Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (143)

Search Parameters:
Keywords = weaned swine

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3048 KiB  
Article
Hydrogen-Rich Water Attenuates Diarrhea in Weaned Piglets via Oxidative Stress Alleviation
by Pengfei Zhang, Jingyu Yang, Zhuoda Lu, Qianxi Liang, Xing Yang, Junchao Wang, Jinbiao Guo and Yunxiang Zhao
Biology 2025, 14(8), 997; https://doi.org/10.3390/biology14080997 (registering DOI) - 5 Aug 2025
Abstract
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the [...] Read more.
Early weaning of piglets elicits weaning stress, which in turn induces oxidative stress and consequently impairs growth and development. Hydrogen-rich water (HRW), characterized by selective antioxidant properties, mitigates oxidative stress damage and serves as an ideal intervention. This study aimed to evaluate the effects of HRW on weaned piglets, specifically investigating its impact on growth performance, diarrhea incidence, antioxidant function, intestinal morphology, gut microbiota, and hepatic metabolites. The results demonstrate that HRW significantly increased the average daily feed intake and significantly reduced the diarrhea rate in weaned piglets. Analysis of serum oxidative stress indicators revealed that HRW significantly elevated the activities of total antioxidant capacity and total superoxide dismutase while significantly decreasing malondialdehyde concentration. Assessment of intestinal morphology showed that HRW significantly increased the villus height to crypt depth ratio in the duodenum, jejunum, and ileum. Microbial analysis indicated that HRW significantly increased the abundance of Prevotella in the colon. Furthermore, HRW increased the abundance of beneficial bacteria, such as Akkermansia, in the jejunum and cecum, while concurrently reducing the abundance of harmful bacteria like Escherichia. Hepatic metabolite profiling revealed that HRW significantly altered the metabolite composition in the liver of weaned piglets. Differentially abundant metabolites were enriched in oxidative stress-related KEGG pathways, including ABC transporters; pyruvate metabolism; autophagy; FoxO signaling pathway; glutathione metabolism; ferroptosis; and AMPK signaling pathways. In conclusion, HRW alleviates diarrhea and promotes growth in weaned piglets by enhancing antioxidant capacity. These findings provide a scientific foundation for the application of HRW in swine production and serve as a reference for further exploration into the mechanisms underlying HRW’s effects on animal health and productivity. Full article
Show Figures

Figure 1

13 pages, 965 KiB  
Review
Connecting Molecular Characteristics of Intrauterine Growth-Retarded Piglets to Targeted Nutritional Interventions: A Review
by Janghan Choi, Emma Traylor, Rachel Husak, Annabelle Foster and Aubrey Akere-Nkongho Tambe
Animals 2025, 15(15), 2231; https://doi.org/10.3390/ani15152231 - 29 Jul 2025
Viewed by 264
Abstract
Intrauterine growth retardation (IUGR) is highly prevalent in modern swine production, and many affected piglets survive past weaning and are raised for commercial pork production. This review summarizes the current understanding of the physiological challenges of IUGR piglets from a molecular perspective and [...] Read more.
Intrauterine growth retardation (IUGR) is highly prevalent in modern swine production, and many affected piglets survive past weaning and are raised for commercial pork production. This review summarizes the current understanding of the physiological challenges of IUGR piglets from a molecular perspective and evaluates recent advances in nutritional strategies aimed at mitigating their negative outcomes. Molecular approaches, including omics technologies and targeted analyses, have been employed to investigate the physiological characteristics of IUGR piglets. These approaches consistently show that IUGR piglets exhibit systemic dysfunction, including compromised gut health, increased inflammation and oxidative stress, and impaired function of multiple organs such as the intestine, liver, kidney, and immune-related tissues. Moreover, IUGR piglets often display poor muscle development and meat quality. The multifactorial nature of these issues suggests that targeting a single physiological parameter may be insufficient, and comprehensive interventions are needed to address the widespread effects of IUGR. Promising nutritional strategies such as supplementation with polyphenol-rich plant extracts, amino acids, and probiotics have demonstrated potential in improving gut integrity, beneficially modulating microbiota, and enhancing the overall health and performance of IUGR piglets. By supporting the systemic recovery of IUGR piglets, nutritional interventions could improve overall productivity in swine production systems. Full article
Show Figures

