Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (420)

Search Parameters:
Keywords = wearable strain sensor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3254 KB  
Article
Achieving High Sensitivity and Linearity in Resistive Flexible Sensors Using FeNWs@Graphene as Conductive Fillers
by Lei Cui, Zhengfeng Cao, Chuan Chen, Qiang Zhang, Fangyuan Chang, Yan Xiao, Yiyang Tang, Lining Wu and Xiangyu Ge
Nanomaterials 2025, 15(21), 1673; https://doi.org/10.3390/nano15211673 - 4 Nov 2025
Viewed by 280
Abstract
There is a critical demand for flexible resistive sensors that combine high sensitivity with a wide linear range, fast response speed, and excellent long-term stability. This study presents the development of a high-performance resistive flexible sensor utilizing graphene-coated iron nanowires (Fe NWs@Graphene) as [...] Read more.
There is a critical demand for flexible resistive sensors that combine high sensitivity with a wide linear range, fast response speed, and excellent long-term stability. This study presents the development of a high-performance resistive flexible sensor utilizing graphene-coated iron nanowires (Fe NWs@Graphene) as conductive fillers within a polyurethane sponge (PUS) substrate. The sensor was constructed with a sandwich-like structure, consisting of Fe NWs@Graphene-impregnated PUS as the sensing layer, encapsulated by polydimethylsiloxane (PDMS) for protection. The Fe NWs were synthesized via a chemical reduction process employing an external magnetic field. Subsequent chemical vapor deposition enabled uniform graphene coating on the surface of Fe NWs. Systematic performance assessments demonstrated that the Fe NWs@Graphene flexible sensor exhibits a gauge factor (GF) of 14.5 within a 0–100% strain range, representing a 71% improvement over previously reported Fe NW-based strain sensors, along with excellent linearity (R2 = 0.994). The sensor also showed rapid response times (113 ms for loading and 97 ms for unloading) and outstanding cyclic stability over 3000 stretching cycles at 50% strain. These enhancements are attributed to the synergistic effects between Fe NWs and graphene: the graphene shell effectively protects the Fe NW core against oxidation, thereby improving stability, and facilitates efficient charge transport, while the Fe NWs serve as bridging agents that improve both mechanical integrity and electrical percolation. In addition, application tests simulating human motion detection confirmed the sensor’s ability to accurately capture muscle-induced strain signals with high repeatability. The results underscore the feasibility of Fe NWs@Graphene as conductive fillers for high-sensitivity, wide-range, and stable flexible sensors, highlighting the potential in wearable electronics and human–machine interaction systems. Full article
(This article belongs to the Special Issue Nanomaterials in Flexible Sensing and Devices)
Show Figures

Figure 1

21 pages, 5897 KB  
Article
Development and Electrochemical Performance of a PANI-PA-PVA Hydrogel-Based Flexible pH Fiber Sensor for Real-Time Sweat Monitoring
by Shiqi Li, Chao Sun, Meihui Gao, Haiyan Ma, Longbin Xu and Xinyu Li
Gels 2025, 11(11), 853; https://doi.org/10.3390/gels11110853 - 25 Oct 2025
Viewed by 403
Abstract
Real-time sweat pH monitoring offers a non-invasive window into metabolic status, disease progression, and wound healing. However, current wearable pH sensors struggle to balance high electrochemical sensitivity with mechanical compliance. Here we report a stretchable fiber-integrated pH electrode based on a polyaniline-phytic acid-polyvinyl [...] Read more.
Real-time sweat pH monitoring offers a non-invasive window into metabolic status, disease progression, and wound healing. However, current wearable pH sensors struggle to balance high electrochemical sensitivity with mechanical compliance. Here we report a stretchable fiber-integrated pH electrode based on a polyaniline-phytic acid-polyvinyl alcohol (PANI-PA-PVA) hydrogel, which combines mechanical elasticity with enhanced electrochemical performance for continuous sweat sensing. Freeze–thaw crosslinking of the hydrogel forms a porous interpenetrating network, facilitating rapid proton transport and stable coupling with dry-spun elastic gold fibers. This wearable device exhibits an ultra-Nernstian sensitivity of 68.8 mV pH−1, ultra-fast equilibrium (<10 s within the sweat-relevant acidic window), long-term drift of 0.0925 mV h−1, and high mechanical tolerance (gel stretch recovery up to 165%). The sensor maintains consistent pH responses under bending and tensile strains, yielding sweat pH measurements at the skin surface during running that closely match commercial pH meters (sweat pH range measured in test subjects: 4.2–5.0). We further demonstrate real-time wireless readouts by integrating elastic gold and Ag/AgCl fibers into a three-electrode textile structure. This PANI-PA-PVA hydrogel strategy provides a scalable material platform for robust, high-performance wearable ion sensing and skin diagnostics. Full article
(This article belongs to the Special Issue Functional Hydrogels for Advanced Health Monitoring Systems)
Show Figures

