Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = water-based sorption storage

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4191 KB  
Article
Lab-Scale Performance Evaluation of CaCl2/MgCl2/Silica Gel Sorbent Material for Thermal Energy Storage
by Mauro Prestipino, Antonio Fotia, Mario Alberto Avila-Gutierrez, Luigi Calabrese, Andrea Frazzica, Candida Milone and Emanuela Mastronardo
Energies 2025, 18(24), 6527; https://doi.org/10.3390/en18246527 - 12 Dec 2025
Viewed by 433
Abstract
Combining different materials into binary salts can significantly enhance the efficiency and stability of Thermochemical Energy Storage (TCES) systems. This study aimed to develop and characterise novel salt hydrate composite materials for TCES, focusing on a mixture of magnesium chloride (MgCl2) [...] Read more.
Combining different materials into binary salts can significantly enhance the efficiency and stability of Thermochemical Energy Storage (TCES) systems. This study aimed to develop and characterise novel salt hydrate composite materials for TCES, focusing on a mixture of magnesium chloride (MgCl2) and calcium chloride (CaCl2) impregnated into a mesoporous silica gel (SG) sphere matrix. Three different MgCl2/CaCl2 salt ratios were investigated to find the optimal balance between sorption capacity and stability against deliquescence in humid environments. Prepared samples underwent comprehensive characterisation, including structural and morphological analysis, water vapour sorption and heat capacity measurements. The hybrid CaCl15/MgCl15/SG sample exhibited intermediate behavior between the pure CaCl30/SG and MgCl30/SG samples, with significantly improved stability in a humid environment due to the addition MgCl2. Characterisation revealed the effective confinement of the salt mix in the matrix. The optimised CaCl15/MgCl15/SG sample demonstrated highly promising gravimetric and volumetric energy storage capacities of 1092 J/g and 2.3 MJ/m3, respectively, comparable to recently reported composites. The material sorption dynamics were ultimately tested in a whole adsorbent unit under near-real-world operating conditions, pushing the research to the reactor and system level, and demonstrating that the presence of MgCl2 in the composite does not adversely affect the adsorption kinetics compared to the pure CaCl2-based composite. Full article
Show Figures

Figure 1

31 pages, 5141 KB  
Review
Effect of Drying Methods on the Physical and Surface Properties of Blueberry and Strawberry Fruit Powders: A Review
by V. Preciado Ocampo, A. L. Yepes Hernandez, R. Marratte, Y. Baena, G. F. Gutiérrez-López, K. Ambrose and M. T. Carvajal
Appl. Sci. 2025, 15(24), 13094; https://doi.org/10.3390/app152413094 - 12 Dec 2025
Viewed by 702
Abstract
Strawberries and blueberries are globally recognized for their dense nutritional profile, bioactive compounds, and health-promoting properties. Yet, their perishability and seasonality limit their availability, stability, and functionality in food and nutraceutical formulations. Drying technologies, particularly spray drying and freeze drying, are effective preservation [...] Read more.
Strawberries and blueberries are globally recognized for their dense nutritional profile, bioactive compounds, and health-promoting properties. Yet, their perishability and seasonality limit their availability, stability, and functionality in food and nutraceutical formulations. Drying technologies, particularly spray drying and freeze drying, are effective preservation strategies that convert fresh berries into stable, shelf-ready powders. However, the high sugar content, low glass transition temperature (Tg), and hygroscopic nature of berry matrices pose significant challenges in maintaining powder flowability, preventing caking, and ensuring structural integrity during processing, storage, and transportation. This review examines the physicochemical and surface properties of strawberry and blueberry powders as influenced by the drying method, environmental conditions, and carrier selection (e.g., maltodextrin, gum arabic, and whey proteins). Emphasis is placed on glass transition phenomena, moisture sorption behavior, and surface composition as determinants of physical stability and shelf life. The roles of water activity (aw), particle morphology, and interparticle interactions are analyzed in the context of formulation design and powder performance. Analytical techniques in characterizing bulk properties for the amorphous structure and sorption kinetics and probing surface properties of powders are crucial for understanding interactions with water, assessing flow, caking, sintering, and dissolution. By integrating insights from food physical chemistry and materials surface properties, this review provides a framework for the rational design of berry-based powders with improved handling, stability, and bio-functionality. The findings have direct implications for scalable production, global distribution, and the development of functional ingredients aligned with health and wellness priorities worldwide. Full article
Show Figures

