Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,040)

Search Parameters:
Keywords = wave reflections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2215 KB  
Article
Fault Location of Generator Stator with Single-Phase High-Resistance Grounding Fault Based on Signal Injection
by Binghui Lei, Yifei Wang, Zongzhen Yang, Lijiang Ma, Xinzhi Yang, Yanxun Guo, Shuai Xu and Zhiping Cheng
Sensors 2025, 25(19), 6132; https://doi.org/10.3390/s25196132 - 3 Oct 2025
Abstract
This paper proposes a novel method for locating single-phase grounding faults in generator stator windings with high resistance, which are typically challenging to locate due to weak fault characteristics. The method utilizes an active voltage injection technique combined with traveling wave reflection analysis, [...] Read more.
This paper proposes a novel method for locating single-phase grounding faults in generator stator windings with high resistance, which are typically challenging to locate due to weak fault characteristics. The method utilizes an active voltage injection technique combined with traveling wave reflection analysis, singular value decomposition (SVD) denoising, and discrete wavelet transform (DWT). A DC voltage signal is then injected into the stator winding, and the voltage and current signals at both terminals are collected. These signals undergo denoising using SVD, followed by DWT, to identify the arrival time of the traveling waves. Fault location is determined based on the reflection and refraction of these waves within the winding. Simulation results demonstrate that this method achieves high accuracy in fault location, even with fault resistances up to 5000 Ω. The method offers a reliable and effective solution for locating high-resistance faults in generator stator windings without requiring winding parameters, demonstrating strong potential for practical applications. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

18 pages, 4581 KB  
Article
Metamaterial-Enhanced Microstrip Antenna with Integrated Channel Performance Evaluation for Modern Communication Networks
by Jasim Khudhair Salih Turfa and Oguz Bayat
Appl. Sci. 2025, 15(19), 10692; https://doi.org/10.3390/app151910692 - 3 Oct 2025
Abstract
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and [...] Read more.
This paper investigates the channel performance through a high-gain, circularly polarized microstrip patch antenna that is developed for contemporary wireless communication systems. The proposed antenna creates two orthogonal modes for circular propagation with slightly varying resonance frequencies by using a cross line and truncations to circulate surface currents. Compactness, reduced surface wave losses, and enhanced impedance bandwidth are made possible by the coaxial probe feed, periodic electromagnetic gap (EBG) slots, and fractal patch geometry. For in-phase reflection and beam focusing, a specially designed single-layer metasurface (MTS) reflector with an 11 × 11 circular aperture array is placed 20 mm behind the antenna. A log-normal shadowing model was used to test the antenna in real-world scenarios, and the results showed a strong correlation between the model predictions and actual data. At up to 250 m, the polarization-agile, high-gain antenna demonstrated reliable performance across a variety of channel conditions, enabling accurate characterization of the Channel Quality Indicator (CQI), Signal-to-Noise Ratio (SNR), and Reference Signal Received Power (RSRP). By combining cutting-edge antenna architecture with an empirical channel performance study, this research presents a compact, affordable, and fabrication-friendly solution for increased wireless coverage and efficiency. Full article
Show Figures

