Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = water-glass aerogel

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6994 KiB  
Article
Effects of Silica Aerogel Content on the Properties of Waterborne Organic Thermal Insulation Coatings
by Zikang Chen, Dingwei Li, Shengjie Yao, Yumin Duan, Jiahui Chen, Miao Liu, Taoying Liu and Zhi Li
Gels 2025, 11(7), 547; https://doi.org/10.3390/gels11070547 - 15 Jul 2025
Viewed by 441
Abstract
In order to cope with the emergence of energy conservation and consumption reduction initiatives, we used an acrylic emulsion (as the adhesive), combined with silica aerogel (SA) and hollow glass microsphere (HGM) fillers, to synthesize thermal insulation coatings, which were found to have [...] Read more.
In order to cope with the emergence of energy conservation and consumption reduction initiatives, we used an acrylic emulsion (as the adhesive), combined with silica aerogel (SA) and hollow glass microsphere (HGM) fillers, to synthesize thermal insulation coatings, which were found to have low thermal conductivity and excellent thermal insulation properties. These waterborne coatings are environmentally friendly and were synthesized without organic solvents. Comprehensive testing verified that the coatings met practical requirements. Specifically, the addition of 18% SA resulted in minimal thermal conductivity (0.0433 W/m·K), the lowest density (0.177 g/cm3), as well as a reduced gross calorific value. At a heating surface temperature of 200 °C, the 5 mm coating’s cooling surface temperature was 108.7 °C, yielding a 91.3 °C temperature difference and demonstrating remarkable thermal insulation performance. Furthermore, the coatings showed favorable results in terms of water resistance, corrosion resistance, wear resistance, and adhesion, achieving satisfactory engineering standards. In this work, the influence of different contents of SA on various properties of the coating was studied, with the aim of providing a reference for the modulation of the comprehensive performance of SA thermal insulation coatings. Full article
(This article belongs to the Special Issue Aerogels: Recent Progress in Novel Applications)
Show Figures

Graphical abstract

12 pages, 2456 KiB  
Article
Exploration of Key Factors in the Preparation of Highly Hydrophobic Silica Aerogel from Rice Husk Ash Assisted by Machine Learning
by Yun Deng, Ziyan Sha, Xingxing Wang, Ke Duan, Weijie Xue, Ian Beadham, Xiaolan Xiao and Changbo Zhang
Gels 2025, 11(1), 74; https://doi.org/10.3390/gels11010074 - 17 Jan 2025
Cited by 1 | Viewed by 1376
Abstract
To expand the applications of hydrophobic silica aerogels derived from rice husk ash (HSA) through simple traditional methods (without adding special materials or processes), this paper employs machine learning to establish mathematical models to identify optimal conditions for extracting water glass and investigates [...] Read more.
To expand the applications of hydrophobic silica aerogels derived from rice husk ash (HSA) through simple traditional methods (without adding special materials or processes), this paper employs machine learning to establish mathematical models to identify optimal conditions for extracting water glass and investigates how preparation conditions and heat treatment temperatures affect properties such as the porosity and hydrophobicity of HSA. The results indicate that the decision tree regression model provides the most accurate predictions for the extraction rate and modulus of water glass. Notably, the water contact angle of HSA produced using nitric acid as a catalyst can reach as high as 159.5°, classifying it as a superhydrophobic material. Additionally, while moderately increasing the concentration of the hydrophobic modifier enhances HSA’s hydrophobicity, it concurrently reduces its porosity. The HSA maintained hydrophobicity until 500 °C. The pore structure of HSA collapsed gradually with the increase in heat temperature. After treatment at 700 °C, HSA lost its hydrophobicity and the porous structure was severely damaged. Compared with silica aerogel using traditional silicon sources, the damage to pore structure and the crystallization occurred at lower temperatures, but the hydrophobicity remained at higher temperatures. Full article
(This article belongs to the Special Issue Aerogels—Preparation and Properties)
Show Figures