Graphical abstract

13 pages, 3605 KB  
Article
SWCNT/PEDOT:PSS/SA Composite Yarns with High Mechanical Strength and Flexibility via Wet Spinning for Thermoelectric Applications
by Keisuke Uchida, Yoshiyuki Shinozaki, Hiroto Nakayama, Shuya Ochiai, Yuto Nakazawa and Masayuki Takashiri
Sensors 2025, 25(19), 6202; https://doi.org/10.3390/s25196202 - 7 Oct 2025
Viewed by 556
Abstract
To fabricate thermoelectric generators (TEGs) with high mechanical strength using single-walled carbon nanotubes (SWCNTs), we combined SWCNTs, poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), and sodium alginate (SA) to synthesize flexible SWCNT/PEDOT:PSS/SA composite yarns via wet spinning. The composite yarns were flexible and dense, with a diameter [...] Read more.
To fabricate thermoelectric generators (TEGs) with high mechanical strength using single-walled carbon nanotubes (SWCNTs), we combined SWCNTs, poly(3, 4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS), and sodium alginate (SA) to synthesize flexible SWCNT/PEDOT:PSS/SA composite yarns via wet spinning. The composite yarns were flexible and dense, with a diameter of approximately 290 µm. Their tensile strength and breaking strain were 151 MPa and 12.7%, respectively, which were approximately 10 and 4 times those of the SWCNT films. However, the thermoelectric properties of the composite yarns were inferior to those of the SWCNT films. The temperature distribution and output voltage of the fabricated TEG with composite yarns were measured at a heater temperature of 100 °C. The temperature difference generated by the TEG with composite yarns was approximately 75% of that generated by the TEG with SWCNT films because the composite yarn had a smaller specific surface area. The output voltage of the TEG with two composite yarns (0.21 mV) was lower than that of the TEG with two SWCNT films. However, arranging the composite yarns at a high density resulted in an output voltage exceeding that for the TEGs with SWCNT films. These findings are highly beneficial for yarn-based TEGs used in wearable sensors. Full article
(This article belongs to the Special Issue Nanotechnology Applications in Sensors Development)
Show Figures