Figure 1

16 pages, 847 KB  
Article
Dynamic Vapor Sorption (DVS) Analysis of the Thermo-Hygroscopic Behavior of Arthrospira platensis Under Varying Environmental Conditions
by Thouraya Ghnimi, Lamine Hassini and Mohamed Bagane
Thermo 2025, 5(4), 56; https://doi.org/10.3390/thermo5040056 - 2 Dec 2025
Viewed by 368
Abstract
This paper presents a new study and analysis of the thermo-hygroscopic behavior of Arthrospira platensis using dynamic vapor sorption (DVS) system. Thermo-hygroscopic characterization is essential for optimizing the drying process and enhancing storage conditions. Therefore, the objective of this work was to investigate [...] Read more.
This paper presents a new study and analysis of the thermo-hygroscopic behavior of Arthrospira platensis using dynamic vapor sorption (DVS) system. Thermo-hygroscopic characterization is essential for optimizing the drying process and enhancing storage conditions. Therefore, the objective of this work was to investigate the thermo-hygroscopic properties of Arthrospira (Spirulina) platensis using a dynamic vapor sorption (DVS) system. This thermo-hygroscopic analysis focused on three fundamental parameters, namely: the desorption isotherms, the net isosteric heat of water desorption, and the moisture diffusivity. Desorption isotherms were measured at five different temperatures (25 °C, 40 °C, 50 °C, 60 °C and 80 °C) over a relative humidity range of 10–80%. The desorption isotherm data were fitted to five semi-empirical models: GAB, Oswin, Smith, Henderson, and Peleg. The results indicated that the GAB model provided the best fit for the experimental data. The net isosteric heat of desorption was determined using the Clausius–Clapeyron relation. It decreased from 21.3 to 4.29 KJ/mol as the equilibrium moisture content increased from 0.02 to 0.1 Kg/Kg (dry basis). Additionally, the moisture diffusivity of Arthrospira platensis was estimated based on Fick’s second law of diffusion and the desorption kinetics obtained from the DVS equipment. This parameter varied between 1.04 10−8 m2/s and 1.46 10−7 m2/s for average moisture contents ranging from 0.003 Kg/Kg to 0.191 Kg/Kg (dry basis). Furthermore, the activation energy for desorption was estimated to be approximately 33.7 KJ/mol. Full article
Show Figures

Figure 1

28 pages, 1016 KB  
Article
Sustainable Alternatives in Multilayer Packaging: Storage Stability of Pudding Powder Under Accelerated Storage Conditions
by Can Türksever, Banu Koç and Ozlem Kizilirmak Esmer
Foods 2025, 14(22), 3806; https://doi.org/10.3390/foods14223806 - 7 Nov 2025
Cited by 1 | Viewed by 1835
Abstract
Multilayer packaging materials are extensively used in food packaging, particularly for powdered products. In alignment with sustainable development goals, packaging design should aim to minimize material usage while maintaining the protective properties necessary to preserve food quality and safety, thereby reducing environmental impact. [...] Read more.
Multilayer packaging materials are extensively used in food packaging, particularly for powdered products. In alignment with sustainable development goals, packaging design should aim to minimize material usage while maintaining the protective properties necessary to preserve food quality and safety, thereby reducing environmental impact. A key strategy is to simplify multilayer structures to enhance recyclability. This study aims to evaluate the potential of sustainable alternative packaging materials with reduced metal and plastic content and improved recyclability for pudding powder packaging, as substitutes for conventional films. Four packaging structures were tested: a conventional three-layer laminate (polyethylene terephthalate (PET)/aluminum foil (Al-foil)/low-density polyethylene (LDPE)), two two-layer structures (AlOx-coated PET/LDPE and Al-coated PET/LDPE), and a monolayer metallized biaxially oriented polypropylene (MetBOPP). Samples were stored under accelerated conditions (38 °C and 90% relative humidity) for 180 days, and changes in moisture content, water activity, caking degree, glass transition temperature, color, and sensory attributes were monitored. The experimental data were examined for their agreement with various sorption models by creating adsorption isotherms. The acceptable storage period was estimated using the constants calculated from these models. Statistically significant differences (p < 0.05) were observed among the packaging types, primarily associated with their water vapor permeability, affecting moisture content, water activity, caking degree, and color stability. In terms of moisture content, water activity, and caking degree, the conventional PET/Al-foil/LDPE (Polyethylene terephthalate/Aluminum foil/Low density polyethylene) structure demonstrated the best performance, followed by PET.AlOx/LDPE (AlOx-coated Polyethylene terephthalate/Low density polyethylene), MPET/LDPE (Metallized polyethylene terephthalate/Low density polyethylene), and MBOPP (Metallized biaxially oriented polypropylene), respectively. The sensory analysis scores followed the same ranking; however, all samples maintained scores above the threshold value of 3 throughout the storage period, indicating that they remained acceptable. Caking degree increased moderately (from 0.61% to 0.89%) and was negatively correlated with appearance scores (R2 = −0.89, p < 0.01). Despite slight darkening (Browning Index increased from 18.16 to 20.37), sensory scores for appearance, odor, and taste remained above the acceptable threshold (score > 3.0). Based on the WVTR values of the packaging materials and the application of the GAB model, the estimated shelf lives were 800.32 days for PET/Al-foil/LDPE, 577.92 days for PET.AlOx/LDPE, 407.58 days for MPET/LDPE, and 229.26 days for MBOPP. In conclusion, the longest shelf life was achieved with PET/Al-foil/LDPE, and it was observed that as the WVTR of the packaging materials increased, the shelf life of the cocoa-based pudding powder decreased; PET.AlOx/LDPE and MPET/LDPE could be considered for medium-term storage (up to about 1–1.5 years), while MBOPP appeared suitable only for shorter durations (6–8 months). Full article
Show Figures