Graphical abstract

14 pages, 8775 KiB  
Article
Facile Synthesis of Surface-Modified Hollow-Silica (SiO2) Aerogel Particles via Oil–Water–Oil Double Emulsion Method
by Pratik S. Kapadnis, Ki-Sun Nam, Hyun-Young Kim, Hyung-Ho Park and Haejin Hwang
Gels 2024, 10(6), 380; https://doi.org/10.3390/gels10060380 - 2 Jun 2024
Cited by 3 | Viewed by 2692
Abstract
Due to their high surface area and low weight, silica aerogels are ideally suited for several uses, including drug delivery, catalysis, and insulation. Oil–water–oil (OWO) double emulsion is a simple and regulated technique for encasing a volatile oil phase in a [...] Read more.
Due to their high surface area and low weight, silica aerogels are ideally suited for several uses, including drug delivery, catalysis, and insulation. Oil–water–oil (OWO) double emulsion is a simple and regulated technique for encasing a volatile oil phase in a silica shell to produce hollow silica (SiO2) aerogel particles by using hydrophilic and hydrophobic emulsifiers. In this study, the oil–water–oil (OWO) double emulsion method was implemented to synthesize surface-modified hollow silica (SiO2) aerogel particles in a facile and effective way. This investigation mainly focused on the influence of the N-hexane-to-water glass (OW) ratio (r) in the first emulsion, silica (water glass) content concentration (x), and surfactant concentration (s) variations. Furthermore, surface modification techniques were utilized to customize the aerogel’s characteristics. The X-ray diffraction (XRD) patterns showed no imprints of impurities except SiO2. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images highlight the hollow microstructure of silica particles. Zeta potential was used to determine particle size analysis of hollow silica aerogel particles. The oil–water–oil (OWO) double emulsion approach was successfully employed to synthesize surface-modified hollow silica (SiO2) aerogel particles, providing precise control over the particle characteristics. By the influence of the optimization condition, this approach improves the aerogel’s potential applications in drug delivery, catalysis, and insulation by enabling surface modifications. Full article
(This article belongs to the Special Issue Aerogels—Preparation and Properties)
Show Figures

Graphical abstract

18 pages, 6145 KiB  
Article
Brake Fluid Condition Monitoring by a Fiber Optic Sensor Using Silica Nanomaterials as Sensing Components
by Mayza Ibrahim and Stanislav Petrík
Sensors 2024, 24(8), 2524; https://doi.org/10.3390/s24082524 - 15 Apr 2024
Cited by 1 | Viewed by 1871
Abstract
In the automotive industry, there has been considerable focus on developing various sensors for engine oil monitoring. However, when it comes to monitoring the condition of brake fluid, which is crucial for ensuring safety, there has been a lack of a secure online [...] Read more.
In the automotive industry, there has been considerable focus on developing various sensors for engine oil monitoring. However, when it comes to monitoring the condition of brake fluid, which is crucial for ensuring safety, there has been a lack of a secure online method for this monitoring. This study addresses this gap by developing a hybrid silica nanofiber mat, or an aerogel integrated with an optical fiber sensor, to monitor brake fluid condition. The incorporation of silica nanofibers in this hybrid enhances the sensitivity of the optical fiber glass surface by at least 3.75 times. Furthermore, creating an air gap between the glass surface of the optical fiber and the nanofibers boosts sensitivity by at least 5 times, achieving a better correlation coefficient (R2 = 0.98). In the case of silica aerogel, the sensitivity is enhanced by 10 times, but this enhancement relies on the presence of the established air gap. The air gap was adjusted to range from 0.5 mm to 1 mm, without any significant change in the measurement within this range. The response time of the developed sensor is a minimum of 15 min. The sensing material is irreversible and has a diameter of 2.5 mm, making it easily replaceable. Overall, the sensor demonstrates strong repeatability, with approximately 90% consistency, and maintains uncertainty levels below 5% across specific ranges: from 3% to 6% for silica aerogel and from 5% to 6% for silica nanofibers in the presence of an air gap. These findings hold promise for integrating such an optical fiber sensor into a car’s electronic system, enabling the direct online monitoring of brake fluid quality. Additionally, the study elucidates the effect of water absorption on the refractive index of brake fluid, as well as on the silica nanomaterials. Full article
(This article belongs to the Special Issue Advances in Applications of Optical Fiber Sensors)
Show Figures