Figure 1

18 pages, 7440 KB  
Article
The Impact of Dual-Wavefront Propagation of Electromagnetic Waves in Bio-Tissues on Imaging and In-Body Communications
by Lei Guo, Kamel Sultan, Fei Xue and Amin Abbosh
Biosensors 2025, 15(10), 667; https://doi.org/10.3390/bios15100667 - 3 Oct 2025
Abstract
Understanding how electromagnetic (EM) waves travel through different tissues is important for EM medical imaging, sensing, and in-body communication. It is known that EM waves in lossy bio-tissues are nonuniform and do not strictly follow the least time or least loss paths. Instead, [...] Read more.
Understanding how electromagnetic (EM) waves travel through different tissues is important for EM medical imaging, sensing, and in-body communication. It is known that EM waves in lossy bio-tissues are nonuniform and do not strictly follow the least time or least loss paths. Instead, they exhibit two distinct wavefronts: the phase wavefront and the amplitude wavefront, which are generally oriented at different angles. The impact of that on imaging and in-body communications is investigated and validated through comprehensive analysis and full-wave EM simulations. Additionally, the impact of a matching medium, commonly used to reduce antenna–skin interface reflections in medical EM applications, on the direction of EM wavefronts, travel time, phase changes, and attenuation is analyzed and quantified. The results show that the Fermat principle of least travel time, often used to estimate EM wave travel time for localization in medical imaging and wireless endoscopy, is only accurate when the loss tangent or dissipation factor of both the matching medium and tissues is very low. Otherwise, the results will be inaccurate, and the dual wavefronts should be considered. The presented analysis and results provide guidance on EM wave travel time and the direction of phase and amplitude wavefronts. This information is valuable for developing reliable processing algorithms for sensing, imaging, and in-body communication. Full article
(This article belongs to the Special Issue Biosensing and Diagnosis—2nd Edition)
Show Figures

Figure 1

18 pages, 4415 KB  
Article
AI-Aided GPR Data Multipath Summation Using x-t Stacking Weights
by Nikos Economou, Sobhi Nasir, Said Al-Abri, Bader Al-Shaqsi and Hamdan Hamdan
NDT 2025, 3(4), 24; https://doi.org/10.3390/ndt3040024 - 2 Oct 2025
Abstract
The Ground Penetrating Radar (GPR) method can image dielectric discontinuities in subsurface structures, which cause the reflection of electromagnetic (EM) waves. These discontinuities are imaged as reflectors in GPR sections, often distorted by diffracted energy. To focus the diffracted energy within the GPR [...] Read more.
The Ground Penetrating Radar (GPR) method can image dielectric discontinuities in subsurface structures, which cause the reflection of electromagnetic (EM) waves. These discontinuities are imaged as reflectors in GPR sections, often distorted by diffracted energy. To focus the diffracted energy within the GPR sections, migration is commonly used. The migration velocity of GPR data is a low-wavenumber attribute crucial for effective migration. Obtaining a migration velocity model, typically close to a Root Mean Square (RMS) model, from zero-offset (ZO) data requires analysis of the available diffractions, whose density and (x, t) coverage are random. Thus, the accuracy and efficiency of such a velocity model, whether for migration or interval velocity model estimation, are not guaranteed. An alternative is the multipath summation method, which involves the weighted stacking of constant velocity migrated sections. Each stacked section contributes to the final stack, weighted by a scalar value dependent on the constant velocity value used and its relation to its estimated mean velocity of the section. This method effectively focuses the GPR diffractions in the presence of low heterogeneity. However, when the EM velocity varies dramatically, 2D weights are needed. In this study, with the aid of an Artificial Intelligence (AI) algorithm that detects diffractions and uses their kinematic information, we generate a diffraction velocity model. This model is then used to assign 2D weights for the weighted multipath summation, aiming to focus the scattered energy within the GPR section. We describe this methodology and demonstrate its application in enhancing the lateral continuity of reflections. We compare it with the 1D multipath summation using simulated data and present its application on marble assessment GPR data for imaging cracks and discontinuities in the subsurface structure. Full article
Show Figures

