbibition, and Nuclear Magnetic Resonance, to comprehensively evaluate the wettability characteristics of the reservoir at different scales. Two samples, C1 and C2, exhibit oil-wet characteristics at both pore and macro scales, with Sample C1 showing weak oil-wet behavior and Sample C2 demonstrating strong oil-wet behavior. In contrast, the other samples, C3 and C4, display strong water-wet characteristics across different scales. The pore size threshold between water-wet and oil-wet conditions for samples C1 and C2 is 0.1 μm, while that for samples C3 and C4 is 1 μm. Grain-coating chlorite and grain-coating illite are the primary clay minerals contributing to the oil-wet pore walls of the reservoir, whereas dispersed sheet-like chlorite and rosette chlorite predominantly exhibit water-wet characteristics. The tight oil reservoir in Es4x exhibits pronounced wettability heterogeneities, with distinct regions displaying either oil-wet or water-wet characteristics, significantly impacting the mobility and producibility of the tight oil in this reservoir interval. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

15 pages, 12350 KiB  
Article
Optimizing Oil Recovery: A Sector Model Study of CO₂-Water-Alternating-Gas and Continuous Injection Technologies
by Majid Hussain, Fathi Boukadi, Zeming Hu and Derrick Adjei
Processes 2025, 13(3), 700; https://doi.org/10.3390/pr13030700 - 28 Feb 2025
Cited by 2 | Viewed by 1170
Abstract
Optimizing oil recovery from mature reservoirs remains a key challenge in the petroleum industry. This study evaluates the efficiency of CO2-WAG injection compared to continuous CO2 and water flooding using a sector model of the X Oil Field. A [...] Read more.
Optimizing oil recovery from mature reservoirs remains a key challenge in the petroleum industry. This study evaluates the efficiency of CO2-WAG injection compared to continuous CO2 and water flooding using a sector model of the X Oil Field. A compositional reservoir simulator was employed to analyze oil recovery under water-wet and mixed-wet conditions, incorporating three-phase relative permeability and wettability effects. The results show that continuous CO2 flooding yields the highest oil recovery, with water-wet systems outperforming mixed-wet reservoirs. CO2-WAG injection provides a balanced approach, enhancing recovery while enabling CO2 sequestration, but remains less effective than continuous CO2 flooding. Water flooding, though the least efficient in terms of oil recovery, demonstrates long-term production stability. The gas–oil ratio (GOR) is notably higher in CO2-WAG, indicating gas breakthrough challenges. These findings emphasize the significant role of wettability in enhanced oil recovery (EOR) and suggest that continuous CO2 flooding is the most effective technique for maximizing production in heterogeneous reservoirs. This study contributes valuable insights for optimizing injection strategies, improving hydrocarbon recovery, and supporting sustainable reservoir management. Full article
(This article belongs to the Special Issue Advances in Oil and Gas Reservoir Modeling and Simulation)
Show Figures

Figure 1

15 pages, 5162 KiB  
Article
Predicting Wetting Properties for Surfaces with Stochastic Topography
by Caroline Schmechel Schiavon, Nadja Felde, Sven Schröder, Mario Lucio Moreira and Pedro Lovato Gomes Jardim
Coatings 2025, 15(2), 202; https://doi.org/10.3390/coatings15020202 - 7 Feb 2025
Viewed by 822
Abstract
Understanding the influence of topography on wettability is essential for improving the modeling of superhydrophobic surfaces. Moreover, wetting predictions can foresee corrosion, biological contamination, self-cleaning properties, and all phenomena related to wetting. In this context, this research work reports the experimental corroboration of [...] Read more.
Understanding the influence of topography on wettability is essential for improving the modeling of superhydrophobic surfaces. Moreover, wetting predictions can foresee corrosion, biological contamination, self-cleaning properties, and all phenomena related to wetting. In this context, this research work reports the experimental corroboration of a novel theoretical model for stochastic surfaces that relates the static contact angle for the heterogeneous wetting of surfaces to the root mean square (RMS) slope of the surface structures, allowing wetting prediction through topography. For this study, hydrophobic and superhydrophobic alumina thin films with gradual roughness were constructed. The films were deposited on glass using the dip-coating technique, textured with boiling water, and functionalized to achieve low surface energy using Dynasylan F-8815. Surface wettability was characterized using the sessile drop technique, and the RMS slope of the alumina surfaces was quantified using the atomic force microscopy (AFM) technique. The model, presented here for the first time, fits the experimental data, allowing wetting prediction for hydrophobic and superhydrophobic surfaces considering static contact angles. As expected, topography plays a fundamental role in achieving superhydrophobicity. Therefore, defining a topographic criterion, as performed here, for obtaining superhydrophobic surfaces is highly relevant to reduce the production costs of these surfaces and also enable new production processes and designs. Full article
Show Figures