Figure 1

16 pages, 2491 KiB  
Article
High-Yield Production of PCV2 Cap Protein: Baculovirus Vector Construction and Cultivation Process Optimization
by Long Cheng, Denglong Xie, Wei Ji, Xiaohong Ye, Fangheng Yu, Xiaohui Yang, Nan Gao, Yan Zhang, Shu Zhu and Yongqi Zhou
Vaccines 2025, 13(8), 801; https://doi.org/10.3390/vaccines13080801 - 28 Jul 2025
Viewed by 327
Abstract
Background/Objectives: Porcine circovirus type 2 (PCV2) infection causes porcine circovirus disease (PCVD), a global immunosuppressive disease in pigs. Its clinical manifestations include post-weaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS), which cause significant economic losses to the swine industry. [...] Read more.
Background/Objectives: Porcine circovirus type 2 (PCV2) infection causes porcine circovirus disease (PCVD), a global immunosuppressive disease in pigs. Its clinical manifestations include post-weaning multisystemic wasting syndrome (PMWS) and porcine dermatitis and nephropathy syndrome (PDNS), which cause significant economic losses to the swine industry. The Cap protein, which is the major protective antigen of PCV2, can self-assemble to form virus-like particles (VLPs) in the insect baculovirus expression system. Few studies have compared the expression of Cap proteins in different baculovirus expression systems. Methods: In this study, we compared two commonly commercialized baculovirus construction systems with the Cap protein expression in various insect cells. Results: The results demonstrate that the flashBAC system expressed the Cap protein at higher levels than the Bac-to-Bac system. Notably, when expressing four copies of the Cap protein, the flashBAC system achieved the highest protein yield in High Five cells, where it reached 432 μg/mL at 5 days post-infection (dpi) with 27 °C cultivation. Animal experiments confirmed that the purified Cap protein effectively induced specific antibody production in mice and swine. Conclusions: This study provides critical data for optimizing the production of the PCV2 Cap protein, which is of great significance for reducing the production cost of PCV2 vaccines and improving the industrial production efficiency. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

12 pages, 894 KiB  
Review
Review: Piglets’ (Re)Feeding Patterns, Mineral Metabolism, and Their Twisty Tail
by Theo van Kempen and Eugeni Roura
Metabolites 2025, 15(7), 480; https://doi.org/10.3390/metabo15070480 - 16 Jul 2025
Viewed by 469
Abstract
The appearance rate of nutrients into systemic circulation affects hormones like insulin and through that efficiency of growth. This also affects mineral requirements critical for metabolism, notably phosphate (P), magnesium (Mg), and potassium (K). Fasting animals have a downregulated metabolism, upon which P, [...] Read more.
The appearance rate of nutrients into systemic circulation affects hormones like insulin and through that efficiency of growth. This also affects mineral requirements critical for metabolism, notably phosphate (P), magnesium (Mg), and potassium (K). Fasting animals have a downregulated metabolism, upon which P, Mg, and K are exported from their cells into the blood and are subsequently excreted in their urine. Abrupt resumption of feed intake, especially of highly glycemic feeds, creates an acute need for these minerals, which can result in deficiency symptoms, particularly with P deficiency. In human medicine, this is called refeeding syndrome: a large meal after a period of fasting can prove fatal. Young animals seem to be especially sensitive, likely driven by their ability to grow rapidly and thus to drastically upregulate their metabolism in response to insulin. Symptoms of P deficiency are fairly a-specific and, consequently, not often recognized. They include edema, which makes it appear as if piglets are growing well, explaining the high gain/feed rate typically seen immediately after weaning, even when piglets are eating at or below the maintenance requirements. Phosphate deficiency can also result in hypoxia and hypercarbia, which may trigger ear necrosis, Streptococcus suis infections, or even death. Hypophosphatemia can also trigger rhabdomyolysis, which may contribute to tail-biting, but this requires further study. Arguably, when fasting cannot be avoided, diets for newly weaned piglets should be formulated to avoid these problems by lowering their glycemic load and by formulating diets according to the piglets’ actual requirements inspired by their genuine intake and health and not simply by extrapolating from older animals. Full article
Show Figures

