Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (144)

Search Parameters:
Keywords = water repelling test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3671 KiB  
Article
Sustainable Benzoxazine Copolymers with Enhanced Thermal Stability, Flame Resistance, and Dielectric Tunability
by Thirukumaran Periyasamy, Shakila Parveen Asrafali and Jaewoong Lee
Polymers 2025, 17(15), 2092; https://doi.org/10.3390/polym17152092 - 30 Jul 2025
Viewed by 321
Abstract
Benzoxazine resins are gaining attention for their impressive thermal stability, low water uptake, and strong mechanical properties. In this work, two new bio-based benzoxazine monomers were developed using renewable arbutin: one combined with 3-(2-aminoethylamino) propyltrimethoxysilane (AB), and the other with furfurylamine (AF). Both [...] Read more.
Benzoxazine resins are gaining attention for their impressive thermal stability, low water uptake, and strong mechanical properties. In this work, two new bio-based benzoxazine monomers were developed using renewable arbutin: one combined with 3-(2-aminoethylamino) propyltrimethoxysilane (AB), and the other with furfurylamine (AF). Both were synthesized using a simple Mannich-type reaction and verified through FT-IR and 1H-NMR spectroscopy. By blending these monomers in different ratios, copolymers with adjustable thermal, dielectric, and surface characteristics were produced. Thermal analysis showed that the materials had broad processing windows and cured effectively, while thermogravimetric testing confirmed excellent heat resistance—especially in AF-rich blends, which left behind more char. The structural changes obtained during curing process were monitored using FT-IR, and XPS verified the presence of key elements like carbon, oxygen, nitrogen, and silicon. SEM imaging revealed that AB-based materials had smoother surfaces, while AF-based ones were rougher; the copolymers fell in between. Dielectric testing showed that increasing AF content raised both permittivity and loss, and contact angle measurements confirmed that surfaces ranged from water-repellent (AB) to water-attracting (AF). Overall, these biopolymers (AB/AF copolymers) synthesized from arbutin combine environmental sustainability with customizability, making them strong candidates for use in electronics, protective coatings, and flame-resistant composite materials. Full article
Show Figures

Figure 1

13 pages, 1764 KiB  
Article
Functionalization of Oligosiloxane for Polyester Comonomer
by Satoru Saotome, Jiaorong Kuang, Reina Akashi, Momoko Takahashi, Yujia Liu, Takayuki Iijima and Masafumi Unno
Molecules 2025, 30(13), 2775; https://doi.org/10.3390/molecules30132775 - 27 Jun 2025
Viewed by 301
Abstract
This paper proposes a new functionalized oligosiloxane as a comonomer for polyester, designed to provide hydrophobic surface properties and enhance low-temperature impact resistance. The functionalization of polymer resin itself has attracted attention in the context of monomaterialization. Chemically designing the primary structure of [...] Read more.
This paper proposes a new functionalized oligosiloxane as a comonomer for polyester, designed to provide hydrophobic surface properties and enhance low-temperature impact resistance. The functionalization of polymer resin itself has attracted attention in the context of monomaterialization. Chemically designing the primary structure of not only polymers but also monomers is crucial for enhancing the intrinsic performance of the resin. However, little is known about oligosiloxane monomers for polyester that can provide oligosiloxane-like properties such as hydrophobicity and flexibility at low temperatures. Here, we report the functional design of a polyester material through silicone copolymerization. A novel comonomer was designed and synthesized to optimize both the molecular structure and the compatibility of the silicone segments, promoting uniform copolymer formation. Incorporating silicone into the polymer matrix reduced surface energy, thereby improving water repellency. Furthermore, the flexibility imparted by the silicone components effectively mitigated the brittleness of polyester at sub-zero temperatures, resulting in superior impact resistance. Structural analysis, contact angle measurements, and low-temperature impact tests were conducted on the copolymers. The results confirmed that optimizing comonomer design enables significant enhancement of both hydrophobicity and impact durability, contributing to the development of high-performance polyester materials suitable for demanding environments. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Graphical abstract