Figure 1

12 pages, 12522 KiB  
Article
Enhance Oil Recovery in Fracture-Cave Carbonate Reservoirs Using Zwitterion-Anionic Composite Surfactant System
by Wei Peng, Qing You, Xiaoqiang Liu, Bojie Zhou, Xingxing Ding, Yuechun Du and Liangfei Xiao
Energies 2025, 18(2), 383; https://doi.org/10.3390/en18020383 - 17 Jan 2025
Viewed by 855
Abstract
The carbonate fracture-cave reservoir in the Tahe oilfield, China, encounters development challenges because of its substantial burial depth (exceeding 5000 m). Its characteristics are low permeability, pronounced heterogeneity, extensive karst cavern systems, diverse connection configurations, and intricate spatial distribution. Prolonged conventional water flooding [...] Read more.
The carbonate fracture-cave reservoir in the Tahe oilfield, China, encounters development challenges because of its substantial burial depth (exceeding 5000 m). Its characteristics are low permeability, pronounced heterogeneity, extensive karst cavern systems, diverse connection configurations, and intricate spatial distribution. Prolonged conventional water flooding leads to predominant water channels, resulting in water channeling and limited sweep efficiency. Surfactant flooding is usually adopted in these conditions because it can mitigate water channeling and enhance sweep efficiency by lowering the interfacial tension (it refers to the force that is generated due to the unbalanced molecular attraction on the liquid surface layer and causes the liquid surface to contract) between oil and water. Nonetheless, the Tahe oilfield is a carbonate reservoir where surfactant is prone to loss near the well, thereby limiting its application. High-pressure injection flooding technology is an innovative method that utilizes injection pressure higher than the formation rupture pressure to alter reservoir permeability, specifically in low-permeability oil fields. Because of the high fluid flow rate, the contact time with the interface is decreased, enabling the ability for surfactants to reach the deep reservoir. In this article, based on the mixed adsorption mechanism of two surfactants and the hydrophilic and lipophilic equilibrium mechanisms, a set of high-temperature and high-salinity resistance surfactant systems appropriate for the Tahe oilfield is developed and its associated performance is evaluated. An oil displacement experiment is carried out to examine the effect of surfactant flooding by high-pressure injection. The results demonstrate that the ideal surfactant system can lower the interfacial tension to 10−2 mN/m and its capacity to reduce the interfacial tension to 10−2 mN/m after different aging periods. Besides, the surfactant system possesses excellent wettability (wetting angle changed from 135° to 42°) and certain emulsifying abilities. The oil displacement experiment shows that the oil recovery rate of surfactant flooding by high pressure reaches 26%. The effect of surfactant flooding by high-pressure injection is better than that of high-pressure injection flooding. Full article
(This article belongs to the Section H: Geo-Energy)
Show Figures

Figure 1

16 pages, 7066 KiB  
Article
Direct Ink Writing 3D Printing Polytetrafluoroethylene/Polydimethylsiloxane Membrane with Anisotropic Surface Wettability and Its Application in Oil–Water Separation
by Peng Geng and Chengjian Jiang
Polymers 2025, 17(2), 174; https://doi.org/10.3390/polym17020174 - 13 Jan 2025
Cited by 1 | Viewed by 1159
Abstract
Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink [...] Read more.
Biological surfaces with physical discontinuity or chemical heterogeneity possess special wettability in the form of anisotropic wetting behavior. However, there are several challenges in designing and manufacturing samples with anisotropic wettability. This study investigates the fabrication of PTFE/PDMS grid membranes using Direct Ink Writing (DIW) 3D printing for oil–water separation applications. The ink’s rheological properties were optimized, revealing that a 60% PTFE/PDMS composite exhibited the ideal shear-thinning behavior for 3D printing. Our research investigated the interplay between various printing parameters like the extrusion air pressure, layer thickness, feed rate, and printing speed, which were found to influence the filament dimensions, pore sizes, and hydrophobic properties of the grid membrane. Two distinct grid structures were analyzed for their wettability and anisotropic hydrophobic characteristics. The grid membranes achieved up to 100% oil–water separation efficiency in specific configurations. Separation efficiency was shown to be dependent on factors like intrusion pressure, grid architecture, and the number of layers. This study underscores the potential of DIW 3D printing in creating specialized surfaces with controlled wettability, particularly superhydrophobicity and anisotropy, paving the way for advanced environmental applications such as efficient oil–water separation. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