Figure 1

15 pages, 1363 KiB  
Article
The Effects of Dietary Supplementation of Chestnut Tannic Acid on the Growth Performance, Gut Morphology and Microbiota of Weaned Piglets
by Jinzhou Zhang, Yuting Zhang, Yuya Wang, Yanwei Li, Dongyang Liu, Hongbing Xie, Yongqiang Wang, Meinan Chang, Liping Guo and Zhiguo Miao
Metabolites 2025, 15(7), 477; https://doi.org/10.3390/metabo15070477 - 15 Jul 2025
Viewed by 367
Abstract
Background/Objectives: This study investigated the effects of chestnut tannic acid (TA) on the growth performance, the expression of tight junction proteins and the composition of the gut microbiota of weaned piglets, which could provide novel insights into the application of TA in [...] Read more.
Background/Objectives: This study investigated the effects of chestnut tannic acid (TA) on the growth performance, the expression of tight junction proteins and the composition of the gut microbiota of weaned piglets, which could provide novel insights into the application of TA in swine production. Methods: In a 42-day trial, 180 healthy, 21-day-old Duroc × Landrace × Yorkshire piglets were randomly assigned to a Control group and four treatment groups (TA1–4), fed commercial diets supplemented with 0, 0.06%, 0.12%, 0.18% or 0.24% TA. Each group had six replicates of six pigs each. Results: The average daily gain in all TA groups, the jejunal and ileal villus height and the villus height-to-crypt depth ratio in the TA3 and TA4 groups were markedly increased (p < 0.05). The mRNA levels of MUC2 and ZO-1 were upregulated in the TA3 group, as were those of MUC4 in the jejunum and ileum and claudin in the duodenum and ileum; glutathione peroxidase and total antioxidant capacity were upregulated in the duodenum and jejunum in the TA3 group, and total superoxide dismutase was increased in all the TA2 groups (p < 0.05). Conversely, the malondialdehyde significantly decreased in all the TA groups (p < 0.05). TA supplementation improved the alpha diversity of the intestinal microflora and augmented probiotic abundance while reducing that of pathogenic bacteria. The contents of acetic, isobutyric, valeric, isovaleric, hexanoic and propionic acids, as well as total short-chain fatty acids (SCFA), were higher in the TA2 and TA3 groups (p < 0.05). Conclusions: TA inclusion in piglet diets improved the intestinal environment by upregulating the antioxidant enzymes, improving intestinal morphology and promoting probiotic growth and SCFA production while reducing pathogenic bacterial abundance, consequently enhancing the gut barrier and the growth of weaned piglets. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

9 pages, 589 KiB  
Article
Occurrence and Molecular Characterization of Cryptosporidium spp. in Swine Farms in Northeastern Spain
by Laura Garza-Moreno, Celia León and Joaquín Quílez
Pathogens 2025, 14(7), 665; https://doi.org/10.3390/pathogens14070665 - 5 Jul 2025
Viewed by 309
Abstract
Cryptosporidium spp. are protozoan parasites that cause cryptosporidiosis, an enteric disease that can affect a wide range of vertebrate hosts. Pigs play a potential role in the transmission of Cryptosporidium spp. to humans, although infections are most often subclinical. This study aimed to [...] Read more.
Cryptosporidium spp. are protozoan parasites that cause cryptosporidiosis, an enteric disease that can affect a wide range of vertebrate hosts. Pigs play a potential role in the transmission of Cryptosporidium spp. to humans, although infections are most often subclinical. This study aimed to assess the occurrence and molecular characterization of Cryptosporidium spp. in swine farms located in Aragón, northeastern Spain. Fecal samples (n = 72) were collected from 10 breeding farms, encompassing various production stages (lactation, nursery, fattening, and/or wean-to-finish). Data regarding the type of production system (two- or three-stage), production stages, and farming facilities (the type of flooring and water source) associated with the parasite presence were also analyzed using a questionnaire. The results showed that Cryptosporidium spp. were more frequently detected in fecal samples originating from three-stage production systems (21.9%) compared to two-stage systems (12.5%). Samples from the fattening stage exhibited the highest positivity rate and estimated oocyst count (3.0 oocyst/microscopic field). Furthermore, the molecular characterization of Cryptosporidium spp. revealed the circulation of multiple species both among farms and within the same pig production flow, with Cryptosporidium scrofarum being the most prevalent species (7/72; 9.7%), followed by Cryptosporidium suis (1/72; 1.4%). These findings underscore the importance of the surveillance and molecular characterization of Cryptosporidium spp. for controlling infections in pigs, considering the potential for the zoonotic transmission of this parasite to humans. Full article
(This article belongs to the Special Issue Parasites and Zoonotic Diseases)
Show Figures

