The Feasibility of Combining 3D Cine bSSFP and 4D Flow MRI for the Assessment of Local Aortic Pulse Wave Velocity
Abstract
1. Introduction
2. Materials and Methods
2.1. Acquisition
2.2. Reconstruction
2.3. Segmentation, Centerline, and Motion
2.4. Area and Flow Measurements
2.5. Local PWV Calculation
2.6. Global PWV Calculation
2.7. Statistics
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
bSSFP | Balanced steady-state free precession |
CMR | Cardiovascular magnetic resonance |
FA | Flip angle |
FOV | Field of view |
LoA | Limits of agreement |
MRI | Magnetic resonance imaging |
PCMRA | Phase-contrast magnetic resonance angiogram |
PC-MRI | Phase-contrast magnetic resonance imaging |
PROUD | Prospective undersampling in multiple dimensions |
PWV | Pulse wave velocity |
PWVQA | Local pulse wave velocity based on flow–area method |
PWVWC | Global pulse wave velocity based on wave cross-spectrum analysis |
QA | Flow–area |
SOF | Slice oversampling factor |
TE | Echo time |
TR | Repetition time |
Appendix A
References
- Sonesson, B.; Hansen, F.; Länne, T. Abnormal Mechanical Properties of the Aorta in Marfan’s Syndrome. Eur. J. Vasc. Surg. 1994, 8, 595–601. [Google Scholar] [CrossRef]
- Marque, V.; Kieffer, P.; Gayraud, B.; Lartaud-Idjouadiene, I.; Ramirez, F.; Atkinson, J. Aortic Wall Mechanics and Composition in a Transgenic Mouse Model of Marfan Syndrome. Arterioscler. Thromb. Vasc. Biol. 2001, 21, 1184–1189. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, E.S.H.; Shaffer, J.M.; White, R.D. Assessment of pulmonary artery stiffness using velocity-encoding magnetic resonance imaging: Evaluation of techniques. Magn. Reson. Imaging 2011, 29, 966–974. [Google Scholar] [CrossRef] [PubMed]
- Vulliémoz, S.; Stergiopulos, N.; Meuli, R. Estimation of local aortic elastic properties with MRI. Magn. Reson. Med. 2002, 47, 649–654. [Google Scholar] [CrossRef]
- Metafratzi, Z.M.; Efremidis, S.C.; Skopelitou, A.S.; De Roos, A. The clinical significance of aortic compliance and its assessment with magnetic resonance imaging. J. Cardiovasc. Magn. Reson. 2002, 4, 481–491. [Google Scholar] [CrossRef]
- Wentland, A.L.; Grist, T.M.; Wieben, O. Review of MRI-based measurements of pulse wave velocity: A biomarker of arterial stiffness. Cardiovasc. Diagn. Ther. 2014, 4, 193–206. [Google Scholar]
- Herold, V.; Parczyk, M.; Mörchel, P.; Ziener, C.H.; Klug, G.; Bauer, W.R.; Rommel, E.; Jakob, P.M. In vivo measurement of local aortic pulse-wave velocity in mice with MR microscopy at 17.6 tesla. Magn. Reson. Med. 2009, 61, 1293–1299. [Google Scholar] [CrossRef]
- Shahzad, R.; Shankar, A.; Amier, R.; Nijveldt, R.; Westenberg, J.J.M.; De Roos, A.; Lelieveldt, B.P.F.; Van Der Geest, R.J. Quantification of aortic pulse wave velocity from a population based cohort: A fully automatic method. J. Cardiovasc. Magn. Reson. 2019, 21, 27. [Google Scholar] [CrossRef] [PubMed]
- Burris, N.S.; Dyverfeldt, P.; Hope, M.D. Ascending Aortic Stiffness with Bicuspid Aortic Valve is Variable and Not Predicted by Conventional Parameters in Young Patients. J. Heart Valve Dis. 2016, 25, 270–280. [Google Scholar]
- Merton, R.; Bosshardt, D.; Strijkers, G.J.; Nederveen, A.J.; Schrauben, E.M.; van Ooij, P. Assessing Aortic Motion with Automated 3D Cine Balanced SSFP MRI Segmentation. J. Cardiovasc. Magn. Reson. 2024, 26, 101089. [Google Scholar] [CrossRef]
- Harloff, A.; Mirzaee, H.; Lodemann, T.; Hagenlocher, P.; Wehrum, T.; Stuplich, J.; Hennemuth, A.; Hennig, J.; Grundmann, S.; Vach, W. Determination of aortic stiffness using 4D flow cardiovascular magnetic resonance—A population-based study. J. Cardiovasc. Magn. Reson. 2018, 20, 43. [Google Scholar] [CrossRef]