Figure 1

11 pages, 4532 KiB  
Article
Cost-Effective Preparation of Hydrophobic and Thermal-Insulating Silica Aerogels
by Jiaqi Shan, Yunpeng Shan, Chang Zou, Ye Hong, Jia Liu and Xingzhong Guo
Nanomaterials 2024, 14(1), 119; https://doi.org/10.3390/nano14010119 - 3 Jan 2024
Cited by 20 | Viewed by 3688
Abstract
The aim of this study is to reduce the manufacturing cost of a hydrophobic and heat-insulating silica aerogel and promote its industrial application in the field of thermal insulation. Silica aerogels with hydrophobicity and thermal-insulation capabilities were synthesized by using water-glass as the [...] Read more.
The aim of this study is to reduce the manufacturing cost of a hydrophobic and heat-insulating silica aerogel and promote its industrial application in the field of thermal insulation. Silica aerogels with hydrophobicity and thermal-insulation capabilities were synthesized by using water-glass as the silicon source and supercritical drying. The effectiveness of acid and alkali catalysis is compared in the formation of the sol. The introduction of sodium methyl silicate for the copolymerization enhances the hydrophobicity of the aerogel. The resultant silica aerogel has high hydrophobicity and a mesoporous structure with a pore volume exceeding 4.0 cm3·g−1 and a specific surface area exceeding 950 m2·g−1. The obtained silica aerogel/fiber-glass-mat composite has high thermal insulation, with a thermal conductivity of less than 0.020 W·m−1·K−1. The cost-effective process is promising for applications in the industrial preparation of silica aerogel thermal-insulating material. Full article
(This article belongs to the Special Issue Nanomaterials in Aerogel Composites)
Show Figures

Figure 1

16 pages, 6073 KiB  
Article
Facile Synthesis of Polymer-Reinforced Silica Aerogel Microspheres as Robust, Hydrophobic and Recyclable Sorbents for Oil Removal from Water
by Zhiyang Zhao, Jian Ren, Wei Liu, Wenqian Yan, Kunmeng Zhu, Yong Kong, Xing Jiang and Xiaodong Shen
Polymers 2023, 15(17), 3526; https://doi.org/10.3390/polym15173526 - 24 Aug 2023
Cited by 7 | Viewed by 2001
Abstract
With the rapid development of industry and the acceleration of urbanization, oil pollution has caused serious damage to water, and its treatment has always been a research hotspot. Compared with traditional adsorption materials, aerogel has the advantages of light weight, large adsorption capacity [...] Read more.
With the rapid development of industry and the acceleration of urbanization, oil pollution has caused serious damage to water, and its treatment has always been a research hotspot. Compared with traditional adsorption materials, aerogel has the advantages of light weight, large adsorption capacity and high selective adsorption, features that render it ideal as a high-performance sorbent for water treatment. The objective of this research was to develop novel hydrophobic polymer-reinforced silica aerogel microspheres (RSAMs) with water glass as the precursor, aminopropyltriethoxysilane as the modifier, and styrene as the crosslinker for oil removal from water. The effects of drying method and polymerization time on the structure and oil adsorption capacity were investigated. The drying method influenced the microstructure and pore structure in a noteworthy manner, and it also significantly depended on the polymerization time. More crosslinking time led to more volume shrinkage, thus resulting in a larger apparent density, lower pore volume, narrower pore size distribution and more compact network. Notably, the hydrophobicity increased with the increase in crosslinking time. After polymerization for 24 h, the RSAMs possessed the highest water contact angle of 126°. Owing to their excellent hydrophobicity, the RSAMs via supercritical CO2 drying exhibited significant oil and organic liquid adsorption capabilities ranging from 6.3 to 18.6 g/g, higher than their state-of-the-art counterparts. Moreover, their robust mechanical properties ensured excellent reusability and recyclability, allowing for multiple adsorption–desorption cycles without significant degradation in performance. The novel sorbent preparation method is facile and inspiring, and the resulting RSAMs are exceptional in capacity, efficiency, stability and regenerability. Full article
(This article belongs to the Special Issue Status and Progress of Soluble Polymers II)
Show Figures