16 pages, 4611 KiB  
Article
High-Transparency, Long-Life Fluorinated POSS-Based Liquid-like Coating for Anti-Icing Glass Applications
by Wudi Zhang, Zian Wang, Zhixuan Zhao, Xuan Zhou, Lixin Wu and Zixiang Weng
Coatings 2025, 15(7), 745; https://doi.org/10.3390/coatings15070745 - 23 Jun 2025
Viewed by 452
Abstract
Anti-icing glass is particularly important for applications where ice formation can pose safety risks or impair functionality. The challenge of anti-icing modification for glass lies in maintaining water repellency while addressing the issue of transparency and durability. In this work, leveraging the robustness [...] Read more.
Anti-icing glass is particularly important for applications where ice formation can pose safety risks or impair functionality. The challenge of anti-icing modification for glass lies in maintaining water repellency while addressing the issue of transparency and durability. In this work, leveraging the robustness and wear resistance of inorganic/organic composite materials, a highly transparent coating, with strong adhesive properties to glass substrates and repellency to liquids has been developed. Briefly, 3-glycidoxypropyl polyhedral oligomeric silsesquioxane (GPOSS) is employed as a precursor to fabricate a high-strength, high-transparency coating through modification with acrylic acid and perfluorooctyl acrylate. The inorganic component imparts strength and wear resistance to the coating, while the organic component provides hydrophobic and near oleophobic features. Furthermore, a custom-built mechanical test instrument evaluated the absolute value of the de-icing shear force. The results reveal that at −20 °C, the fluorinated modified coating only exhibit a minimum de-icing pressure of 40.3 kPa, which is 75% lower than the unmodified glass substrate. As-prepared coating exhibits a transmittance of up to 99% and can endure a high-pressure water impact of 30 kPa for 1 min without cracking. Compared to existing anti-icing coating methods, the core innovation of the fluorinated GPOSS-based coating developed in this study lies in its inorganic/organic composite structure, which simultaneously achieves high transparency, mechanical durability, and enhanced anti-icing performance. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

32 pages, 2425 KiB  
Review
Development, Challenges, and Applications of Concrete Coating Technology: Exploring Paths to Enhance Durability and Standardization
by Hongbin Zhao, Qingzhou Wang, Ruipeng Shang and Shengkai Li
Coatings 2025, 15(4), 409; https://doi.org/10.3390/coatings15040409 - 30 Mar 2025
Cited by 2 | Viewed by 1087
Abstract
Concrete coating technology is a key measure that enhances the durability of concrete structures. This paper systematically studies the performance, applicability, and impact of different types of anti-corrosion coatings on concrete durability, focusing on their resistance to chloride ion penetration, freeze–thaw cycles, carbonation, [...] Read more.
Concrete coating technology is a key measure that enhances the durability of concrete structures. This paper systematically studies the performance, applicability, and impact of different types of anti-corrosion coatings on concrete durability, focusing on their resistance to chloride ion penetration, freeze–thaw cycles, carbonation, and sulfate corrosion. The applicability of existing testing methods and standard systems is also evaluated. This study shows that surface-film-forming coatings can create a dense barrier, reducing chloride ion diffusion coefficients by more than 50%, making them suitable for humid and high-chloride environments. Pore-sealing coatings fill capillary pores, improving the concrete’s impermeability and making them ideal for highly corrosive environments. Penetrating hydrophobic coatings form a water-repellent layer, reducing water absorption by over 75%, which is particularly beneficial for coastal and underwater concrete structures. Additionally, composite coating technology is becoming a key approach to addressing multi-environment adaptability challenges. Experimental results have indicated that combining penetrating hydrophobic coatings with surface-film-forming coatings can enhance concrete’s resistance to chloride ion penetration while ensuring weather resistance and wear resistance. However, this study also reveals that there are several challenges in the standardization, engineering application, and long-term performance assessment of coating technology. The lack of globally unified testing standards leads to difficulties in comparing the results obtained from different test methods, affecting the practical application of these coatings in engineering. Moreover, construction quality control and long-term service performance monitoring remain weak points in their use in engineering applications. Some engineering case studies indicate that coating failures are often related to an insufficient coating thickness, improper interface treatment, or lack of maintenance. To further improve the effectiveness and long-term durability of coatings, future research should focus on the following aspects: (1) developing intelligent coating materials with self-healing, high-temperature resistance, and chemical corrosion resistance capabilities; (2) optimizing multilayer composite coating system designs to enhance the synergistic protective capabilities of different coatings; and (3) promoting the creation of global concrete coating testing standards and establishing adaptability testing methods for various environments. This study provides theoretical support for the optimization and standardization of concrete coating technology, contributing to the durability and long-term service safety of infrastructure. Full article
(This article belongs to the Special Issue Recent Progress in Reinforced Concrete and Building Materials)
Show Figures