Figure 1

16 pages, 2798 KB  
Article
Simple Preparation of Conductive Hydrogels Based on Precipitation Method for Flexible Wearable Devices
by Bolan Wu, Jiahao Liu, Zunhui Zhao, Na Li, Bo Liu and Hangyu Zhang
Sensors 2025, 25(19), 6032; https://doi.org/10.3390/s25196032 - 1 Oct 2025
Viewed by 409
Abstract
Conductive polymer hydrogels have attracted extensive attention in wearable devices, soft machinery, and energy storage due to their excellent mechanical and conductive properties. However, their preparation is often complex, expensive, and time-consuming. Herein, we report a facile precipitation method to prepare conductive polymer [...] Read more.
Conductive polymer hydrogels have attracted extensive attention in wearable devices, soft machinery, and energy storage due to their excellent mechanical and conductive properties. However, their preparation is often complex, expensive, and time-consuming. Herein, we report a facile precipitation method to prepare conductive polymer composite hydrogels composed of poly(acrylic acid) (PAA), poly(vinyl alcohol) (PVA), and poly(3,4-ethylenedioxythiophene) (PEDOT) via straightforward solution blending and centrifugation. During the preparation, PEDOT, grown along the PAA template, is uniformly dispersed in the hydrogel matrix. After shaping and rinsing, the PEDOT/PAA/PVA hydrogel shows good mechanical and electrical properties, with a conductivity of 4.065 S/m and a Young’s modulus of 311.6 kPa. As a strain sensor, it has a sensitivity of 1.86 within 0–100% strain and a response time of 400 ms. As a bioelectrode, it exhibits lower contact impedance than commercially available electrodes and showed no signs of skin irritation in the test. The method’s versatility is confirmed by the observation of similar performance of hydrogels with different compositions (e.g., polyaniline (PANI)/PAA/PVA). These results demonstrate the broad applicability of the method. Full article
(This article belongs to the Section Wearables)
Show Figures

Figure 1

27 pages, 4892 KB  
Review
Progress in Cellulose-Based Polymer Ionic Conductors: From Performance Optimization to Strain-Sensing Applications
by Rouyi Lu, Yinuo Wang, Hao Pang, Panpan Zhang and Qilin Hua
Nanoenergy Adv. 2025, 5(4), 12; https://doi.org/10.3390/nanoenergyadv5040012 - 28 Sep 2025
Viewed by 516
Abstract
Intrinsically stretchable polymer ionic conductors (PICs) hold significant application prospects in fields such as flexible sensors, energy storage devices, and wearable electronic devices, serving as promising solutions to prevent mechanical failure in flexible electronics. However, the development of PICs is hindered by an [...] Read more.
Intrinsically stretchable polymer ionic conductors (PICs) hold significant application prospects in fields such as flexible sensors, energy storage devices, and wearable electronic devices, serving as promising solutions to prevent mechanical failure in flexible electronics. However, the development of PICs is hindered by an inherent trade-off between mechanical robust and electrical properties. Cellulose, renowned for its high mechanical strength, tunable chemical groups, abundant resources, excellent biocompatibility, and remarkable recyclability and biodegradability, offers a powerful strategy to decouple and enhance mechanical and electrical properties. This review presents recent advances in cellulose-based polymer ionic conductors (CPICs), which exhibit exceptional design versatility for flexible electrodes and strain sensors. We systematically discuss optimization strategies to improve their mechanical properties, electrical conductivity, and environmental stability while analyzing the key factors such as sensitivity, gauge factor, strain range, response time, and cyclic stability, where strain sensing refers to a technique that converts tiny deformations (i.e., strain) of materials or structures under external forces into measurable physical signals (e.g., electrical signals) for real-time monitoring of their deformation degree or stress state. Full article
Show Figures