Graphical abstract

15 pages, 5116 KiB  
Article
Facile Synthesis of Dual Modal Pore Structure Aerogel with Enhanced Thermal Stability
by Meng Zhang, Zhengkai Si, Guangjun Yang, Linfang Cao, Xiaohai Liu, Yuandong Mu, Chongfei Tian, Xinsheng Zhang and Zhongtao Luo
Coatings 2022, 12(10), 1566; https://doi.org/10.3390/coatings12101566 - 17 Oct 2022
Cited by 2 | Viewed by 2224
Abstract
Regarding the preparation of aerogels by the co-precursor method, the skeleton collapse caused by its low strength is one of the key problems that needs to be solved urgently. In this study, vinyl-functionalized silica aerogel was prepared under atmospheric drying conditions (APD) with [...] Read more.
Regarding the preparation of aerogels by the co-precursor method, the skeleton collapse caused by its low strength is one of the key problems that needs to be solved urgently. In this study, vinyl-functionalized silica aerogel was prepared under atmospheric drying conditions (APD) with vinyltriethoxysilane (V) and water glass (W) as co-precursors. The performance of aerogels varied with the components of co-precursors. When the V:W ratio was 0.8, the aerogel had excellent properties of low thermal conductivity (0.0254 W/(m·K)), super hydrophobicity (hydrophobic angle of 160°), high specific surface area (890.76 m2/g), high porosity (96.82%), and low density (0.087 g/cm3). Test results of SEM and BET showed that the V:W ratio affected the pore structure. When the V:W ratio was around 0.8, the aerogel had a dual modal pore structure composed of both small (6–8 nm) and large (20–30 nm) mesopores, which could contribute to enhance the skeleton strength of the aerogel. On the other hand, the addition of vinyltriethoxysilane promoted the skeleton stability by reducing the capillary force. The vinyltriethoxysilane and water glass as novel co-precursor combinations can provide guidance for the preparation of aerogels under APD conditions. Full article
Show Figures

Figure 1

38 pages, 18103 KiB  
Article
Thermally Insulating, Thermal Shock Resistant Calcium Aluminate Phosphate Cement Composites for Reservoir Thermal Energy Storage
by Toshifumi Sugama and Tatiana Pyatina
Materials 2022, 15(18), 6328; https://doi.org/10.3390/ma15186328 - 12 Sep 2022
Cited by 10 | Viewed by 3402
Abstract
This paper presents the use of hydrophobic silica aerogel (HSA) and hydrophilic fly ash cenosphere (FCS) aggregates for improvements in the thermal insulating and mechanical properties of 100- and 250 °C-autoclaved calcium aluminate phosphate (CaP) cement composites reinforced with micro-glass (MGF) and micro-carbon [...] Read more.
This paper presents the use of hydrophobic silica aerogel (HSA) and hydrophilic fly ash cenosphere (FCS) aggregates for improvements in the thermal insulating and mechanical properties of 100- and 250 °C-autoclaved calcium aluminate phosphate (CaP) cement composites reinforced with micro-glass (MGF) and micro-carbon (MCF) fibers for deployment in medium- (100 °C) and high-temperature (250 °C) reservoir thermal energy storage systems. The following six factors were assessed: (1) Hydrothermal stability of HSA; (2) Pozzolanic activity of the two aggregates and MGF in an alkali cement environment; (3) CaP cement slurry heat release during hydration and chemical reactions; (4) Composite phase compositions and phase transitions; (5) Mechanical behavior; (6) Thermal shock (TS) resistance at temperature gradients of 150 and 225 °C. The results showed that hydrophobic trimethylsilyl groups in trimethylsiloxy-linked silica aerogel structure were susceptible to hydrothermal degradation at 250 °C. This degradation was followed by pozzolanic reactions (PR) of HSA, its dissolution, and the formation of a porous microstructure that caused a major loss in the compressive strength of the composites at 250 °C. The pozzolanic activities of FCS and MGF were moderate, and they offered improved interfacial bonding at cement-FCS and cement-MGF joints through a bridging effect by PR products. Despite the PR of MGF, both MGF and MCF played an essential role in minimizing the considerable losses in compressive strength, particularly in toughness, engendered by incorporating weak HSA. As a result, a FCS/HSA ratio of 90/10 in the CaP composite system was identified as the most effective hybrid insulating aggregate composition, with a persistent compressive strength of more than 7 MPa after three TS tests at a 150 °C temperature gradient. This composite displayed thermal conductivity of 0.28 and 0.35 W/mK after TS with 225 and 150 °C thermal gradients, respectively. These values, below the TC of water (TC water = 0.6 W/mK), were measured under water-saturated conditions for applications in underground reservoirs. However, considering the hydrothermal disintegration of HSA at 250 °C, these CaP composites have potential applications for use in thermally insulating, thermal shock-resistant well cement in a mid-temperature range (100 to 175 °C) reservoir thermal energy storage system. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