Figure 1

13 pages, 3097 KiB  
Article
Moth-Eye-Inspired Antireflective Structures in Hybrid Polymers: Depth-Variable Etching Techniques, Optical Performance, Thermal Stability, and Hydrophobicity
by Lukas Werner, Zhaolu Diao, Joachim P. Spatz, Marcus Abend, Steffen Resche, Nico Hagen, Richard Busch and Robert Brunner
Nanomaterials 2025, 15(7), 490; https://doi.org/10.3390/nano15070490 - 25 Mar 2025
Viewed by 768
Abstract
Hybrid polymers combine the benefits of inorganic and organic material properties, offering superior thermal, mechanical, and chemical stability, making them ideal for optical applications. This study focuses on the fabrication and characterization of antireflective (AR) structures within hybrid polymers using reactive ion etching [...] Read more.
Hybrid polymers combine the benefits of inorganic and organic material properties, offering superior thermal, mechanical, and chemical stability, making them ideal for optical applications. This study focuses on the fabrication and characterization of antireflective (AR) structures within hybrid polymers using reactive ion etching (RIE). The etching process produces nanopillars with controlled heights, achieving excellent AR performance across a broad spectral range from 450 nm to 2 µm. Optical characterization, including angle-resolved transmission and reflection measurements, shows that the structured samples maintain high transmission efficiency and reduced reflectance at varying incidence angles. Thermal stability tests reveal that the AR structures preserve their optical properties after exposure to temperatures up to 250 °C. Higher temperatures cause significant material yellowing, which is attributed to changes in the bulk material rather than damage to the structured surface. Hydrophobicity measurements show significant water repellency in structured samples, with contact angles more than twice those of unstructured layers. These findings highlight the potential of hybrid polymers with moth-eye-inspired nanostructures for high-performance, durable optical components in demanding environments. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

16 pages, 4394 KiB  
Article
Strength Properties and Water-Blocking Stability of Hydrophobically Modified Silty Clay
by Jiale Guo, Xu Li, Shuo Shi and Yongkang Wu
Water 2025, 17(3), 340; https://doi.org/10.3390/w17030340 - 25 Jan 2025
Viewed by 885
Abstract
In this study, Qinghai silty clay was hydrophobically modified, and its engineering properties, including water-blocking performance, strength characteristics, and durability, were investigated under varying hydrophobic agent contents and compaction degrees. The findings reveal that: (a) The prepared hydrophobic soil exhibits excellent water repellency, [...] Read more.
In this study, Qinghai silty clay was hydrophobically modified, and its engineering properties, including water-blocking performance, strength characteristics, and durability, were investigated under varying hydrophobic agent contents and compaction degrees. The findings reveal that: (a) The prepared hydrophobic soil exhibits excellent water repellency, significantly exceeding the threshold for extreme hydrophobicity. When the hydrophobic agent content reaches approximately 13%, the water droplet infiltration time peaks, and the moisture content after immersion remains at a relatively low level. (b) The hydrophobic soil barrier layer effectively blocks the upward migration of groundwater driven by capillary action. In the column test, after 15 days of capillary water action, the water content in the upper soil layer remains nearly unchanged, and the hydrophobic soil layer retains its dryness and excellent water-blocking performance. (c) Under optimal hydrophobic agent content, the unconfined compressive strength (UCS) of hydrophobic soil increases by approximately 48% to 68% compared to ordinary soil. Moreover, the strength improvement becomes more significant with higher compaction degrees. (d) Hydrophobic soil is most sensitive to alkaline environments, while its strength reduction rate in acidic and saline environments is slightly higher than in water environments. (e) It is recommended to maintain the hydrophobic agent content between 13% and 15.5% for Qinghai silty clay to achieve a balance between hydrophobicity, strength performance, and economic feasibility. Full article
Show Figures

Figure 1

20 pages, 9707 KiB  
Review
Advancements in Superhydrophobic Paper-Based Materials: A Comprehensive Review of Modification Methods and Applications
by Yin Tang, Shouwei Ban, Zhihan Xu, Jing Sun and Zhenxin Ning
Nanomaterials 2025, 15(2), 107; https://doi.org/10.3390/nano15020107 - 12 Jan 2025
Viewed by 1522
Abstract
Superhydrophobic paper-based functional materials have emerged as a sustainable solution with a wide range of applications due to their unique water-repelling properties. Inspired by natural examples like the lotus leaf, these materials combine low surface energy with micro/nanostructures to create air pockets that [...] Read more.
Superhydrophobic paper-based functional materials have emerged as a sustainable solution with a wide range of applications due to their unique water-repelling properties. Inspired by natural examples like the lotus leaf, these materials combine low surface energy with micro/nanostructures to create air pockets that maintain a high contact angle. This review provides an in-depth analysis of recent advancements in the development of superhydrophobic paper-based materials, focusing on methodologies for modification, underlying mechanisms, and performance in various applications. The paper-based materials, leveraging their porous structure and flexibility, are modified to achieve superhydrophobicity, which broadens their application in oil–water separation, anti-corrosion, and self-cleaning. The review describes the use of these superhydrophobic paper-based materials in diagnostics, environmental management, energy generation, food testing, and smart packaging. It also discusses various superhydrophobic modification techniques, including surface chemical modification, coating technology, physical composite technology, laser etching, and other innovative methods. The applications and development prospects of these materials are explored, emphasizing their potential in self-cleaning materials, oil–water separation, droplet manipulation, and paper-based sensors for wearable electronics and environmental monitoring. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