Figure 1

24 pages, 5840 KB  
Article
Numerical Study of Blast Load Acting on Typical Precast Segmental Reinforced Concrete Piers in Near-Field Explosions
by Lu Liu, Zhouhong Zong, Yulin Shan, Yao Yao, Chenglin Li and Yihao Cheng
CivilEng 2025, 6(4), 53; https://doi.org/10.3390/civileng6040053 - 2 Oct 2025
Abstract
Explosions, including those from war weapons, terrorist attacks, etc., can lead to damage and overall collapse of bridges. However, there are no clear guidelines for anti-blast design and protective measures for bridges under blast loading in current bridge design specifications. With advancements in [...] Read more.
Explosions, including those from war weapons, terrorist attacks, etc., can lead to damage and overall collapse of bridges. However, there are no clear guidelines for anti-blast design and protective measures for bridges under blast loading in current bridge design specifications. With advancements in intelligent construction, precast segmental bridge piers have become a major trend in social development. There is a lack of full understanding of the anti-blast performance of precast segmental bridge piers. To study the engineering calculation method for blast load acting on a typical precast segmental reinforced concrete (RC) pier in near-field explosions, an air explosion test of the precast segmental RC pier is firstly carried out, then a fluid–structure coupling numerical model of the precast segmental RC pier is established and the interaction between the explosion shock wave and the precast segmental RC pier is discussed. A numerical simulation of the precast segmental RC pier in a near-field explosion is conducted based on a reliable numerical model, and the distribution of the blast load acting on the precast segmental RC pier in the near-field explosion is analyzed. The results show that the reflected overpressure on the pier and the incident overpressure in the free field are reliable. The simulation results are basically consistent with the experimental results (with a relative error of less than 8%), and the fluid–structure coupling model is reasonable and reliable. The explosion shock wave has effects of reflection and circulation on the precast segmental RC pier. In the near-field explosion, the back and side blast loads acting on the precast segmental RC bridge pier can be ignored in the blast-resistant design. The front blast loads can be simplified and equalized, and a blast-resistant design load coefficient (1, 0.2, 0.03, 0.02, and 0.01) and a calculation formula of maximum equivalent overpressure peak value (applicable scaled distance [0.175 m/kg1/3, 0.378 m/kg1/3]) are proposed, which can be used as a reference for the blast-resistant design of precast segmental RC piers. Full article
(This article belongs to the Section Mathematical Models for Civil Engineering)
Show Figures

Figure 1

16 pages, 2571 KB  
Article
Software and Hardware Complex for Assessment of Cerebral Autoregulation in Real Time
by Vladimir Semenyutin, Valeriy Antonov, Galina Malykhina, Anna Nikiforova, Grigory Panuntsev, Vyacheslav Salnikov and Anastasiya Vesnina
Sensors 2025, 25(19), 6060; https://doi.org/10.3390/s25196060 - 2 Oct 2025
Abstract
The phase shift (PS) between spontaneous slow oscillations of cerebral and systemic hemodynamics reliably reflects the state of cerebral autoregulation (CA). However, CA measurements are performed retrospectively after studying the signals from the analysis sensors. At the same time, CA-oriented therapy is becoming [...] Read more.
The phase shift (PS) between spontaneous slow oscillations of cerebral and systemic hemodynamics reliably reflects the state of cerebral autoregulation (CA). However, CA measurements are performed retrospectively after studying the signals from the analysis sensors. At the same time, CA-oriented therapy is becoming increasingly important with the receipt of data on the state of CA in real time, especially in intensive care units. We offer a hardware and software complex for transcranial Dopplerography, which uses a non-invasive method and allows for continuous measurement of cerebral blood flow to assess the rate of CA in real time. The hardware and software complex uses sensors to measure the PS between spontaneous slow oscillations of blood flow velocity (BFV) in the middle cerebral arteries (MCAs) and systemic arterial pressure (BP) in the Mayer wave range and performs wavelet analysis of sensor signals. An examination of 30 volunteers, with an average age of 28 ± 8 years, and 15 patients, with an average age of 57 ± 16 years, with various neurovascular pathologies confirms the feasibility of using the developed hardware and software complex for continuous monitoring of PS in real time to study the mechanisms of cerebral blood flow regulation. Full article
Show Figures