15 pages, 4711 KiB  
Article
Biocompatible Heterogeneous Packaging and Laser-Assisted Fluid Interface Control for In Situ Sensor in Organ-on-a-Chip
by Yu-Hsuan Lin, Shing-Fung Lau, Yen-Pei Lu, Kuo-Cheng Huang, Chien-Fang Ding, Yu-Hsiang Tang and Hsin-Yi Tsai
Micromachines 2025, 16(1), 46; https://doi.org/10.3390/mi16010046 - 30 Dec 2024
Viewed by 1251
Abstract
The development of bionic organ-on-a-chip technology relies heavily on advancements in in situ sensors and biochip packaging. By integrating precise biological and fluid condition sensing with microfluidics and electronic components, long-term dynamic closed-loop culture systems can be achieved. This study aims to develop [...] Read more.
The development of bionic organ-on-a-chip technology relies heavily on advancements in in situ sensors and biochip packaging. By integrating precise biological and fluid condition sensing with microfluidics and electronic components, long-term dynamic closed-loop culture systems can be achieved. This study aims to develop biocompatible heterogeneous packaging and laser surface modification techniques to enable the encapsulation of electronic components while minimizing their impact on fluid dynamics. Using a kidney-on-a-chip as a case study, a non-toxic packaging process and fluid interface control methods have been successfully developed. Experimentally, miniature pressure sensors and control circuit boards were encapsulated using parylene-C, a biocompatible material, to isolate biochemical fluids from electronic components. Ultraviolet laser processing was employed to fabricate structures on parylene-C. The results demonstrate that through precise control of processing parameters, the wettability of the material can be tuned freely within a contact angle range of 60° to 110°. Morphological observations and MTT assays confirmed that the material and the processing methods do not induce cytotoxicity. This technology will facilitate the packaging of various miniature electronic components and biochips in the future. Furthermore, laser processing enables rapid and precise control of interface conditions across different regions within the chip, demonstrating a high potential for customized mass production of biochips. The proposed innovations provide a solution for in situ sensing in organ-on-a-chip systems and advanced biochip packaging. We believe that the development of this technology is a critical step toward realizing the concept of “organ twin”. Full article
Show Figures

Figure 1

20 pages, 11238 KiB  
Article
Analysis of Nanostructures and Wettability of Marine Shale in Southern China, Based on Different Fractal Models
by Yang Wang, Baoyuan Zhong, Yunsheng Zhang, Yanming Zhu and Meng Wang
Fractal Fract. 2025, 9(1), 12; https://doi.org/10.3390/fractalfract9010012 - 29 Dec 2024
Cited by 2 | Viewed by 896
Abstract
The wetting behavior of shale oil and gas on shale surfaces is determined by the interplay of organic matter (OM), mineral composition, and the intricate pore network structure of the shale. In this paper, the sensitivity responses of the Frenkel–Halsey–Hill (FHH), Neimark (NM), [...] Read more.
The wetting behavior of shale oil and gas on shale surfaces is determined by the interplay of organic matter (OM), mineral composition, and the intricate pore network structure of the shale. In this paper, the sensitivity responses of the Frenkel–Halsey–Hill (FHH), Neimark (NM), and Wang–Li (WL) fractal models to marine shale with varying material components are analyzed, based on liquid nitrogen adsorption experiments and fractal theory. The wettability evolution model of shale with different maturity stages is established to reveal the heterogeneity characteristics of wettability in shale with complex pore structures. Results show that the NM and WL models offer distinct advantages in evaluating the reservoir structure of shale oil and gas resources. The existence of large-diameter pores is conducive to the homogeneous development of the pore structure. The coupling relationship between pore volume, pore size and pore specific surface affects the fractal characteristics of the pore structure. For highly overmature shale, with an increase in fractal dimension, the wettability of shale changes from neutral-wet to water-wet. For ultramature shale, the higher heterogeneity of the pore structure leads to larger contact angles, causing the wettability to transition gradually from water-wet to oil-wet. In addition, the sensitivity analysis of wettability to fractal structure parameters is examined from the perspective of OM maturation and evolution. Full article
Show Figures

Figure 1

Back to TopTop