16 pages, 5352 KiB  
Article
Ultrasonic Deposition of Cellulose Nanocrystals on Substrates for Enhanced Eradication Activity on Multidrug-Resistant Pathogens
by Lama Jabreen, Moorthy Maruthapandi, Arulappan Durairaj, John H. T. Luong and Aharon Gedanken
Polymers 2025, 17(2), 154; https://doi.org/10.3390/polym17020154 - 9 Jan 2025
Cited by 1 | Viewed by 1468
Abstract
Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10–20 nm in diameter and 300–900 nm in length) and their subsequent [...] Read more.
Amidst the pervasive threat of bacterial afflictions, the imperative for advanced antibiofilm surfaces with robust antimicrobial efficacy looms large. This study unveils a sophisticated ultrasonic synthesis method for cellulose nanocrystals (CNCs, 10–20 nm in diameter and 300–900 nm in length) and their subsequent application as coatings on flexible substrates, namely cotton (CC-1) and membrane (CM-1). The cellulose nanocrystals showed excellent water repellency with a water contact angle as high as 148° on the membrane. Noteworthy attributes of CNC-coated substrates include augmented reactive oxygen species (ROS) generation, heightened surface hydrophobicity, and comprehensive suppression of both drug-sensitive (MDR E. coli and MRSA) and susceptible (E. coli and S. aureus) planktonic and biofilm bacterial proliferation. In contrast, the uncoated substrates display 100% bacterial growth for the above bacteria. Empirical data corroborate the pronounced biofilm mass reduction capabilities of CNC-coated substrates across all tested bacterial strains. Elucidation of underlying mechanisms implicates ROS generation and electrostatic repulsion between CNCs and bacterial membranes in the disruption of mature biofilms. Hydroxyl radicals, superoxide, and hydrogen peroxide possess formidable reactivity, capable of disrupting essential biomolecules such as DNA, proteins, and lipids. The engineered CNC-coated substrates platform evinces considerable promise in the realm of infectious disease management, offering a cogent blueprint for the development of novel antimicrobial matrices adept at combating bacterial infections with efficacy and precision. Full article
(This article belongs to the Special Issue Application and Characterization of Polymer Nanocomposite)
Show Figures

Figure 1

14 pages, 5882 KiB  
Article
Formation of Wrinkled Nanostructures via Surface–Bulk Curing Disparity in Ethyl Cyanoacrylate: Toward Superhydrophobic Surface Applications
by Changwoo Lee, Heon-Ju Choi, Kyungeun Jeong, Kyungjun Lee and Handong Cho
Nanomaterials 2025, 15(1), 12; https://doi.org/10.3390/nano15010012 - 25 Dec 2024
Cited by 1 | Viewed by 996
Abstract
Superhydrophobic surfaces, known for their exceptional water-repellent properties with contact angles exceeding 150°, are highly regarded for their effectiveness in applications including self-cleaning, antifouling, and ice prevention. However, the structural fragility and weak durability of conventional coating limit their long-term use. In this [...] Read more.
Superhydrophobic surfaces, known for their exceptional water-repellent properties with contact angles exceeding 150°, are highly regarded for their effectiveness in applications including self-cleaning, antifouling, and ice prevention. However, the structural fragility and weak durability of conventional coating limit their long-term use. In this research, a new approach is proposed for the fabrication of long-lasting superhydrophobic surfaces using ethyl cyanoacrylate (ECA) and a primer. The application of the primer creates a curing rate disparity between the surface and bulk of the ECA layer, resulting in the formation of wrinkled microstructures essential for achieving superhydrophobicity. The fabricated surfaces were further functionalized through plasma treatment and hydrophobic silane (OTS) coating, enhancing their water-repellent properties. This straightforward and scalable method produced surfaces with excellent superhydrophobicity and robust adhesion to substrates. Durability tests, including roller abrasion and microscratch evaluations, indicated that the wrinkled structure and strong substrate adhesion contributed to sustained performance even under mechanical stress. Additionally, mechanical properties were assessed through nanoindentation, demonstrating enhanced resistance to physical damage compared to conventional superhydrophobic coatings. This study highlights the potential of ECA-based superhydrophobic surfaces for applications requiring durability and mechanical stability, such as architectural coatings, automotive exteriors, and medical devices. The approach offers a promising solution to the limitations of existing superhydrophobic technologies and opens new avenues for further research into wear-resistant and environmentally resilient coatings. Full article
(This article belongs to the Special Issue Functionalized Nanostructures on Surfaces and at Interfaces)
Show Figures