Figure 1

14 pages, 1238 KiB  
Article
Optimization of Solid Lipid Microcapsule Matrix for Enhanced Release and Bioavailability of L-Lysine in Swine
by Costanza Bonnici, Maria Federica Marchesi, Martina Felici, Federico Ghiselli, Roberta Majer, Benedetta Tugnoli, Guglielmo Gallina, Andrea Piva and Ester Grilli
Animals 2025, 15(12), 1806; https://doi.org/10.3390/ani15121806 - 19 Jun 2025
Viewed by 355
Abstract
L-lysine (L-Lys) is the first-limiting amino acid in swine nutrition, but free-form supplements exhibit poor intestinal absorption, reducing their bioavailability. This study aimed to enhance the gastric retention, controlled intestinal release, and systemic availability of L-Lys by optimizing solid lipid microcapsules (SLMs). SLMs [...] Read more.
L-lysine (L-Lys) is the first-limiting amino acid in swine nutrition, but free-form supplements exhibit poor intestinal absorption, reducing their bioavailability. This study aimed to enhance the gastric retention, controlled intestinal release, and systemic availability of L-Lys by optimizing solid lipid microcapsules (SLMs). SLMs were formulated using hydrogenated triglycerides (C16:0 or C18:1), free fatty acids, and varying emulsifier concentrations. Gastric retention and intestinal release were evaluated in vitro under simulated gastrointestinal conditions (a pepsin buffer at pH 5.0 for 2 h, followed by a pancreatin buffer at pH 6.5 for up to 8 h at 39 °C). SLMs with hydrogenated triglycerides showed significantly higher gastric retention (94–95%) than those with free fatty acids (48%). Specifically, C16:0 triglyceride-based SLMs achieved 74% intestinal release, which was enhanced to 90% with 1% emulsifier. This refined formulation was subsequently evaluated in vivo using weaned pigs (three groups; n = 4) fed a basal cornmeal diet. The treatments included a single oral administration of saline solution (placebo), free L-Lys (0.17 g/kg BW), or L-Lys SLMs (0.38 g/kg BW, equally providing L-Lys at 0.17 g/kg BW). The SLMs delayed the L-Lys plasma peak (T. max. 3–4 h vs. 1 h) and significantly increased the total L-Lys amount in the plasma over 24 h, demonstrating the enhanced relative bioavailability of encapsulated L-Lys. Full article
Show Figures

Figure 1

21 pages, 7609 KiB  
Article
Dietary Bacillus velezensis Improves Piglet Intestinal Health and Antioxidant Capacity via Regulating the Gut Microbiota
by Linbao Ji, Jiakun Shen, Chunchen Liu, Junshu Yan and Xi Ma
Int. J. Mol. Sci. 2025, 26(12), 5875; https://doi.org/10.3390/ijms26125875 - 19 Jun 2025
Viewed by 349
Abstract
Piglet diarrhea caused by weaning stress will increase the mortality rate and seriously affect swine industry production efficiency. Probiotic supplementation has been reported to effectively alleviate weaning diarrhea by inhibiting the colonization of pathogenic microorganisms; however, the underlying mechanisms remain unclear. In this [...] Read more.
Piglet diarrhea caused by weaning stress will increase the mortality rate and seriously affect swine industry production efficiency. Probiotic supplementation has been reported to effectively alleviate weaning diarrhea by inhibiting the colonization of pathogenic microorganisms; however, the underlying mechanisms remain unclear. In this study, we isolated a strain of Bacillus velezensis and conducted a series of in vivo and in vitro experiments to explore its effects on weaned piglets. The piglets were fed for a 28-day period, and the results showed that dietary supplementation of B. velezensis 411 significantly alleviated weaning diarrhea (p = 0.019) and improved the average daily gain (ADG) of piglets throughout the experimental period (p = 0.004). The intestinal antioxidant capacity of piglets was also significantly enhanced. Whole-genome sequencing revealed that B. velezensis 411 contains a protein-encoding circular chromosome, which is involved in biological processes such as sporulation and antibiotic secretion. Supplementation with B. velezensis 411 significantly increased the abundance of Akkermansia in intestine samples and significantly decreased the abundance of pathogenic bacteria, including Escherichia coli and Staphylococcus aureus, in piglets (p < 0.05). The transcriptomic results suggest that B. velezensis 411 supplementation may alter the composition of intestinal microorganisms through regulating the expression of MPEG1. Collectively, dietary B. velezensis can relieve diarrhea in piglets and improve their production performance by influencing the antioxidant capacity of the intestines and the balance of the intestinal flora. This study provides valuable insights into the potential application of Bacillus velezensis in mitigating weaning-associated issues in piglets. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