Graphical abstract

24 pages, 2872 KB  
Article
Moisture Sorption Isotherms of Fructooligosaccharide and Inulin Powders and Their Gelling Competence in Delaying the Retrogradation of Rice Starch
by Bing Dai, Ruijun Chen, Zheng Wei, Jianzhang Wu and Xingjun Li
Gels 2025, 11(10), 817; https://doi.org/10.3390/gels11100817 - 12 Oct 2025
Cited by 2 | Viewed by 884
Abstract
The accurate determination of the equilibrium moisture content (EMC) of gel-related powdery samples requires strictly controlled conditions and a long time period. In this study, the adsorption and desorption isotherms of two fructooligosaccharide (FOS) powders and three inulin powders were determined using a [...] Read more.
The accurate determination of the equilibrium moisture content (EMC) of gel-related powdery samples requires strictly controlled conditions and a long time period. In this study, the adsorption and desorption isotherms of two fructooligosaccharide (FOS) powders and three inulin powders were determined using a dynamic moisture sorption analyzer at 0.1–0.9 water activity (aw) and 20–35 °C, respectively. The adsorption and desorption isotherms all exhibited type IIa sigmoidal curves; the desorptive isotherm was smooth, the FOS adsorption curves had three inflection points, and the inulin adsorption curves had five inflection points. Large hysteresis between the adsorption and desorption isotherms occurred at 0.1–0.7 aw for FOS and 0.1–0.6 aw for inulin. Seven equations, Boquet, Ferro–Fontan, Guggenheim–Anderson–de Boer (GAB), Generalized D’Arcy and Watt (GDW), modified GAB (MGAB), Peleg, and our developed Polynomial, were found to fit the isotherms of the FOS and inulin samples; for adsorption, the best equations were Ferro–Fontan and GDW, and for desorption, the best equations were Polynomial and MGAB. The GDW and MGAB equations could not distinguish the effect of temperature on the isotherms, while the Polynomial equation could. The mean adsorptive monolayer moisture content (M0) values in FOS and inulin samples were predicted as 7.29% and 7.94% wet basis, respectively. The heat of moisture sorption of FOS and inulin approached that of pure water at about 32.5% and 22.5% wet basis (w.b.) moisture content (MC), respectively. Fourier Transform Infrared Spectroscopy (FTIR) showed that the peaks in inulin with absorbance values above 0.52 and in FOS with absorbance values above 0.35 were at 1020, 1084, and 337 cm−1; these could represent the amorphous structure (primary alcohol C-OH), C-O group, and hydroxyl functional group, respectively. Microscopic structure analysis showed that inulin powder particles were more round-shaped and adhered together, resulting in hygroscopic and sticky characteristics, with a maximum equilibrium moisture content (EMC) of 34% w.b. In contrast, the FOS powders exhibited irregular amorphous particles and a maximum EMC of 60% w.b. As hydrogels, 3–10% FOS or inulin addition reduced the peak, trough, final, breakdown, and setback viscosities of rice starch pasting, but increased the peak time and pasting temperature. FOS addition gave stronger reduction in the setback viscosity and in amylose retrogradation of rice starch pasting than inulin addition. The differential scanning calorimeter (DSC) showed 3–10% FOS addition reduced the amylopectin aging of retrograded paste of rice starch, but 5–7% inulin addition tended to reduce. These results suggest that FOS and inulin have strong hygroscopic properties and can be used to maintain the freshness of starch-based foods. These data can be used for drying, storage, and functional food design of FOS and inulin products. Full article
(This article belongs to the Special Issue Modification of Gels in Creating New Food Products (2nd Edition))
Show Figures