Figure 1

22 pages, 5366 KB  
Article
Influence of Water Level Change on Vibration Response and Isolation of Saturated Soil Under Moving Loads
by Jinbao Yao, Yueyue Chen and Longhua Dong
Appl. Sci. 2025, 15(19), 10461; https://doi.org/10.3390/app151910461 - 26 Sep 2025
Abstract
This paper investigates the influence of groundwater level fluctuations on the vibration response and isolation performance of saturated soil foundations under moving loads. A coupled model consisting of an overlying elastic layer and a saturated half-space is established, with water level variation simulated [...] Read more.
This paper investigates the influence of groundwater level fluctuations on the vibration response and isolation performance of saturated soil foundations under moving loads. A coupled model consisting of an overlying elastic layer and a saturated half-space is established, with water level variation simulated by adjusting the elastic layer thickness. Using Biot’s theory and Fourier transforms, the dynamic response is solved analytically and validated numerically via COMSOL6.0 simulations with perfectly matched layers. Results indicate that the groundwater level significantly affects wave propagation: deeper water levels lead to responses resembling an elastic half-space, while rising water levels amplify surface displacement due to wave reflection at the saturation interface. As water levels approach the surface, behavior converges to that of a fully saturated foundation. P-wave resonance at certain water levels reduces isolation effectiveness. Furthermore, isolation performance is sensitive to load frequency, soil permeability, and trench dimensions. These findings offer valuable insights for designing vibration mitigation measures in environments with variable groundwater conditions. Full article
Show Figures

Figure 1

21 pages, 8973 KB  
Article
Research on the Mechanical Properties and Failure Mechanism of Lignite Affected by the Strain Rate Under Static and Dynamic Loading Conditions
by Jiang Yu, Hongfa Ma, Linlin Jin, Feng Wang, Dawei Yin, Xiao Qu, Chenghao Han, Jicheng Zhang and Fan Feng
Processes 2025, 13(10), 3054; https://doi.org/10.3390/pr13103054 - 24 Sep 2025
Viewed by 17
Abstract
Coal seams, as critical components of open-pit mine slopes, are subjected to both quasi-static and dynamic loading disturbances during mining operations, with their mechanical properties directly influencing the slope stability. Consequently, to clarify the mechanical properties and failure mechanisms of coal seams affected [...] Read more.
Coal seams, as critical components of open-pit mine slopes, are subjected to both quasi-static and dynamic loading disturbances during mining operations, with their mechanical properties directly influencing the slope stability. Consequently, to clarify the mechanical properties and failure mechanisms of coal seams affected by the strain rate under the static–dynamic loading conditions, the mineral composition and meso-structural characteristics of lignite were analyzed in this study, and uniaxial compression tests with different quasi-static loading rates and dynamic compression tests with different impact velocities were conducted. The results indicate that there is an obvious horizontal bedding structure in lignite, which leads to differences in mechanical response and failure mechanism at different strain rates. Under the quasi-static loading, lignite exhibits significantly lower strain-rate sensitivity than compared to dynamic impact conditions. The Poisson’s ratio difference between the bedding matrix and the lignite will produce interfacial friction, which gradually decreases with the increase in the distance from the interface, thus promoting the transformation of lignite from multi-crack tensile shear mixed fracture to single-crack splitting failure. Under the dynamic impact conditions, low-impact velocities induce stress wave reflection at bedding interfaces due to wave impedance disparity between the matrix and lignite, generating tensile strains that result in bedding-plane delamination failure; at higher velocities, incomplete energy absorption by the rock specimen leads to fragmentation failure of lignite. These findings are of great significance for the stability analysis of open-pit slopes. Full article
Show Figures