18 pages, 1505 KiB  
Review
Bacteriophages as Potential Anti-Pathogenic Agents for Intestinal Health of Weaned Piglets in the Post-Antibiotic Era: An Updated Review
by Jun Chen, Jiajun Han, Zheng Yang, Wenyue Zhou, Yuyong He, Xingping Chen, Xin Li, Tiande Zou and Jinming You
Animals 2025, 15(12), 1713; https://doi.org/10.3390/ani15121713 - 10 Jun 2025
Viewed by 454
Abstract
Background: The use of in-feed antibiotics was banned in numerous countries within the animal production industry as a result of the emergence of antibiotic-resistant bacteria and the presence of residual antibiotics. Bacteriophages, which are viruses that infect host bacterial cells, are considered the [...] Read more.
Background: The use of in-feed antibiotics was banned in numerous countries within the animal production industry as a result of the emergence of antibiotic-resistant bacteria and the presence of residual antibiotics. Bacteriophages, which are viruses that infect host bacterial cells, are considered the natural predators of bacteria. Over the past two decades, bacteriophages have garnered increasing attention for their potential in controlling pathogenic bacteria in weaned piglets. Aims: The aim of this overview was to update the progress of bacteriophage application in weaned piglets. Methods: For the section on bacteriophage application in weaned piglets, a systematic search was performed to identify relevant articles published before June 2025 in databases such as Web of Science. Results: In this review, we provide a brief overview of bacteriophages, followed by a summary of the isolation of specific bacteriophages in weaned piglets. In addition, we have summarized the application progress of bacteriophages in weaned piglets, including the effects of oral administration or dietary supplementation with bacteriophages on growth performance, diarrhea characteristics, intestinal morphology, intestinal pH, nutrient digestibility, inflammatory response, intestinal barrier function, and intestinal microecology. Conclusions: This updated overview novelly highlights the potential of bacteriophages as anti-pathogenic agents in mitigating infections caused by pathogenic bacteria in weaned piglets. This review could provide a scientific basis for controlling pathogenic bacteria infections in weaned piglets in the post-antibiotic era. Full article
(This article belongs to the Topic Feeding Livestock for Health Improvement)
Show Figures

Figure 1

15 pages, 755 KiB  
Article
Vaccination with a Live Avirulent E. coli Vaccine Resulted in Improved Production Performance Combined with a Significant Reduction in Antimicrobial Use
by Frédéric Vangroenweghe, Thomas Matthijs and Marnix Sinnaeve
Antibiotics 2025, 14(6), 547; https://doi.org/10.3390/antibiotics14060547 - 27 May 2025
Viewed by 469
Abstract
Background/Objectives: In swine production, the post-weaning period has been identified as one of the most challenging and stressful periods in the life of a piglet due to changes in its environment and feeding regimen. During this period, piglets might undergo infectious challenges with [...] Read more.
Background/Objectives: In swine production, the post-weaning period has been identified as one of the most challenging and stressful periods in the life of a piglet due to changes in its environment and feeding regimen. During this period, piglets might undergo infectious challenges with enterotoxigenic Escherichia coli (ETEC) resulting in post-weaning diarrhea (PWD), and meningitis due to Streptococcus suis. Therefore, metaphylactic and curative antimicrobial therapy is frequently applied, which leads to an increased treatment incidence per 100 days at risk (TI100). Methods: Here, we report the results of an antimicrobial coaching trajectory in a 1000-sow farm with high antimicrobial use during the post-weaning period. For a period of 21 weeks, we evaluated the effect of an oral live avirulent E. coli F4F18 vaccine (Coliprotec® F4F18; Elanco AH) for the active immunization of piglets against PWD caused by F4- and F18-ETEC on the reduction in antimicrobial use during the post-weaning period. A 1000-sow farm with PIC sows operating in a 1-week BMS was rated as an ‘attention farm’ at the level of the post-weaning period according to the Antimicrobial Consumption and Resistance in Animals (AMCRA) benchmark reporting tool. To analyze the specific approach towards antimicrobial use and the related post-weaning pathology, a farm visit including a biosecurity check was carried out together with all associated stakeholders. Subsequently, an antimicrobial coaching trajectory was utilized to follow-up on the improvement of the reduction in antimicrobial use after implementation of the various pieces of advice. Results: For analytical purposes, we compared the results obtained in period 1 (P1; vaccination week 1–6) to period 2 (P2; vaccination week 7–21), since practical field experience has demonstrated that a ‘stabilization period’ of about 6 weeks is necessary to obtain the maximal effect of vaccination. There was a significant reduction in mortality (5.7% to 2.0%) and improvement in the average daily weight gain (366 g/d to 392 g/d) following vaccination, with a simultaneous reduction in the number of days in nursery (45 days to 38 days). Meanwhile, the weight at the end of nursery remained at a similar level. There was a clinically relevant though non-significant decrease in the TI100 (32.8 days to 20.6 days). Overall, the implementation of all measures resulted in a positive ROI of 2.72 per piglet. Conclusions: The implementation of several biosecurity measures in combination with the use of an oral live avirulent E. coli F4F18 vaccine (Coliprotec F4F18) could improve performance parameters and reduce mortality, while reducing the number of days in nursery and the TI100. Overall, a positive return on investment of 2.72 could be obtained per piglet produced under these improved conditions. Full article
(This article belongs to the Section Antibiotics Use and Antimicrobial Stewardship)
Show Figures