11 pages, 3987 KiB  
Communication
Aerogel-Lined Capillaries for Raman Signal Gain of Aqueous Mixtures
by Felix Spiske, Martin Peter Dirauf and Andreas Siegfried Braeuer
Sensors 2022, 22(12), 4388; https://doi.org/10.3390/s22124388 - 10 Jun 2022
Cited by 7 | Viewed by 3280
Abstract
We report an experimental study on the gain of the Raman signal of aqueous mixtures and liquid water when confined in aerogel-lined capillaries of various lengths of up to 20 cm and various internal diameters between 530 and 1000 µm. The lining was [...] Read more.
We report an experimental study on the gain of the Raman signal of aqueous mixtures and liquid water when confined in aerogel-lined capillaries of various lengths of up to 20 cm and various internal diameters between 530 and 1000 µm. The lining was made of hydrophobised silica aerogel, and the carrier capillary body consisted of fused silica or borosilicate glass. Compared to the Raman signal detected from bulk liquid water with the same Raman probe, a Raman signal 27 times as large was detected when the liquid water was confined in a 20 cm-long capillary with an internal diameter of 700 µm. In comparison with silver-lined capillaries of the same length and same internal diameter, the aerogel-lined capillaries featured a superior Raman signal gain and a longer gain stability when exposed to mixtures of water, sugar, ethanol and acetic acid. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

10 pages, 4197 KiB  
Article
Thermal Gelation for Synthesis of Surface-Modified Silica Aerogel Powders
by Kyoung-Jin Lee, Jae Min Lee, Ki Sun Nam and Haejin Hwang
Gels 2021, 7(4), 242; https://doi.org/10.3390/gels7040242 - 29 Nov 2021
Cited by 15 | Viewed by 4332
Abstract
A spherical silica aerogel powder with hydrophobic surfaces displaying a water contact angle of 147° was synthesized from a water glass-in-hexane emulsion through ambient pressure drying. Water glass droplets containing acetic acid and ethyl alcohol were stabilized in n-hexane with a surfactant. [...] Read more.
A spherical silica aerogel powder with hydrophobic surfaces displaying a water contact angle of 147° was synthesized from a water glass-in-hexane emulsion through ambient pressure drying. Water glass droplets containing acetic acid and ethyl alcohol were stabilized in n-hexane with a surfactant. Gelation was performed by heating the droplets, followed by solvent exchange and surface modification using a hexamethyldisilazane (HMDS)/n-hexane solution. The pH of the silicic acid solution was crucial in obtaining a highly porous silica aerogel powder with a spherical morphology. The thermal conductivity, tapped density, pore volume, and BET surface area of the silica aerogel powder were 22.4 mW·m−1K−1, 0.07 g·cm−3, 4.64 cm3·g−1, and 989 m2·g−1, respectively. Fourier transform infrared (FT–IR) spectroscopy analysis showed that the silica granule surface was modified by Si-CH3 groups, producing a hydrophobic aerogel. Full article
(This article belongs to the Special Issue Aerogel Hybrids and Nanocomposites)
Show Figures