Figure 1

25 pages, 4048 KB  
Article
Fractal Neural Dynamics and Memory Encoding Through Scale Relativity
by Călin Gheorghe Buzea, Valentin Nedeff, Florin Nedeff, Mirela Panaite Lehăduș, Lăcrămioara Ochiuz, Dragoș Ioan Rusu, Maricel Agop and Dragoș Teodor Iancu
Brain Sci. 2025, 15(10), 1037; https://doi.org/10.3390/brainsci15101037 - 24 Sep 2025
Viewed by 53
Abstract
Background/Objectives: Synaptic plasticity is fundamental to learning and memory, yet classical models such as Hebbian learning and spike-timing-dependent plasticity often overlook the distributed and wave-like nature of neural activity. We present a computational framework grounded in Scale Relativity Theory (SRT), which describes neural [...] Read more.
Background/Objectives: Synaptic plasticity is fundamental to learning and memory, yet classical models such as Hebbian learning and spike-timing-dependent plasticity often overlook the distributed and wave-like nature of neural activity. We present a computational framework grounded in Scale Relativity Theory (SRT), which describes neural propagation along fractal geodesics in a non-differentiable space-time. The objective is to link nonlinear wave dynamics with the emergence of structured memory representations in a biologically plausible manner. Methods: Neural activity was modeled using nonlinear Schrödinger-type equations derived from SRT, yielding complex wave solutions. Synaptic plasticity was coupled through a reaction–diffusion rule driven by local activity intensity. Simulations were performed in one- and two-dimensional domains using finite difference schemes. Analyses included spectral entropy, cross-correlation, and Fourier methods to evaluate the organization and complexity of the resulting synaptic fields. Results: The model reproduced core neurobiological features: localized potentiation resembling CA1 place fields, periodic plasticity akin to entorhinal grid cells, and modular tiling patterns consistent with V1 orientation maps. Interacting waveforms generated interference-dependent plasticity, modeling memory competition and contextual modulation. The system displayed robustness to noise, gradual potentiation with saturation, and hysteresis under reversal, reflecting empirical learning and reconsolidation dynamics. Cross-frequency coupling of theta and gamma inputs further enriched trace complexity, yielding multi-scale memory structures. Conclusions: Wave-driven dynamics in fractal space-time provide a hypothesis-generating framework for distributed memory formation. The current approach is theoretical and simulation-based, relying on a simplified plasticity rule that omits neuromodulatory and glial influences. While encouraging in its ability to reproduce biological motifs, the framework remains preliminary; future work must benchmark against established models such as STDP and attractor networks and propose empirical tests to validate or falsify its predictions. Full article
(This article belongs to the Section Cognitive, Social and Affective Neuroscience)
Show Figures

Figure 1

15 pages, 2944 KB  
Article
Fiber Laser Model Considering Excited-State Absorption and Cooperative Upconversion
by Yuri Barmenkov, Josué Adin Minguela-Gallardo, Leonardo Morales-Padilla and Pablo Muniz-Cánovas
Photonics 2025, 12(10), 951; https://doi.org/10.3390/photonics12100951 - 24 Sep 2025
Viewed by 65
Abstract
In this paper, we present the results of a comprehensive study on how excited-state absorption and concentration effects influence fiber laser efficiency and the optimization of the laser cavity’s output coupler reflection. The concentration effects discussed include the cooperative interaction between two closely [...] Read more.
In this paper, we present the results of a comprehensive study on how excited-state absorption and concentration effects influence fiber laser efficiency and the optimization of the laser cavity’s output coupler reflection. The concentration effects discussed include the cooperative interaction between two closely spaced active ions and the pair-induced quenching typically observed in heavily doped gain fibers. The laser is simulated using a model based on the laser, pump, and spontaneous emission waves propagating along the gain fiber, where the intensities of these waves determine their absorption or amplification. The model considers the radial distributions of optical fields and populations of the energy levels of the active ions, which is crucial to comply with the law of conservation of energy. The results discussed in this paper are essential for applications related to the optimization of heavily doped fiber lasers. The physics behind the reported results is discussed. Full article
(This article belongs to the Special Issue Optical Fiber Lasers and Laser Technology)
Show Figures