Figure 1

13 pages, 4071 KB  
Article
Synthesis and Studies of PAM-Ag-g/WS2/Ti3C2Tx Hydrogel and Its Possible Applications
by Anar Arinova, Danil W. Boukhvalov, Arman Umirzakov, Ekaterina Bondar, Aigul Shongalova, Laura Mustafa, Ainagul Kemelbekova and Elena Dmitriyeva
Polymers 2025, 17(19), 2588; https://doi.org/10.3390/polym17192588 - 24 Sep 2025
Viewed by 356
Abstract
In this study, a new hybrid hydrogel based on PAM (polyacrylamide)-Ag-g/WS2/Ti3C2Tx was synthesized by radical polymerization using a conductive heterostructural nanocomposite WS2/Ti3C2Tx. The synergy between the polymer matrix [...] Read more.
In this study, a new hybrid hydrogel based on PAM (polyacrylamide)-Ag-g/WS2/Ti3C2Tx was synthesized by radical polymerization using a conductive heterostructural nanocomposite WS2/Ti3C2Tx. The synergy between the polymer matrix and the interface between two-dimensional nanomaterials ensured the production of a hydrogel with high extensibility and conductivity, as well as sensory characteristics. The composite hydrogel exhibited excellent strain-sensing capabilities, with gauge factors of 1.4 at low strain and 2.8 at higher strain levels. In addition, the material showed a fast response time of 2.17 s and a short recovery time of 0.46 s under cyclic stretching, which confirms its high reliability and reproducibility. The integration of Ti3C2Tx and WS2 promoted the formation of a conductive network in the hydrogel structure, which simultaneously increased its mechanical strength and signal stability under variable loads. Measurements confirm some potential of the PAM-Ag-g/WS2/Ti3C2Tx composite hydrogel as a flexible wearable strain sensor. Based on measured numbers, we discussed the impact of the WS2/Ti3C2Tx interface on the Gauge factor and conductivity of the composite. Theoretical modeling demonstrates significant changes in the electronic structure of the WS2/Ti3C2Tx interface, and especially the WS2 surface, induced by substrate strain. Possible applications of the peculiar properties of PAM-Ag-g/WS2/Ti3C2Tx composite were proposed. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

22 pages, 16594 KB  
Article
Innovative Flexible Conductive Polymer Composites for Wearable Electrocardiogram Electrodes and Flexible Strain Sensors
by María Elena Sánchez Vergara, Joaquín André Hernández Méndez, Carlos Ian Herrera Navarro, Marisol Martínez-Alanís, Selma Flor Guerra Hernández and Ismael Cosme
J. Compos. Sci. 2025, 9(10), 512; https://doi.org/10.3390/jcs9100512 - 23 Sep 2025
Viewed by 828
Abstract
This work reports the fabrication of innovative flexible conductive polymer composites (FCPCs), composed of poly (2,3-dihydrothieno-1,4-dioxin)-poly (styrenesulfonate) (PEDOT:PSS), polypyrrole (PPy) and copper phthalocyanine (CuPc). These FCPCs were deposited by the drop-casting technique on flexible substrates such as polyethylene terephthalate (PET), Xuan paper and [...] Read more.
This work reports the fabrication of innovative flexible conductive polymer composites (FCPCs), composed of poly (2,3-dihydrothieno-1,4-dioxin)-poly (styrenesulfonate) (PEDOT:PSS), polypyrrole (PPy) and copper phthalocyanine (CuPc). These FCPCs were deposited by the drop-casting technique on flexible substrates such as polyethylene terephthalate (PET), Xuan paper and ethylene–vinyl acetate (EVA) foam sheets. Wearable photoactive electrocardiogram (ECG) electrodes and flexible strain sensors were fabricated. Morphological characterization by SEM revealed a stark contrast between the smooth, continuous PEDOT:PSS films and the rough, globular PPy films. EDS confirmed the successful and homogeneous incorporation of the CuPc, evidenced by the strong spatial correlation of the nitrogen and copper signals. The highest mechanical resistance was present in the FCPCs on PET with a limit of proportionality between 4074–6240 KPa. Optical parameters were obtained by Ultraviolet–Visible Spectroscopy and their Reflectance is below 15% and could be used as photoelectrodes. Three Signal Quality Indexes (SQIs) were used to evaluate the ECG signal obtained with the electrodes. The results of all the SQIs demonstrated that the obtained signals have a comparable quality to that of a signal obtained from commercial electrodes. To evaluate the flexible strain sensors, the change in output voltage caused by mechanical deformation was measured. Full article
(This article belongs to the Special Issue Biomedical Composite Applications)
Show Figures