- Jarvis, K.; Scott, M.B.; Soulat, G.; Elbaz, M.S.M.; Barker, A.J.; Carr, J.C.; Markl, M.; Ragin, A. Aortic Pulse Wave Velocity Evaluated by 4D Flow MRI Across the Adult Lifespan. J. Magn. Reson. Imaging 2022, 56, 464–473. [Google Scholar] [CrossRef]
- Mura, J.; Sotelo, J.; Mella, H.; Wong, J.; Hussain, T.; Ruijsink, B.; Uribe, S. Non-invasive local pulse wave velocity using 4D-flow MRI. Biomed. Signal Process. Control 2022, 71, 103259. [Google Scholar] [CrossRef]
- Rabben, S.I.; Stergiopulos, N.; Hellevik, L.R.; Smiseth, O.A.; Slørdahl, S.; Urheim, S.; Angelsen, B. An ultrasound-based method for determining pulse wave velocity in superficial arteries. J. Biomech. 2004, 37, 1615–1622. [Google Scholar] [CrossRef] [PubMed]
- Gottwald, L.M.; Peper, E.S.; Zhang, Q.; Coolen, B.F.; Strijkers, G.J.; Nederveen, A.J.; van Ooij, P. Pseudo-spiral sampling and compressed sensing reconstruction provides flexibility of temporal resolution in accelerated aortic 4D flow MRI: A comparison with k-t principal component analysis. NMR Biomed. 2020, 33, e4255. [Google Scholar] [CrossRef]
- Merton, R.; Bosshardt, D.; Strijkers, G.J.; Nederveen, A.J.; Schrauben, E.M.; van Ooij, P. Reproducibility of 3D thoracic aortic displacement from 3D cine balanced SSFP at 3 T without contrast enhancement. Magn. Reson. Med. 2024, 91, 466–480. [Google Scholar] [CrossRef]
- Uecker, M.; Ong, F.; Tamir, J.I.; Bahri, D.; Virtue, P.; Cheng, J.Y.; Zhang, T.; Lustig, M. Berkeley Advanced Reconstruction Toolbox. Proc. Intl. Soc. Mag. Reson. Med. 2015, 23, 2486. [Google Scholar]
- Uecker, M.; Lai, P.; Murphy, M.J.; Virtue, P.; Elad, M.; Pauly, J.M.; Vasanawala, S.S.; Lustig, M. ESPIRiT—An eigenvalue approach to autocalibrating parallel MRI: Where SENSE meets GRAPPA. Magn. Reson. Med. 2014, 71, 990–1001. [Google Scholar] [CrossRef]
- Loecher, M.; Schrauben, E.; Johnson, K.M.; Wieben, O. Phase unwrapping in 4D MR flow with a 4D single-step laplacian algorithm. J. Magn. Reson. Imaging 2016, 43, 833–842. [Google Scholar] [CrossRef] [PubMed]
- Fischer, C.; Wetzl, J.; Schaeffter, T.; Giese, D. Fully automated background phase correction using M-estimate SAmple consensus (MSAC)—Application to 2D and 4D flow. Magn. Reson. Med. 2022, 88, 2709–2717. [Google Scholar] [CrossRef]
- Isensee, F.; Jaeger, P.F.; Kohl, S.A.A.; Petersen, J.; Maier-Hein, K.H. nnU-Net: A self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 2021, 18, 203–211. [Google Scholar] [CrossRef]
- Audenaert, E.A.; Van Houcke, J.; Almeida, D.F.; Paelinck, L.; Peiffer, M.; Steenackers, G.; Vandermeulen, D. Cascaded statistical shape model based segmentation of the full lower limb in CT. Comput. Methods Biomech. Biomed. Eng. 2019, 22, 644–657. [Google Scholar] [CrossRef] [PubMed]
- Carr, J.C.; Beatson, R.K.; Cherrie, J.B.; Mitchell, T.J.; Fright, W.R.; McCallum, B.C.; Evans, T.R. Reconstruction and Representation of 3D Objects with Radial Basis Functions. In Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, New York, NY, USA, 12–17 August 2001. [Google Scholar]
- Bargiotas, I.; Mousseaux, E.; Yu, W.C.; Venkatesh, B.A.; Bollache, E.; De Cesare, A.; Lima, J.A.C.; Redheuil, A.; Kachenoura, N. Estimation of aortic pulse wave transit time in cardiovascular magnetic resonance using complex wavelet cross-spectrum analysis. J. Cardiovasc. Magn. Reson. 2015, 17, 65. [Google Scholar] [CrossRef]
- Schrauben, E.; Wahlin, A.; Ambarki, K.; Spaak, E.; Malm, J.; Wieben, O.; Eklund, A. Fast 4D flow MRI intracranial segmentation and quantification in tortuous arteries. J. Magn. Reson. Imaging 2015, 42, 1458–1464. [Google Scholar] [CrossRef]