Figure 1

14 pages, 3316 KiB  
Article
Carbon Fiber—Silica Aerogel Composite with Enhanced Structural and Mechanical Properties Based on Water Glass and Ambient Pressure Drying
by Agnieszka Ślosarczyk
Nanomaterials 2021, 11(2), 258; https://doi.org/10.3390/nano11020258 - 20 Jan 2021
Cited by 30 | Viewed by 3905
Abstract
The article presents the synthesis of silica aerogel from a much cheaper precursor of water glass that was reinforced with short pitch carbon fiber by way of ambient pressure drying. Before being added to the silica gel, the carbon fibers were surface modified [...] Read more.
The article presents the synthesis of silica aerogel from a much cheaper precursor of water glass that was reinforced with short pitch carbon fiber by way of ambient pressure drying. Before being added to the silica gel, the carbon fibers were surface modified to increase adhesion at the interfacial border. We were able to obtain stable structures of the composite with the amount of fibers above 10% by volume. The presence of fibers in the silica matrix resulted in lower synthesis time of the composite, improved adhesion of fibers to the aerogel nanostructure, and increased mechanical and structural parameters. An additional effect of the presence of fibers in excess of 10% by volume was a new function of the nanocomposite—the ability to conduct electric current. The most optimal parameters of the composite, however, were obtained for silica aerogel reinforced with 10 vol.% of carbon fibers. This material indicated relatively low density and good physical parameters. The paper also analyzes the results on the synthesis of fiber-reinforced silica aerogels that have appeared in recent years and compares these to the results gained in presented work. Full article
(This article belongs to the Special Issue Nanomaterials: 10th Anniversary)
Show Figures

Figure 1

10 pages, 3206 KiB  
Article
Eco-Friendly Synthesis of Water-Glass-Based Silica Aerogels via Catechol-Based Modifier
by Hyeonjung Kim, Kangyong Kim, Hyunhong Kim, Doo Jin Lee and Jongnam Park
Nanomaterials 2020, 10(12), 2406; https://doi.org/10.3390/nano10122406 - 1 Dec 2020
Cited by 10 | Viewed by 4557
Abstract
Silica aerogels have attracted much attention owing to their excellent thermal insulation properties. However, the conventional synthesis of silica aerogels involves the use of expensive and toxic alkoxide precursors and surface modifiers such as trimethylchlorosilane. In this study, cost-effective water-glass silica aerogels were [...] Read more.
Silica aerogels have attracted much attention owing to their excellent thermal insulation properties. However, the conventional synthesis of silica aerogels involves the use of expensive and toxic alkoxide precursors and surface modifiers such as trimethylchlorosilane. In this study, cost-effective water-glass silica aerogels were synthesized using an eco-friendly catechol derivative surface modifier instead of trimethylchlorosilane. Polydopamine was introduced to increase adhesion to the SiO2 surface. The addition of 4-tert-butyl catechol and hexylamine imparted hydrophobicity to the surface and suppressed the polymerization of the polydopamine. After an ambient pressure drying process, catechol-modified aerogel exhibited a specific surface area of 377 m2/g and an average pore diameter of approximately 21 nm. To investigate their thermal conductivities, glass wool sheets were impregnated with catechol-modified aerogel. The thermal conductivity was 40.4 mWm−1K−1, which is lower than that of xerogel at 48.7 mWm−1K−1. Thus, by precisely controlling the catechol coating in the mesoporous framework, an eco-friendly synthetic method for aerogel preparation is proposed. Full article
(This article belongs to the Special Issue Applications of Mesoporous Silica Nanostructures)
Show Figures