Figure 1

18 pages, 4786 KB  
Article
Feasibility Study for Wearable Sensor-Based Vibrotactile Feedback for Posture and Muscle Activation in a Relevant Dentistry Setting
by Demir Tuken, Samuel J. Murphy, Robert D. Bowers and Rachel V. Vitali
Sensors 2025, 25(18), 5891; https://doi.org/10.3390/s25185891 - 20 Sep 2025
Viewed by 885
Abstract
This feasibility study evaluated a wearable sensor-based haptic feedback system designed to promote ergonomic awareness and influence posture and muscle activation patterns during a standard dental procedure. Inertial measurement units (IMUs) monitored posture by tracking back and neck angles, while four surface electromyography [...] Read more.
This feasibility study evaluated a wearable sensor-based haptic feedback system designed to promote ergonomic awareness and influence posture and muscle activation patterns during a standard dental procedure. Inertial measurement units (IMUs) monitored posture by tracking back and neck angles, while four surface electromyography sensors recorded muscle activation in the lower erector spinae (LES) and upper trapezius (UT) muscles. Two IMUs with vibrotactile motors delivered real-time haptic feedback when participants maintained mechanically disadvantageous postures for extended periods during a cast metal crown preparation procedure on a manikin typodont. Data from four dental students participating in a total of 24 trials, half with and half without feedback, were analyzed via a two-way ANOVA to determine the effects of feedback and activity (e.g., inspections or drilling) on posture and muscle activation. Feedback slightly increased neck angles, but back angles remained nominally unchanged. Reduced UT activation and increased right LES activation suggests altered muscle recruitment strategies. Heatmap and RULA analyses indicated a shift toward more varied and potentially safer postural distributions during feedback trials. Postural and muscle activation data were also analyzed across four activity labels, which revealed that Drilling was consistently associated with higher ergonomic risk. Real-time haptic feedback influenced posture and muscle activation in dental students, particularly by reducing UT strain despite increased neck flexion. These findings support the integration of wearable feedback systems into preclinical training to enhance ergonomic awareness and potentially reduce the risk of developing musculoskeletal disorders, to which dentists are particularly prone. Full article
(This article belongs to the Collection Wearable Sensors for Risk Assessment and Injury Prevention)
Show Figures

Figure 1

36 pages, 3444 KB  
Review
Next-Generation Smart Carbon–Polymer Nanocomposites: Advances in Sensing and Actuation Technologies
by Mubasshira, Md. Mahbubur Rahman, Md. Nizam Uddin, Mukitur Rhaman, Sourav Roy and Md Shamim Sarker
Processes 2025, 13(9), 2991; https://doi.org/10.3390/pr13092991 - 19 Sep 2025
Cited by 2 | Viewed by 2857
Abstract
The convergence of carbon nanomaterials and functional polymers has led to the emergence of smart carbon–polymer nanocomposites (CPNCs), which possess exceptional potential for next-generation sensing and actuation systems. These hybrid materials exhibit unique combinations of electrical, thermal, and mechanical properties, along with tunable [...] Read more.
The convergence of carbon nanomaterials and functional polymers has led to the emergence of smart carbon–polymer nanocomposites (CPNCs), which possess exceptional potential for next-generation sensing and actuation systems. These hybrid materials exhibit unique combinations of electrical, thermal, and mechanical properties, along with tunable responsiveness to external stimuli such as strain, pressure, temperature, light, and chemical environments. This review provides a comprehensive overview of recent advances in the design and synthesis of CPNCs, focusing on their application in multifunctional sensors and actuator technologies. Key carbon nanomaterials including graphene, carbon nanotubes (CNTs), and MXenes were examined in the context of their integration into polymer matrices to enhance performance parameters such as sensitivity, flexibility, response time, and durability. The review also highlights novel fabrication techniques, such as 3D printing, self-assembly, and in situ polymerization, that are driving innovation in device architectures. Applications in wearable electronics, soft robotics, biomedical diagnostics, and environmental monitoring are discussed to illustrate the transformative impact of CPNCs. Finally, this review addresses current challenges and outlines future research directions toward scalable manufacturing, environmental stability, and multifunctional integration for the real-world deployment of smart sensing and actuation systems. Full article
(This article belongs to the Special Issue Polymer Nanocomposites for Smart Applications)
Show Figures