Figure 1

38 pages, 6401 KB  
Review
Silicon Nanostructures for Hydrogen Generation and Storage
by Gauhar Mussabek, Gulmira Yar-Mukhamedova, Sagi Orazbayev, Valeriy Skryshevsky and Vladimir Lysenko
Nanomaterials 2025, 15(19), 1531; https://doi.org/10.3390/nano15191531 - 7 Oct 2025
Cited by 1 | Viewed by 1877
Abstract
Today, hydrogen is already widely regarded as up-and-coming source of energy. It is essential to meet energy needs while reducing environmental pollution, since it has a high energy capacity and does not emit carbon oxide when burned. However, for the widespread application of [...] Read more.
Today, hydrogen is already widely regarded as up-and-coming source of energy. It is essential to meet energy needs while reducing environmental pollution, since it has a high energy capacity and does not emit carbon oxide when burned. However, for the widespread application of hydrogen energy, it is necessary to search new technical solutions for both its production and storage. A promising effective and cost-efficient method of hydrogen generation and storage can be the use of solid materials, including nanomaterials in which chemical or physical adsorption of hydrogen occurs. Focusing on the recommendations of the DOE, the search is underway for materials with high gravimetric capacity more than 6.5% wt% and in which sorption and release of hydrogen occurs at temperatures from −20 to +100 °C and normal pressure. This review aims to summarize research on hydrogen generation and storage using silicon nanostructures and silicon composites. Hydrogen generation has been observed in Si nanoparticles, porous Si, and Si nanowires. Regardless of their size and surface chemistry, the silicon nanocrystals interact with water/alcohol solutions, resulting in their complete oxidation, the hydrolysis of water, and the generation of hydrogen. In addition, porous Si nanostructures exhibit a large internal specific surface area covered by SiHx bonds. A key advantage of porous Si nanostructures is their ability to release molecular hydrogen through the thermal decomposition of SiHx groups or in interaction with water/alkali. The review also covers simulations and theoretical modeling of H2 generation and storage in silicon nanostructures. Using hydrogen with fuel cells could replace Li-ion batteries in drones and mobile gadgets as more efficient. Finally, some recent applications, including the potential use of Si-based agents as hydrogen sources to address issues associated with new approaches for antioxidative therapy. Hydrogen acts as a powerful antioxidant, specifically targeting harmful ROS such as hydroxyl radicals. Antioxidant therapy using hydrogen (often termed hydrogen medicine) has shown promise in alleviating the pathology of various diseases, including brain ischemia–reperfusion injury, Parkinson’s disease, and hepatitis. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Graphical abstract