Figure 1

16 pages, 6465 KB  
Article
The Feasibility of Combining 3D Cine bSSFP and 4D Flow MRI for the Assessment of Local Aortic Pulse Wave Velocity
by Renske Merton, Daan Bosshardt, Gustav J. Strijkers, Aart J. Nederveen, Eric M. Schrauben and Pim van Ooij
Appl. Sci. 2025, 15(18), 10272; https://doi.org/10.3390/app151810272 - 21 Sep 2025
Viewed by 211
Abstract
Pulse wave velocity (PWV) is a key marker of aortic stiffness and cardiovascular risk, yet current methods typically offer only global or regional estimates and lack the possibility to measure local variations along the thoracic aorta. This study aimed to develop and evaluate [...] Read more.
Pulse wave velocity (PWV) is a key marker of aortic stiffness and cardiovascular risk, yet current methods typically offer only global or regional estimates and lack the possibility to measure local variations along the thoracic aorta. This study aimed to develop and evaluate a pipeline for assessing local aortic PWV using the flow–area (QA) method (PWVQA) by combining high-resolution 4D MRI techniques. A 3D cine balanced steady-state free precession (bSSFP) sequence was used to capture dynamic changes in aortic geometry, while 4D flow MRI measured time-resolved blood flow. The QA method was applied during the reflection-free early systolic phase. Scan–rescan reproducibility was assessed in six healthy volunteers, and feasibility was additionally explored in Marfan syndrome patients. The mean ± SD values of the Pearson correlation coefficients for per-slice maximum area, velocity, flow, and PWVQA were 0.99 ± 0.00, 0.82 ± 0.11, 0.96 ± 0.01, and 0.20 ± 0.35, respectively. The median (Q1–Q3) average PWVQA was 6.6 (5.4–9.4) m/s for scan 1 and 9.1 (6.7–11.3) m/s for scan 2 (p = 0.16) in healthy volunteers and 7.1 (6.9–8.0) m/s in Marfan patients. Combining 4D bSSFP and 4D flow MRI is technically feasible, but the derived PWVQA maps show high variability, particularly in the aortic root and descending aorta, requiring further optimization. Full article
Show Figures

Figure 1

22 pages, 4786 KB  
Article
Multi-Signal Acquisition System for Continuous Blood Pressure Monitoring
by Naiwen Zhang, Yu Zhang, Jintao Chen, Shaoxuan Qiu, Jinting Ma, Lihai Tan and Guo Dan
Sensors 2025, 25(18), 5910; https://doi.org/10.3390/s25185910 - 21 Sep 2025
Viewed by 294
Abstract
Continuous blood pressure (BP) monitoring is essential for the early detection and prevention of cardiovascular diseases like hypertension. Recently, interest in continuous BP estimation systems and algorithms has grown. Various physiological signals reflect BP variations from different perspectives, and combining multiple signals can [...] Read more.
Continuous blood pressure (BP) monitoring is essential for the early detection and prevention of cardiovascular diseases like hypertension. Recently, interest in continuous BP estimation systems and algorithms has grown. Various physiological signals reflect BP variations from different perspectives, and combining multiple signals can enhance the accuracy of BP measurements. However, research integrating electrocardiogram (ECG), photoplethysmography (PPG), and impedance cardiography (ICG) signals for BP monitoring remains limited, with related technologies still in early development. A major challenge is the increased system complexity associated with acquiring multiple signals simultaneously, along with the difficulty of efficiently extracting and integrating key features for accurate BP estimation. To address this, we developed a BP monitoring system that can synchronously acquire and process ECG, PPG, and ICG signals. Optimizing the circuit design allowed ECG and ICG modules to share electrodes, reducing components and improving compactness. Using this system, we collected 400 min of signals from 40 healthy subjects, yielding 4390 records. Experiments were conducted to evaluate the system’s performance in BP estimation. The results demonstrated that combining pulse wave analysis features with the XGBoost model yielded the most accurate BP predictions. Specifically, the mean absolute error for systolic blood pressure was 3.76 ± 3.98 mmHg, and for diastolic blood pressure, it was 2.71 ± 2.57 mmHg, both of which achieved grade A performance under the BHS standard. These results are comparable to or better than existing studies based on multi-signal methods. These findings suggest that the proposed system offers an efficient and practical solution for BP monitoring. Full article
Show Figures