Figure 1

20 pages, 5106 KB  
Article
3D-Printed Wearable Sensors for the Identification of Shoulder Movement Planes
by Alfredo Dimo, Umile Giuseppe Longo, Pieter D’Hooghe, Alessandro de Sire, Rocco Papalia, Emiliano Schena and Daniela Lo Presti
Sensors 2025, 25(18), 5853; https://doi.org/10.3390/s25185853 - 19 Sep 2025
Viewed by 697
Abstract
Rotator cuff injuries are a leading cause of shoulder disability, directly impacting joint mobility and overall quality of life. Effective recovery in these patients depends not only on surgical intervention, when necessary, but also on accurate and continuous monitoring of joint movements during [...] Read more.
Rotator cuff injuries are a leading cause of shoulder disability, directly impacting joint mobility and overall quality of life. Effective recovery in these patients depends not only on surgical intervention, when necessary, but also on accurate and continuous monitoring of joint movements during rehabilitation, especially across multiple anatomical planes. Traditional tools, such as clinical assessments or motion capture systems, are often subjective or expensive and impractical for routine use. In this context, wearable devices are emerging as a viable alternative, offering the ability to collect real-time, non-invasive, and repeatable data, both in clinical and home settings. This study presents innovative wearable sensors, developed through 3D printing and integrated with fiber Bragg grating technology, designed to detect the shoulder’s planes of motion (sagittal, scapular, and frontal) during flexion–extension movements. Two wearable sensors made of thermoplastic polyurethane (TPU 85A and 95A) were fabricated and subjected to metrological characterization, including strain and temperature sensitivity, hysteresis error, and tear resistance, and tested on eight healthy volunteers. The results demonstrated high discriminative ability, with sensitivity values up to 0.76 nm/mε and low hysteresis errors. The proposed system represents a promising, cost-effective, and customizable solution for motion monitoring during shoulder rehabilitation. Full article
(This article belongs to the Special Issue Wearable Systems for Monitoring Joint Kinematics)
Show Figures

Figure 1

9 pages, 486 KB  
Proceeding Paper
A Comprehensive Remote Monitoring System for Automated Diabetes Risk Assessment and Control Through Smart Wearables and Personal Health Devices
by Jawad Ali, Manzoor Hussain and Trisiani Dewi Hendrawati
Eng. Proc. 2025, 107(1), 91; https://doi.org/10.3390/engproc2025107091 - 15 Sep 2025
Viewed by 644
Abstract
Diabetes, a chronic metabolic disease marked by elevated blood glucose levels, affects millions of people globally. A lower quality of life and a markedly higher chance of potentially deadly consequences, such as heart disease, renal failure, and other organ dysfunctions, are closely linked [...] Read more.
Diabetes, a chronic metabolic disease marked by elevated blood glucose levels, affects millions of people globally. A lower quality of life and a markedly higher chance of potentially deadly consequences, such as heart disease, renal failure, and other organ dysfunctions, are closely linked to it. In order to effectively manage diabetes and avoid serious consequences, early detection and ongoing monitoring are essential. Remote health monitoring has emerged as a viable and promising option for proactive healthcare due to the development of contemporary technology, particularly in the areas of wearables and mobile computing. In this work, we suggest a thorough and sophisticated framework for remote monitoring that is intended to automatically predict, identify, and manage diabetes risks. To facilitate real-time data collection analysis and tailored feedback, the system makes use of the integration of smartphones, wearable sensors, and specialized medical equipment. In addition to enhancing patient engagement and lowering the strain on conventional healthcare infrastructures, our suggested model aims to assist patients and healthcare providers in maintaining improved glycemic control. We employed a tenfold stratified cross-validation approach to assess the efficacy of our framework and the results showed remarkable performance metrics. A score of 79.00 percent for clarity (specificity) 87.20 percent for sensitivity, and 83.20 percent for accuracy were all attained by the system. The outcomes show how our framework can be a dependable and scalable remote diabetes management solution, opening the door to more intelligent and easily accessible healthcare systems around the world. Full article
Show Figures