Figure 1

24 pages, 1148 KiB  
Article
In-Feed vs. In-Water Chlortetracycline Administration on the Fecal Prevalence of Virulence Genes and Pathotypes of Escherichia coli Involved in Enteric Colibacillosis in Piglets
by Ramya Kalam, Raghavendra G. Amachawadi, Xiaorong Shi, Jianfa Bai, Mina Abbasi, Mike D. Tokach and Tiruvoor G. Nagaraja
Microorganisms 2025, 13(6), 1185; https://doi.org/10.3390/microorganisms13061185 - 22 May 2025
Viewed by 471
Abstract
Colibacillosis in nursery pigs, caused by Escherichia coli (ETEC, EPEC, and STEC pathotypes), remains a major economic concern in the swine industry. This study evaluated the effects of in-feed or in-water chlortetracycline (CTC) administration on the fecal prevalence of virulence genes and pathotypes [...] Read more.
Colibacillosis in nursery pigs, caused by Escherichia coli (ETEC, EPEC, and STEC pathotypes), remains a major economic concern in the swine industry. This study evaluated the effects of in-feed or in-water chlortetracycline (CTC) administration on the fecal prevalence of virulence genes and pathotypes associated with colibacillosis. A total of 1296 weaned piglets (21 days old) were allocated to 48 pens (16 pens/treatment; 27 piglets/pen) and assigned randomly to no CTC, in-feed CTC, or in-water CTC groups. CTC was administered from days 0 to 14. Fecal samples from five piglets per pen on days 0, 14, and 28 were enriched, screened by 11-plex PCR, cultured for pathotypes, and tested for CTC susceptibility and tetracycline resistance genes. None of the 360 fecal samples or 3267 E. coli isolates were positive for bfpA or aggA. Prevalence of estB (96.9%) and astA (92.8%) was highest. ETEC was the dominant pathotype (41.2%), with astA (29%) and estB (21.9%) as predominant enterotoxin genes. CTC administration had no significant effect on fecal prevalence of virulence genes or pathotypes (p > 0.05). stx2 and STEC were detected only at day 28, all harboring stx2e. All pathotypes were CTC-resistant, with tetA as the predominant resistance gene. Full article
(This article belongs to the Special Issue Advances in Veterinary Microbiology)
Show Figures