Figure 1

17 pages, 836 KB  
Article
The Time Delays in Reaction of the Ionosphere and the Earth’s Magnetic Field to the Solar Flares on 8 May and Geomagnetic Superstorm on 10 May 2024
by Nazyf Salikhov, Alexander Shepetov, Galina Pak, Serik Nurakynov, Vladimir Ryabov, Zhumabek Zhantayev and Valery Zhukov
Atmosphere 2025, 16(9), 1106; https://doi.org/10.3390/atmos16091106 - 20 Sep 2025
Viewed by 340
Abstract
In the paper we consider the pulsed disturbances caused in the ionosphere by an extreme G5-level geomagnetic superstorm on 10 May 2024, and by the X1.0 and M-class solar flares on 8 May 2024, which preceded the storm. Particular attention is [...] Read more.
In the paper we consider the pulsed disturbances caused in the ionosphere by an extreme G5-level geomagnetic superstorm on 10 May 2024, and by the X1.0 and M-class solar flares on 8 May 2024, which preceded the storm. Particular attention is paid to the short-term delays and the sequence of disturbance appearance in the ionosphere and geomagnetic field during these extreme events. The results of a continuous Doppler sounding of the ionosphere on an inclined radio path with a sampling frequency of 25 Hz were used, as well as the data of a ground-based mid-latitude fluxgate magnetometer LEMI-008, and an induction magnetometer IMS-008, which operated with a sampling frequency of 66.6 Hz. Ionization of the ionosphere by the intense X-ray and extreme ultraviolet radiation of solar flares was accompanied by the equally sudden and similarly timed disturbances in the Doppler frequency shift (DFS) of the ionospheric signal, which had an amplitude of 2.0–5.8 Hz. The largest pulsed burst in DFS was registered 68 s after an X1.0 flare on 8 May 2024 at the time when the change of the X-ray flux was at its maximum. Following onto the effect in the ionosphere, a disturbance in the geomagnetic field appeared with a time delay of 35 s. This disturbance is a secondary one that arose as a consequence of the ionosphere response to the solar flare. It was likely driven by the contribution of ionospheric currents and electric fields, which modified the Earth’s magnetic field. On 10 May 2024, a G5-level geomagnetic superstorm with a sudden commencement triggered an impulsive reaction in the ionosphere. A response in DFS at the calculated reflection altitude of the sounding radio wave of 267.5 km was detected 58 s after the commencement of the storm. The sudden impulsive changes in Doppler frequencies showed a bipolar character, reflecting complex dynamic transformations in the ionosphere at the geomagnetic storm. Consequently, the DFS amplitude initially rose to 5.5 Hz over 86 s, and then its sharp drop to 3.2 Hz followed. Using the instruments that operated in a mode with a high temporal resolution allowed us to identify for the first time the impulsive nature of the ionospheric reaction, the time delays, and the sequence of disturbance appearances in the ionosphere and geomagnetic field in response to the X1.0 solar flare on 8 May 2024 as well as to the sudden commencement of the extreme G5-level geomagnetic storm on 10 May 2024. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