36 pages, 5657 KB  
Article
Modeling of Temperature and Moisture Dynamics in Corn Storage Silos with and Without Aeration Periods in Three Dimensions
by F. I. Molina-Herrera, H. Jiménez-Islas, M. A. Sandoval-Hernández, N. E. Maldonado-Sierra, C. Domínguez Campos, L. Jarquín Enríquez, F. J. Mondragón Rojas and N. L. Flores-Martínez
ChemEngineering 2025, 9(4), 89; https://doi.org/10.3390/chemengineering9040089 - 15 Aug 2025
Cited by 1 | Viewed by 1825
Abstract
This study analyzes the dynamics of temperature and moisture in a cylindrical silo with a conical roof and floor used for storing corn in the Bajío region of Mexico, considering conditions both with and without aeration. The model incorporates external temperature fluctuations, solar [...] Read more.
This study analyzes the dynamics of temperature and moisture in a cylindrical silo with a conical roof and floor used for storing corn in the Bajío region of Mexico, considering conditions both with and without aeration. The model incorporates external temperature fluctuations, solar radiation, grain moisture equilibrium with air humidity through the sorption isotherm (water activity), and grain respiration to simulate real storage conditions. The model is based on continuity, momentum, energy, and moisture conservation equations in porous media. This model was solved using the finite element method (FEM) to evaluate temperature and interstitial humidity variations during January and May, representing cold and warm environmental conditions, respectively. The simulations show that, without aeration, grain temperature progressively accumulates in the center and bottom region of the silo, reaching critical values for safe storage. In January, the low ambient temperature favors the natural dissipation of heat. In contrast, in May, the combination of high ambient temperatures and solar radiation intensifies thermal accumulation, increasing the risk of grain deterioration. However, implementing aeration periods allowed for a reduction in the silo’s internal temperature, achieving more homogeneous cooling and reducing the threats of mold and insect proliferation. For January, an airflow rate of 0.15 m3/(min·ton) was optimal for maintaining the temperature within the safe storage range (≤17 °C). In contrast, in May, neither this airflow rate nor the accumulation of 120 h of aeration was sufficient to achieve optimal storage temperatures. This indicates that, under warm conditions, the aeration strategy needs to be reconsidered, assessing whether a higher airflow rate, longer periods, or a combination of both could improve heat dissipation. The results also show that interstitial relative humidity remains stable with nocturnal aeration, minimizing moisture absorption in January and preventing excessive drying in May. However, it was identified that aeration period management must be adaptive, taking environmental conditions into account to avoid issues such as re-wetting or excessive grain drying. Full article
Show Figures

Figure 1

17 pages, 3940 KB  
Article
Influence of Post-Printing Polymerization Time on the Elution of Residual Monomers and Water Sorption of 3D-Printed Resin Composite
by Shaima Alharbi, Abdulrahman Alshabib, Hamad Algamaiah, Muath Aldosari and Abdullah Alayad
Materials 2025, 18(12), 2905; https://doi.org/10.3390/ma18122905 - 19 Jun 2025
Cited by 6 | Viewed by 1848
Abstract
This study evaluated the effect of post-printing polymerization time on residual monomer elution and water sorption in a 3D-printed resin composite. Eighty samples were fabricated and assigned to four groups based on post-curing duration: 0, 20, 40, and 60 min. Each group was [...] Read more.
This study evaluated the effect of post-printing polymerization time on residual monomer elution and water sorption in a 3D-printed resin composite. Eighty samples were fabricated and assigned to four groups based on post-curing duration: 0, 20, 40, and 60 min. Each group was subdivided according to two storage conditions (distilled water and 75% ethanol–water solution), and evaluated at 1 and 7 days. High-performance liquid chromatography (HPLC) quantified eluted monomers. Additionally, 40 specimens underwent a 4-month sorption/desorption cycle for water sorption and solubility assessment. Data were statistically analyzed using kernel regression (monomer data) and Welch ANOVA (water sorption and solubility) at a significance level of p < 0.05. BisEMA was the only monomer detected, with significantly higher elution recorded in ethanol-based storage. Increasing post-curing time notably reduced both monomer release and water sorption/solubility (p < 0.001); however, the optimal results were observed at 40 min post-curing. These findings suggest that extending post-curing beyond an optimal threshold does not further improve composite properties, underscoring the importance of identifying precise curing parameters in order to enhance durability and material performance. Full article
(This article belongs to the Special Issue Advanced Resin-Based Materials and Composites)
Show Figures