- Bosshardt, D.; van Andel, M.M.; Schrauben, E.M.; van Kimmenade, R.R.J.; Scholte, A.J.; Cox, M.G.J.P.; Robbers-Visser, D.; Zwinderman, A.H.; Mulder, B.J.M.; Nederveen, A.J.; et al. Aortic Function in a Longitudinal 4D Flow MRI Study in Marfan Syndrome Patients Receiving Resveratrol. J. Magn. Reson. Imaging. 2025. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Agreement between methods of measurement with multiple observations per individual. J. Biopharm. Stat. 2007, 17, 571–582. [Google Scholar] [CrossRef]
- Hoskins, P.R.; Lawford, P.V.; Doyle, B.J. Cardiovascular Biomechanics; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 1–462. [Google Scholar]
- Collaboration, T.R.V.f.A.S. Determinants of pulse wave velocity in healthy people and in the presence of cardiovascular risk factors: ‘establishing normal and reference values’. Eur. Heart J. 2010, 31, 2338–2350. [Google Scholar]
- Voges, I.; Jerosch-Herold, M.; Hedderich, J.; Pardun, E.; Hart, C.; Daniel Gabbert, D.; Hinnerk Hansen, J.; Petko, C.; Kramer, H.-H.; Rickers, C. Normal values of aortic dimensions, distensibility, and pulse wave velocity in children and young adults: A cross-sectional study. J. Cardiovasc. Magn. Reson. 2012, 14, 41. [Google Scholar] [CrossRef]
- Han, F.; Zhou, Z.; Cao, M.; Yang, Y.; Sheng, K.; Hu, P. Respiratory motion-resolved, self-gated 4D-MRI using rotating cartesian k-space (ROCK). Med. Phys. 2017, 44, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.H.; Chung, H.W.; Yu, H.Y.; Tseng, W.Y.I. Estimation of pulse wave velocity in main pulmonary artery with phase contrast MRI: Preliminary investigation. J. Magn. Reson. Imaging 2006, 24, 1303–1310. [Google Scholar] [CrossRef] [PubMed]
- Van Ooij, P.; Powell, A.L.; Potters, W.V.; Carr, J.C.; Markl, M.; Barker, A.J. Reproducibility and interobserver variability of systolic blood flow velocity and 3D wall shear stress derived from 4D flow MRI in the healthy aorta. J. Magn. Reson. Imaging 2016, 43, 236–248. [Google Scholar] [CrossRef] [PubMed]
Healthy Volunteers | Marfan Patients | ||
---|---|---|---|
No. of participants | 6 | 6 | |
Age (y) | 31 (29–36) | 30 (28–31) | |
Female | 3/6 (50%) | 3/6 (50%) | |
Weight (kg) | 71 (70–74) | 75 (63–83) | |
Height (cm) | 178 (174–183) | 181 (179–193) | |
BMI | 22.7 (21.9–24.2) | 22.3 (20.4–23.0) | |
Scan session | 1 | 2 | |
Heart rate (bmp) | 63 (60–66) | 59 (53–64) | 72 (60–79) |
Systolic pressure (mmHg) | 130 (128–132) | 123 (119–132) | 132 (130–134) |
Diastolic pressure (mmHg) | 85 (79–88) | 81 (74–85) | 81 (78–84) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Merton, R.; Bosshardt, D.; Strijkers, G.J.; Nederveen, A.J.; Schrauben, E.M.; van Ooij, P. The Feasibility of Combining 3D Cine bSSFP and 4D Flow MRI for the Assessment of Local Aortic Pulse Wave Velocity. Appl. Sci. 2025, 15, 10272. https://doi.org/10.3390/app151810272
Merton R, Bosshardt D, Strijkers GJ, Nederveen AJ, Schrauben EM, van Ooij P. The Feasibility of Combining 3D Cine bSSFP and 4D Flow MRI for the Assessment of Local Aortic Pulse Wave Velocity. Applied Sciences. 2025; 15(18):10272. https://doi.org/10.3390/app151810272
Chicago/Turabian StyleMerton, Renske, Daan Bosshardt, Gustav J. Strijkers, Aart J. Nederveen, Eric M. Schrauben, and Pim van Ooij. 2025. "The Feasibility of Combining 3D Cine bSSFP and 4D Flow MRI for the Assessment of Local Aortic Pulse Wave Velocity" Applied Sciences 15, no. 18: 10272. https://doi.org/10.3390/app151810272
APA StyleMerton, R., Bosshardt, D., Strijkers, G. J., Nederveen, A. J., Schrauben, E. M., & van Ooij, P. (2025). The Feasibility of Combining 3D Cine bSSFP and 4D Flow MRI for the Assessment of Local Aortic Pulse Wave Velocity. Applied Sciences, 15(18), 10272. https://doi.org/10.3390/app151810272