18 pages, 3566 KB  
Article
Solar-Pumped Ce:Nd:YAG Laser Amplifier Design
by Joana Almeida, Bruno D. Tibúrcio, Hugo Costa, Cláudia R. Vistas and Dawei Liang
Energies 2025, 18(18), 5009; https://doi.org/10.3390/en18185009 - 20 Sep 2025
Viewed by 140
Abstract
A solar-pumped Ce:Nd:YAG laser amplifier design is proposed to address the challenge of scaling output power in solar-pumped laser oscillators while maintaining high beam quality. The design employs a 1.33 m2 flat Fresnel lens with a 2 m focal length as a [...] Read more.
A solar-pumped Ce:Nd:YAG laser amplifier design is proposed to address the challenge of scaling output power in solar-pumped laser oscillators while maintaining high beam quality. The design employs a 1.33 m2 flat Fresnel lens with a 2 m focal length as a primary concentrator, which is combined with a secondary homogenizing concentrator, featuring 40 mm × 40 mm input aperture, 200 mm length, and 11.3 mm × 26 mm output aperture, to provide efficient coupling and uniform distribution of solar radiation onto a 2.9 mm thick Ce:Nd:YAG slab with 11.3 mm × 26 mm surface area and two beveled corners. This geometry enables multiple total internal reflections of a 1064 nm TEM00 mode seed laser beam inside the slab, ensuring efficient interaction with the active Ce3+ and Nd3+ ions in the gain medium. Performed numerical analysis shows that the present approach can deliver a uniform solar pump power density of 2.5 W/mm2 to the slab amplifier. This value is 2.05-times higher than the numerically calculated power density incident on the Nd:YAG slab of the previous solar-pumped amplifier that achieved the highest continuous-wave laser gain of 1.64. Furthermore, the optimized slab geometry with 0.44 width-to-height ratio allows the seed laser to undergo 32 internal reflections, extending its optical path length by a factor of 1.45 compared to the earlier design. These numerical achievements, combined with the Ce:Nd:YAG medium’s capacity to deliver nearly 1.57-times more laser power than Nd:YAG, reveal the potential of proposed design to yield a gain enhancement factor of 4.16, making the first solar-pumped Ce:Nd:YAG amplifier a promising solution toward energy-efficient, sustainable solutions for terrestrial and space applications. Full article
Show Figures

Figure 1

19 pages, 316 KB  
Article
Psychometric Validation of Trust, Commitment, and Satisfaction Scales to Measure Marital Relationship Quality Among Newly Married Women in Nepal
by Lakshmi Gopalakrishnan, Nadia Diamond-Smith and Hannah H. Leslie
Int. J. Environ. Res. Public Health 2025, 22(9), 1457; https://doi.org/10.3390/ijerph22091457 - 20 Sep 2025
Viewed by 314
Abstract
Marital relationship quality significantly influences health outcomes, but validated measurement tools for South Asian populations remain limited. To validate scales measuring trust, commitment, and satisfaction as key components of marital relationship quality among newly married women in Nepal, we conducted a two-wave psychometric [...] Read more.
Marital relationship quality significantly influences health outcomes, but validated measurement tools for South Asian populations remain limited. To validate scales measuring trust, commitment, and satisfaction as key components of marital relationship quality among newly married women in Nepal, we conducted a two-wave psychometric validation study in rural Nawalparasi district. The study included 200 newly married women aged 18–25 years, with 192 participants (96% retention) completing 6-month follow-up. We assessed factor structure, internal consistency, test-retest reliability, and criterion validity of trust (eight items), commitment (five items), and satisfaction (seven items) scales using exploratory and confirmatory factor analysis. Exploratory factor analysis identified single-factor solutions for trust and commitment scales and a two-factor model for satisfaction. Confirmatory factor analysis confirmed these structures, with satisfaction comprising marital conflict/dissatisfaction (four items) and general satisfaction (two items) subscales. All scales demonstrated good internal consistency (Cronbach’s α: 0.79–0.96) and significant criterion validity correlations with relationship happiness (r = 0.63–0.72, p < 0.001). Test-retest reliability showed moderate to low stability (r = 0.21–0.51), likely reflecting genuine relationship changes in early marriage. The validated scales provide reliable tools for assessing relationship quality in South Asian contexts, enabling research on marriage-health associations and evidence-based interventions. Full article
(This article belongs to the Section Behavioral and Mental Health)
Back to TopTop