Figure 1

22 pages, 1372 KB  
Article
Sustainable Protein Fortification: Impact of Hemp and Cricket Powder on Extruded Snack Quality
by Millena Ruszkowska, Maciej Świtalski, Małgorzata Tańska, Iga Rybicka, Joanna Miedzianka, Hanna Maria Baranowska and Przemysław Łukasz Kowalczewski
Sustainability 2025, 17(7), 3097; https://doi.org/10.3390/su17073097 - 31 Mar 2025
Cited by 3 | Viewed by 1946
Abstract
This research paper evaluates the functional and nutritional properties of extruded corn snacks fortified with plant-based hemp protein (HP) and insect-derived cricket powder (CP). With a focus on sustainable protein sources due to growing environmental concerns and the need for alternative protein sources, [...] Read more.
This research paper evaluates the functional and nutritional properties of extruded corn snacks fortified with plant-based hemp protein (HP) and insect-derived cricket powder (CP). With a focus on sustainable protein sources due to growing environmental concerns and the need for alternative protein sources, this study aims to enhance the nutritional profile of corn snacks. The incorporation of unconventional proteins into snacks is explored to meet consumer demands for sustainable and nutritious options. Results show that HP-enriched snacks have higher mineral content, such as calcium and magnesium, lower sodium content, and improved water interaction profiles. On the other hand, CP-fortified snacks exhibit higher protein content, essential amino acids, and moisture retention capabilities. Texture analysis reveals differences in hardness, cohesiveness, and springiness between HP and CP-enriched products. Moreover, color analysis indicates that HP and CP additives influence the color and appearance of the snacks, with CP enrichments leading to darker snacks. Sorption isotherm studies demonstrate varying hygroscopicity levels between HP- and CP-enriched samples, impacting their storage stability. Surface structure assessments show differences in the specific sorption surface area, suggesting unique properties attributed to each protein source. In conclusion, both hemp protein and cricket powder offer various advantages for snack fortification, providing opportunities to enhance nutritional profiles while addressing sustainability concerns. Full article
Show Figures

Figure 1

21 pages, 6957 KB  
Article
Thermodynamic Evaluation of the Potential of a Sorption Storage System for Renewables and Waste Heat Integration
by Matteo Ametta, Gaetano Maggio and Salvatore Vasta
Appl. Sci. 2025, 15(4), 1951; https://doi.org/10.3390/app15041951 - 13 Feb 2025
Cited by 2 | Viewed by 1593
Abstract
This work investigates the potential of a sorption-based thermal energy storage (TES) system for enhancing the integration of renewable energy and waste heat recovery in key sectors—industry, transport, and buildings. Sorption-based TES systems, which utilize reversible sorbent–sorbate reactions to store and release thermal [...] Read more.
This work investigates the potential of a sorption-based thermal energy storage (TES) system for enhancing the integration of renewable energy and waste heat recovery in key sectors—industry, transport, and buildings. Sorption-based TES systems, which utilize reversible sorbent–sorbate reactions to store and release thermal energy, offer long-term storage capabilities with minimal losses. In particular, the aim of the study is to evaluate the efficiency of an adsorption TES system for various working pairs under different operating conditions, by means of a thermodynamic model (supported by experimental data). Key findings demonstrate that water-based solutions (e.g., zeolite and silica gel composites) perform well for residential and transport applications, while methanol-based solutions, such as LiCl-silica/methanol, maintain higher efficiency in industrial contexts. Short-term storage shows higher energy efficiencies compared to long-term applications, and the choice of working pairs significantly influences performance. Industrial applications face unique challenges due to extreme operating conditions, limiting the viable solutions to water-based working pairs. This research highlights the capability of sorption-based TES systems to reduce greenhouse gas emissions, improve energy efficiency, and facilitate a transition to sustainable energy practices. The findings contribute to developing cost-effective and reliable solutions for energy storage and renewable integration in various applications. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

17 pages, 3675 KB  
Article
Modification of Light-Cured Composition for Permanent Dental Fillings; Mass Stability of New Composites Containing Quinoline and Quinoxaline Derivatives in Solutions Simulating the Oral Cavity Environment
by Ilona Pyszka and Beata Jędrzejewska
Materials 2024, 17(23), 6003; https://doi.org/10.3390/ma17236003 - 7 Dec 2024
Cited by 3 | Viewed by 1219
Abstract
Billions of patients struggle with dental diseases every year. These mainly comprise caries and related diseases. This results in an extremely high demand for innovative, polymer composite filling materials that meet a number of dental requirements. The aim of the study was to [...] Read more.
Billions of patients struggle with dental diseases every year. These mainly comprise caries and related diseases. This results in an extremely high demand for innovative, polymer composite filling materials that meet a number of dental requirements. The aim of the study was to modify the light-cured composition of permanent dental fillings by changing the composition of the liquid organic matrix. New photoinitiators (DQ1-DQ5) based on a quinoline or quinoxaline skeleton and a co-initiator-(phenylthio)acetic acid (PhTAA) were used. In addition, monomers that have been traditionally used in dental materials were replaced by trimethylolpropane triacrylate (TMPTA). The neutral dental glass IDG functioned as an inorganic filler. The influence of the storage conditions of the developed composites in solutions simulating the natural oral environment during the consumption of different meals on sorption, solubility, and mass changes was assessed. For the tests, fifty-four cylindrical composite samples were prepared according to ISO 4049 guidelines and stored in different solutions. Distilled water, artificial saliva, heptane, 10% ethanol, and 3% acetic acid, as well as solutions containing pigments such as coffee, tea, red wine, and Coca-Cola, were used for the studies. The samples were stored in these solutions for 7, 14, 28, 35, 42, 49, 56, and 63 days at 37 °C. The sorption, solubility, and mass changes in the tested samples were determined, and the trend of these changes as a function of storage time was presented. The results were analyzed considering the nature of the solution used, i.e., aqueous, hydrophobic, and acidic. The properties evaluated changed in a different way, characteristic for each of the abovementioned solution groups. It was found that the type of solution simulating the natural environment of the oral cavity has the greatest influence on the sorption, solubility, and changes in the mass of the tested material. Full article
(This article belongs to the Special Issue From Conventional to Modern Biomaterials in Dentistry—2nd Edition)
Show Figures