Graphical abstract

18 pages, 4985 KiB  
Article
Edge Functionalized Graphene Layers for (Ultra) High Exfoliation in Carbon Papers and Aerogels in the Presence of Chitosan
by Silvia Guerra, Vincenzina Barbera, Alessandra Vitale, Roberta Bongiovanni, Andrea Serafini, Lucia Conzatti, Luigi Brambilla and Maurizio Galimberti
Materials 2020, 13(1), 39; https://doi.org/10.3390/ma13010039 - 20 Dec 2019
Cited by 10 | Viewed by 3014
Abstract
Ultra-high exfoliation in water of a nanosized graphite (HSAG) was obtained thanks to the synergy between a graphene layer edge functionalized with hydroxy groups and a polymer such as chitosan (CS). The edge functionalization of graphene layers was performed with a serinol derivative [...] Read more.
Ultra-high exfoliation in water of a nanosized graphite (HSAG) was obtained thanks to the synergy between a graphene layer edge functionalized with hydroxy groups and a polymer such as chitosan (CS). The edge functionalization of graphene layers was performed with a serinol derivative containing a pyrrole ring, serinol pyrrole (SP). The adduct between CS and HSAG functionalized with SP was formed simply with a mortar and pestle, then preparing water dispersions stable for months in the presence of acetic acid. Simple casting of such dispersions on a glass support led to carbon papers. Aerogels were prepared through the freeze-dry procedure. Exfoliation was observed in both these families of composites and ultra-high exfoliation was documented in aerogels swollen in water. Carbon papers and aerogels were stable for months in solvents in a wide range of solubility parameter and in a pretty wide range of pH. By considering that a moderately functionalized nanographite was straightforwardly exfoliated in water in the presence of one of the most abundant biobased polymers, the obtained results pave the way for the simple and sustainable preparation of graphene-based nanocomposites. HSAG–SP/CS adducts were characterized by wide angle X-ray diffraction (WAXD), scanning and transmission electron microscopy (SEM, TEM and HRTEM), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Thermal stability of the composites was studied by thermogravimetric analysis (TGA) and their direct electrical conductivity with the four-point probe method. Full article
(This article belongs to the Special Issue Nanostructured C-Based Thin Films)
Show Figures

Figure 1

20 pages, 1039 KiB  
Review
Mechanical Properties and Brittle Behavior of Silica Aerogels
by Thierry Woignier, Juan Primera, Adil Alaoui, Pascal Etienne, Florence Despestis and Sylvie Calas-Etienne
Gels 2015, 1(2), 256-275; https://doi.org/10.3390/gels1020256 - 10 Dec 2015
Cited by 83 | Viewed by 13962
Abstract
Sets of silica gels: aerogels, xerogels and sintered aerogels, have been studied in the objective to understand the mechanical behavior of these highly porous solids. The mechanical behaviour of gels is described in terms of elastic and brittle materials, like glasses or ceramics. [...] Read more.
Sets of silica gels: aerogels, xerogels and sintered aerogels, have been studied in the objective to understand the mechanical behavior of these highly porous solids. The mechanical behaviour of gels is described in terms of elastic and brittle materials, like glasses or ceramics. The magnitude of the elastic and rupture modulus is several orders of magnitude lower compared to dense glass. The mechanical behaviours (elastic and brittle) are related to the same kinds of gel characteristics: pore volume, silanol content and pore size. Elastic modulus depends strongly on the volume fraction of pores and on the condensation reaction between silanols. Concerning the brittleness features: rupture modulus and toughness, it is shown that pores size plays an important role. Pores can be considered as flaws in the terms of fracture mechanics and the flaw size is related to the pore size. Weibull’s theory is used to show the statistical nature of flaw. Moreover, stress corrosion behaviour is studied as a function of environmental conditions (water and alcoholic atmosphere) and temperature. Full article
(This article belongs to the Special Issue Aerogels)
Show Figures

Graphical abstract

Back to TopTop