Figure 1

19 pages, 2109 KiB  
Article
Exploiting Chestnut Biochar as a Functional and Circular Ingredient in Weaned Piglet Diets
by Luciana Rossi, Sara Frazzini, Matteo Santoru, Benedetta Canala, Irene Ferri, Alessandra Moscatelli, Elisabetta Onelli, Matteo Dell’Anno, Salvatore Pilu and Serena Reggi
Agriculture 2025, 15(10), 1082; https://doi.org/10.3390/agriculture15101082 - 17 May 2025
Viewed by 620
Abstract
Background: Achieving sustainable development in accordance with Agenda 2030 (Sustainable Development Goals 12, 13, and 17) has challenged the livestock sector and especially swine farming. Strategies focused on reducing the environmental impact and improving feed efficiency have therefore been explored. Due to its [...] Read more.
Background: Achieving sustainable development in accordance with Agenda 2030 (Sustainable Development Goals 12, 13, and 17) has challenged the livestock sector and especially swine farming. Strategies focused on reducing the environmental impact and improving feed efficiency have therefore been explored. Due to its beneficial properties, the application of biochar represents an interesting solution. This study therefore evaluates the effects of biochar supplementation on growth performance and health parameters in weaned piglets. Methods: A total of 223 piglets were divided into two experimental groups: the control (CTRL) group and the treatment (TRT group). The experiment involved two dietary treatments: the CTRL group was fed a standard diet, while the TRT group was fed the same diet supplemented with 1% chestnut biochar. Weekly measurements included body weight, feed intake, and fecal scores. Fecal samples were collected for microbiological analysis and evaluation of digestibility. Results: No significant differences were observed between the groups in terms of the principal zootechnical parameters. The TRT group showed lower E. coli counts in feces at 14 days and a significant decrease in diarrhea frequency at 28 days (32.14% CTRL vs. 3.23% TRT; p = 0.009). Protein digestibility was higher in the TRT group (79.5 ± 1.74%) compared to the CTRL group (75.0 ± 2.05%; p = 0.004). Additionally, the TRT group had significantly lower levels of derivates of reactive oxygen metabolites than the CTRL group (293.44 ± 59.28 vs. 553.98 ± 61.59 Carratelli units p ≤ 0.001). Conclusions: The inclusion of 1% biochar in the diets of post-weaning piglets can improve the health status of the animals. Biochar could thus be used as a valuable functional ingredient within an innovative nutritional strategy aimed at the management of gastrointestinal problems during the weaning period. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

18 pages, 3792 KiB  
Article
Porcine β-Defensin 2 Expressed in Pichia pastoris Alleviates Enterotoxigenic Escherichia coli-Induced Intestinal Injury and Inflammatory Response in Mice
by Shuaiyang Wang, Huaixia Li, Yaxue Huang, Wenxiao Zhuo, Tingting Li, Tingting Jiang, Qi Huang and Rui Zhou
Animals 2025, 15(10), 1389; https://doi.org/10.3390/ani15101389 - 11 May 2025
Viewed by 732
Abstract
Enterotoxigenic Escherichia coli (ETEC), a common intestinal pathogen, can colonize the intestines and induce diarrhea in piglets, which brings great economic losses to the swine industry. Antibiotics are recommended to the treatment for diarrhea caused by ETEC in weaned piglets. However, with the [...] Read more.
Enterotoxigenic Escherichia coli (ETEC), a common intestinal pathogen, can colonize the intestines and induce diarrhea in piglets, which brings great economic losses to the swine industry. Antibiotics are recommended to the treatment for diarrhea caused by ETEC in weaned piglets. However, with the emergence and spread of multidrug-resistant ETEC, there is an urgent need to develop alternatives to antibiotics. Due to the unique antibacterial mechanism of targeting bacterial membranes, antimicrobial peptides (AMPs) are promising candidates. In this study, the activity of crude recombinant porcine β-defensin 2 (rPBD2) expressed in Pichia pastoris (P. pastoris) was measured in vitro. Mice infected with ETEC were orally administered 16, 8, and 4 AU crude rPBD2 for 7 consecutive days to evaluate its anti-infective activity in vivo. The results showed that in addition to broad antibacterial activity against Gram-positive and -negative bacteria, crude rPBD2 displayed high tolerance to temperatures ranging from 20 to 60 °C, a broad range of pH, trypsin, pepsin, and physiological concentrations of salts. In an ETEC-induced mouse model, the oral administration of crude rPBD2 decreased diarrhea scores and the intestinal/carcass ratio and alleviated body weight loss. Additionally, crude rPBD2 decreased bacterial loads in stools and the colon (HP group), and the levels of serum pro-inflammatory cytokines IL-6 (HP group) and TNF-α (HP and MP groups), and increased the villus height and the ratio of villus height to crypt depth (VH/CD) in the ileum (HP and MP groups). Our study provides a cost-effective way for PBD2 production and identifies it as a promising candidate to combat ETEC-induced infection. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