Graphical abstract

18 pages, 4001 KB  
Article
Experimental Study on Heat Release Performance for Sorption Thermal Battery Based on Wave Analysis Method
by Meng Yu, Wei Liu, Yuchen Lin, Neng Gao, Xuejun Zhang and Long Jiang
Sustainability 2024, 16(15), 6654; https://doi.org/10.3390/su16156654 - 3 Aug 2024
Cited by 1 | Viewed by 1969
Abstract
Recent developments in water-based open sorption thermal batteries (STBs) have drawn burgeoning attention due to their advantages of high energy storage density and flexible working modes for space heating. One of the main challenges is how to improve heat release performance, e.g., longer [...] Read more.
Recent developments in water-based open sorption thermal batteries (STBs) have drawn burgeoning attention due to their advantages of high energy storage density and flexible working modes for space heating. One of the main challenges is how to improve heat release performance, e.g., longer stable heat output and effective output temperature. This paper aims to explore the heat release performance of sorption thermal batteries based on wave analysis methods. Zeolite 13X is used for the experimental investigation in terms of the relative humidity of inlet gas, system air velocity, and the length of the reactor. The results demonstrate that the optimal stable temperature output time of the sorption thermal battery experimental rig is 80 min, and heat release per unit volume reaches 115.6 MJ for the most appropriate reactor length. Thus, the optimal heat release time of the STB under the condition of various relative humidity and air velocities is 152 min and 182 min, respectively, and the corresponding stable heat release could reach 161.1 MJ and 136.5 MJ, respectively. Therefore, the heat release performance of STBs could be adjusted by adopting the wave analysis method, which would facilitate the reactor design and system arrangement. Full article
Show Figures

Figure 1

22 pages, 3871 KB  
Article
Engineering Interfacial Integrity with Hydrolytic-Resistant, Self-Reinforcing Dentin Adhesive
by Erhan Demirel, Burak Korkmaz, Youngwoo Chang, Anil Misra, Candan Tamerler and Paulette Spencer
Int. J. Mol. Sci. 2024, 25(13), 7061; https://doi.org/10.3390/ijms25137061 - 27 Jun 2024
Cited by 2 | Viewed by 1941
Abstract
The leading cause of composite restoration failure is secondary caries, and although caries is a multifactorial problem, weak, damage-prone adhesives play a pivotal role in the high susceptibility of composite restorations to secondary caries. Our group has developed synthetic resins that capitalize on [...] Read more.
The leading cause of composite restoration failure is secondary caries, and although caries is a multifactorial problem, weak, damage-prone adhesives play a pivotal role in the high susceptibility of composite restorations to secondary caries. Our group has developed synthetic resins that capitalize on free-radical polymerization and sol-gel reactions to provide dental adhesives with enhanced properties. The resins contain γ-methacryloxypropyltrimethoxysilane (MPS) as the Si-based compound. This study investigated the properties of methacrylate-based resins containing methacryloxymethyltrimethoxysilane (MMeS) as a short-chain alternative. The degree of conversion (DC), polymerization kinetics, water sorption, mechanical properties, and leachates of MMeS- and MPS-resins with 55 and 30 wt% BisGMA-crosslinker were determined. The formulations were used as model adhesives, and the adhesive/dentin (a/d) interfaces were analyzed using chemometrics-assisted micro-Raman spectroscopy. The properties of the 55 wt% formulations were comparable. In the 30 wt% BisGMA formulations, the MMeS-resin exhibited faster polymerization, lower DC, reduced leachates, and increased storage and loss moduli, glass transition (Tg), crosslink density, and heterogeneity. The spectroscopic results indicated a comparable spatial distribution of resin, mineralized, and demineralized dentin across the a/d interfaces. The hydrolytically stable experimental short-chain-silane-monomer dental adhesive provides enhanced mechanical properties through autonomous strengthening and offers a promising strategy for the development of restorative dental materials with extended service life. Full article
(This article belongs to the Special Issue Functional Polymeric Materials: From Synthesis to Applications)
Show Figures