Figure 1

16 pages, 3705 KB  
Article
Anti-Swelling Antibacterial Hydrogels Based on Electrostatic Repulsion and Hydrophobic Interactions for Human Motion Sensing
by Zexing Deng, Litong Shen, Qiwei Cheng, Ying Li, Tianming Du and Xin Zhao
J. Funct. Biomater. 2025, 16(9), 346; https://doi.org/10.3390/jfb16090346 - 14 Sep 2025
Viewed by 818
Abstract
The development of high-performance sensing materials is critical for advancing bioelectronics. Conductive hydrogels, with their unique flexibility, are promising candidates for biomedical sensors. However, traditional conductive hydrogels often suffer from excessive swelling and undesirable antibacterial activity, limiting their practical use. To overcome these [...] Read more.
The development of high-performance sensing materials is critical for advancing bioelectronics. Conductive hydrogels, with their unique flexibility, are promising candidates for biomedical sensors. However, traditional conductive hydrogels often suffer from excessive swelling and undesirable antibacterial activity, limiting their practical use. To overcome these challenges, anti-swelling, antibacterial, and ionically conductive hydrogels were built through free radical polymerization. The preparation was conducted using a monomer mixture comprising acrylic acid (AA), the antibacterial zwitterionic compound [2-(methacryloyloxy)ethyl]dimethyl-(3-sulfopropyl)ammonium hydroxide (SBMA), and the hydrophobic monomer lauryl methacrylate (LMA). The protonation of SBMA by AA enables electrostatic repulsion, thereby imparting anti-swelling properties to the hydrogel. The introduction of hydrophobic LMA components further enhances the anti-swelling and mechanical performance of hydrogel. The resulting hydrogel exhibits excellent anti-swelling property with a swelling ratio of 59.36% after 120 h and good mechanical performance with a tensile strength of 158 kPa, an elongation at break of 176%, and a compressive strength of 0.37 MPa at 80% strain. In addition, hydrogels possess superior sensing performance for strain sensing with a gauge factor of 1.315 within 40–60% of strain, 330 ms of response time, and 177 ms of recovery time. Furthermore, the hydrogel is capable of monitoring human motion and physiological signals. These attributes make it highly suitable for wearable sensors and biomedical monitoring applications. Full article
Show Figures

Figure 1

10 pages, 2316 KB  
Communication
Highly Sensitive Light Guide Sensor for Multilocation and Multimodal Deformation Decoupling Using Flexible OLED
by Hayoon Lee, Hyeon Seok An and Jongwook Park
Photonics 2025, 12(9), 909; https://doi.org/10.3390/photonics12090909 - 10 Sep 2025
Viewed by 663
Abstract
This work proposes a highly sensitive optical sensor system that compensates for joint fragility by combining a flexible organic light-emitting diode (FOLED) with a stretchable light guide, and its performance was systematically evaluated. The developed sensor, leveraging the high flexibility of OLEDs, was [...] Read more.
This work proposes a highly sensitive optical sensor system that compensates for joint fragility by combining a flexible organic light-emitting diode (FOLED) with a stretchable light guide, and its performance was systematically evaluated. The developed sensor, leveraging the high flexibility of OLEDs, was capable of detecting mechanical deformations in various positions and forms in real time and could distinguish up to seven independent signals without electromagnetic interference. Under repeated 50% tensile strain, the device sustained 130,000 cycles, and during the 75° bending test, all three configurations—single line, serpentine, and serpentine with bump—exhibited stable performance for a minimum of 80,000 cycles. The sensor system developed in this study holds promise for future applications in wearable electronics and robotics. Full article
(This article belongs to the Special Issue Advances in Optical Sensors and Applications)
Show Figures