18 pages, 2479 KiB  
Article
Dietary Supplementation with Fermented Milk Improves Growth Performance and Intestinal Functions in Intrauterine Growth-Restricted Piglets
by Qing Yang, Lu Cui, Yang Yang, Ying Yang, Zhaolai Dai and Zhenlong Wu
Animals 2025, 15(10), 1367; https://doi.org/10.3390/ani15101367 - 9 May 2025
Viewed by 556
Abstract
Intrauterine growth restriction (IUGR) commonly occurs in pigs and poses a significant challenge to the swine industry. This study investigated the effect of fermented milk on growth performance and intestinal health in IUGR-affected piglets. A total of 24 28-day-old weaned piglets with IUGR [...] Read more.
Intrauterine growth restriction (IUGR) commonly occurs in pigs and poses a significant challenge to the swine industry. This study investigated the effect of fermented milk on growth performance and intestinal health in IUGR-affected piglets. A total of 24 28-day-old weaned piglets with IUGR were randomly assigned to a corn-soybean basal diet (control) or a basal diet mixed with fermented milk (3:1 w/v, treatment). The results showed that fermented milk increased the average daily gain and decreased the feed-to-gain ratio (p < 0.05). Fermented milk increased the villus height in the duodenum and decreased the jejunal crypt depth (p < 0.05). Pigs in the treatment showed higher activities of lipase, α-amylase, and sucrase in the duodenum, along with an elevation in jejunal sucrase activity (p < 0.05). The ileal glutathione concentration was increased by the treatment (p < 0.05). Moreover, fermented milk upregulated the protein expression of occludin and claudin-3 while decreasing the gene expression of interleukin 1 beta, interleukin 6, and tumor necrosis factor αlpha in the jejunum (p < 0.05). Collectively, these results indicate that dietary supplementation with fermented milk significantly improved growth performance through the enhancement of intestinal functions in IUGR piglets, highlighting the potential of fermented milk as a nutritional strategy to improve postnatal growth in IUGR piglets. Full article
(This article belongs to the Special Issue Amino Acids Nutrition and Health in Farm Animals)
Show Figures

Figure 1

16 pages, 1438 KiB  
Article
Butyrate Derivatives Exhibited Anti-Inflammatory Effects and Enhanced Intestinal Barrier Integrity in Porcine Cell Culture Models
by Lauren Kovanda, Monika Hejna, Tina Du and Yanhong Liu
Animals 2025, 15(9), 1289; https://doi.org/10.3390/ani15091289 - 30 Apr 2025
Cited by 1 | Viewed by 1243
Abstract
Butyrate and its derivatives may influence inflammatory status and physiology in a variety of organisms and organ systems. Inflammatory conditions of the gastrointestinal tract, such as post-weaning diarrhea, negatively impact swine. Dietary intervention with butyrate-based compounds should be considered a strategy to improve [...] Read more.
Butyrate and its derivatives may influence inflammatory status and physiology in a variety of organisms and organ systems. Inflammatory conditions of the gastrointestinal tract, such as post-weaning diarrhea, negatively impact swine. Dietary intervention with butyrate-based compounds should be considered a strategy to improve disease resistance in pigs. We aimed to assess the properties of different forms of butyrate treatments using porcine cell culture experiments. This assessment may inform future in vivo feed experiments designed to determine its potential application of the dietary supplements for pigs. An intestinal porcine enterocyte cell line, IPEC-J2, was seeded at 5 × 103 cells/mL in 96-well plates to confirm cell viability by MTT assay for each dose range used in the current experiments (0, 0.5, 1, 2, 4 mM butyric acid or tributyrin; 0, 1, 2, 4, 8 mM sodium butyrate or monobutyrin). For transepithelial electrical resistance (TEER) analysis, IPEC-J2 was seeded at 5 × 105 cells/mL in 12-well transwell inserts and treated with 5 levels of each butyrate derivative after adherence (n = 5). TEER was measured at 24, 48, and 72 h post-treatment to quantify intestinal barrier integrity of IPEC-J2 monolayers. Butyric acid, sodium butyrate, and monobutyrin significantly increased (p < 0.05) TEER in IPEC-J2 at different time points compared with control. Further, porcine alveolar macrophages (PAMs) were harvested from donor weaned piglets (n = 6) via bronchoalveolar lavage and isolated for primary culture (6 × 105 cells/well, 6-well plates). PAMs were treated with five levels of each butyrate derivative with or without lipopolysaccharide (LPS, 1 μg/mL) challenge. The concentrations of TNF-α and IL-1β in cell culture supernatants were measured by enzyme-linked immunosorbent assay (ELISA). Butyric acid and sodium butyrate treatments reduced the production of TNF-α in LPS-challenged PAMs (linear; p < 0.05). Different butyrate derivatives exerted anti-inflammatory properties and improved intestinal barrier integrity. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

Back to TopTop