Figure 1

12 pages, 5289 KB  
Article
Easy and Effective Method for α-CD:N2O Host–Guest Complex Formation
by Tsveta P. Sarafska, Maya I. Spassova, Todor M. Dudev, Stiliana M. Pereva, Simeon D. Stoyanov and Tony G. Spassov
Int. J. Mol. Sci. 2024, 25(10), 5472; https://doi.org/10.3390/ijms25105472 - 17 May 2024
Cited by 2 | Viewed by 1445
Abstract
α-CD:N2O “host-guest” type complexes were formed by a simple solid–gas reaction (N2O sorption into α-CD) under different gas pressures and temperatures. The new N2O inclusion method applied in the present study was compared with the already known [...] Read more.
α-CD:N2O “host-guest” type complexes were formed by a simple solid–gas reaction (N2O sorption into α-CD) under different gas pressures and temperatures. The new N2O inclusion method applied in the present study was compared with the already known technique based on the crystallization of clathrates from a water solution of α-CD saturated with N2O. A maximum storage capacity of 4.5 wt.% N2O was achieved when charging the cyclodextrin from a gas phase. The amount of included gas decreases to 1.3 wt.% when the complex is stored in air at 1 atm and room temperature, analogous to that achieved by the crystallization of α-CD:N2O. Furthermore, it was shown that the external coordination of N2O to either the upper or lower rim of α-CD without hydration water displacement is the preferred mode of binding, due to hydrogen bonds with neighboring -OH groups from the host macrocycle and three of the hydration water molecules nearby. The capacity of α-CD to store N2O and the thermal stability of the α-CD:N2O complex demonstrated promising applications of these types of complexes in food and beverages. Full article
(This article belongs to the Special Issue Cyclodextrins: Properties and Applications, 2nd Edition)
Show Figures

Figure 1

18 pages, 4137 KB  
Article
Spatial Graphene Structures with Potential for Hydrogen Storage
by Krzysztof Jastrzębski, Marian Cłapa, Łukasz Kaczmarek, Witold Kaczorowski, Anna Sobczyk-Guzenda, Hieronim Szymanowski, Piotr Zawadzki and Piotr Kula
Energies 2024, 17(10), 2240; https://doi.org/10.3390/en17102240 - 7 May 2024
Cited by 3 | Viewed by 2121
Abstract
Spatial graphene is a 3D structure of a 2D material that preserves its main features. Its production can be originated from the water solution of graphene oxide (GO). The main steps of the method include the crosslinking of flakes of graphene via treatment [...] Read more.
Spatial graphene is a 3D structure of a 2D material that preserves its main features. Its production can be originated from the water solution of graphene oxide (GO). The main steps of the method include the crosslinking of flakes of graphene via treatment with hydrazine, followed by the reduction of the pillared graphene oxide (pGO) with hydrogen overpressure at 700 °C, and further decoration with catalytic metal (palladium). Experimental research achieved the formation of reduced pillared graphene oxide (r:pGO), a porous material with a surface area equal to 340 m2/g. The transition from pGO to r:pGO was associated with a 10-fold increase in pore volume and the further reduction of remaining oxides after the action of hydrazine. The open porosity of this material seems ideal for potential applications in the energy industry (for hydrogen storage, in batteries, or in electrochemical and catalytic processes). The hydrogen sorption potential of the spatial graphene-based material decorated with 6 wt.% of palladium reached 0.36 wt.%, over 10 times more than that of pure metal. The potential of this material for industrial use requires further refining of the elaborated procedure, especially concerning the parameters of substrate materials. Full article
Show Figures

Figure 1

Back to TopTop