Figure 1

14 pages, 3054 KB  
Article
Mechanically Robust and Conductive Gelatin/Glucose Hydrogels Enabled by the Hofmeister Effect for Flexible Strain Sensors
by Wei Sang, Xu Yang, Hui Li, Xiaoxu Liang and Hongyao Ding
Gels 2025, 11(9), 694; https://doi.org/10.3390/gels11090694 - 1 Sep 2025
Viewed by 675
Abstract
Conductive hydrogels are attractive for flexible electronics; however, achieving high mechanical strength and conductivity simultaneously remains challenging. Herein, we present a facile strategy to fabricate a tough and conductive hydrogel by immersing a physically crosslinked gelatin/glucose hydrogel in an aqueous sodium citrate. The [...] Read more.
Conductive hydrogels are attractive for flexible electronics; however, achieving high mechanical strength and conductivity simultaneously remains challenging. Herein, we present a facile strategy to fabricate a tough and conductive hydrogel by immersing a physically crosslinked gelatin/glucose hydrogel in an aqueous sodium citrate. The introduction of sodium citrate induced multiple physical interactions via the Hofmeister effect, which synergistically reinforced the hydrogel network. The resulting hydrogel exhibited excellent mechanical properties, with a fracture strength of 2.7 MPa, a fracture strain of 932%, and a toughness of 9.5 MJ/m3. Moreover, the incorporation of free ions imparted excellent ionic conductivity of 0.97 S/m. A resistive strain sensor based on this hydrogel showed a linear and sensitive response over a wide strain range and stable performance under repeated loading–unloading cycles. These features enabled accurate and reliable monitoring of various human movements. This work offers an effective strategy for designing hydrogels with both high strength and conductivity for flexible and wearable electronics. Full article
(This article belongs to the Special Issue Gel-Based Materials for Sensing and Monitoring)
Show Figures

Figure 1

15 pages, 4744 KB  
Article
Laser-Induced Graphene-Based Strain Sensor Array Integrated into Smart Tires for a Load Perception
by Shaojie Yuan, Longtao Li, Xiaopeng Du, Zhongli Li, Yijian Liu and Xingyu Ma
Micromachines 2025, 16(9), 994; https://doi.org/10.3390/mi16090994 - 29 Aug 2025
Viewed by 923
Abstract
Tire deformation monitoring is a critical requirement for improving vehicle safety, performance, and intelligent transportation systems. However, most existing flexible strain sensors either lack directional sensitivity or have not been validated in real-world driving environments, limiting their practical application in smart tires. In [...] Read more.
Tire deformation monitoring is a critical requirement for improving vehicle safety, performance, and intelligent transportation systems. However, most existing flexible strain sensors either lack directional sensitivity or have not been validated in real-world driving environments, limiting their practical application in smart tires. In this work, we report the fabrication of a flexible piezoresistive strain sensor based on a porous laser-induced graphene (LIG) network embedded in an Ecoflex elastomer matrix, with integrated directional force recognition. The LIG–Ecoflex sensor exhibits a high gauge factor of 9.7, fast response and recovery times, and stable performance over 10,000 cycles. More importantly, the anisotropic structure of the LIG enables accurate multi-directional stress recognition when combined with a convolutional neural network (CNN), achieving an overall classification accuracy exceeding 98%. To further validate real-world applicability, the sensor was mounted inside passenger car tires and tested under different loads and speeds. The results demonstrate reliable monitoring of tire deformation with clear correlations to load and velocity, confirming robustness under dynamic driving conditions. This study provides a new pathway for the integration of direction-aware, high-performance strain sensors into intelligent tire systems, with broader potential for wearable electronics, vehicle health monitoring, and next-generation Internet of Vehicles applications. Full article
Show Figures

Figure 1

Back to TopTop