Figure 1

14 pages, 3693 KiB  
Article
Multifaceted Surface Analysis of Municipal Solid Waste Incineration Fly Ash by Water Repellent Treatment with Fatty Acid
by Taiga Kaseda, Hibiki Shirata and Yuya Koike
Waste 2024, 2(4), 520-533; https://doi.org/10.3390/waste2040028 - 19 Dec 2024
Viewed by 949
Abstract
In this study, we aimed to conduct a multifaceted surface analysis of water repellent-treated municipal solid waste incineration (MSWI) fly ash to determine the suppression mechanism of fatty acid elution. The surface of water repellent-treated MSWI fly ash was analyzed using scanning electron [...] Read more.
In this study, we aimed to conduct a multifaceted surface analysis of water repellent-treated municipal solid waste incineration (MSWI) fly ash to determine the suppression mechanism of fatty acid elution. The surface of water repellent-treated MSWI fly ash was analyzed using scanning electron microscopy, Fourier-transform infrared spectroscopy, and X-ray diffraction analyses. Scanning electron microscopy revealed the absence of needle-shaped crystals but distinct particle agglomeration in the water repellent-treated fly ash. Fourier-transform infrared spectroscopy revealed that the water repellent treatment caused fatty acids to form esters with aluminosilicates in the MSWI fly ash. Crystalline phase analysis of the water repellent-treated fly ash before and after the leaching test via X-ray diffraction revealed the presence of fatty acids on the fly ash surface and retention of the fatty acid coating. Overall, the multifaceted surface analysis revealed that water repellent treatment suppressed heavy metal elution by covering the surface of MSWI fly ash with hydrophobic groups. Full article
Show Figures

Figure 1

18 pages, 4484 KiB  
Article
One-Step Fabrication Process of Silica–Titania Superhydrophobic UV-Blocking Thin Coatings onto Polymeric Films
by Sharon Hayne, Naftali Kanovsky and Shlomo Margel
Biomimetics 2024, 9(12), 756; https://doi.org/10.3390/biomimetics9120756 - 12 Dec 2024
Viewed by 1136
Abstract
Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on [...] Read more.
Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on polymeric films that exhibits excellent water-repelling and UV-blocking properties, along with impressive wear resistance and chemical robustness. A mixture of titanium precursors, tetraethylorthosilicate (TEOS), hydrophobic silanes and silica nano/micro-particles is polymerized directly on a corona-treated polymeric film which reacts with the surface via siloxane chemistry. The mixture is then spread on polymeric films using a Mayer rod, which eliminates the need for expensive equipment or multistep processes. The incorporation of silica nanoparticles along with titanium precursor and TEOS results in the formation of a silica–titania network around the silica nanoparticles. This chemically binds them to the activated surface, forming a unique dual-scale surface morphology depending on the size of the silica nanoparticles used in the coating mixture. The coated films were shown to be superhydrophobic with a high water contact angle of over 180° and a rolling angle of 0°. This is due to the combination of dual-scale micro/nano roughness with fluorinated hydrocarbons that lowered the surface free energy. The coatings exhibited excellent chemical and mechanical durability, as well as UV-blocking capabilities. The results show that the coatings remain superhydrophobic even after a sandpaper abrasion test under a pressure of 2.5 kPa for a distance of 30 m. Full article
(This article belongs to the Special Issue Superhydrophobic Surfaces: Challenges, Solutions and Applications)
Show Figures

Figure 1

25 pages, 5170 KiB  
Article
Ecological Repellent Preparations Based on Natural Polymers with the Addition of Essential Oils Acting on Ticks
by Monika Owczarek, Maria Wiśniewska-Wrona, Katarzyna Bartosik, Alicja Buczek, Monika Sikora, Klaudia Piekarska, Piotr Cichacz, Patryk Śniarowski, Zdzisława Mrozińska, Marcin H. Kudzin, Karolina Gzyra-Jagieła and Jagoda Jóźwik-Pruska
Insects 2024, 15(12), 931; https://doi.org/10.3390/insects15120931 - 27 Nov 2024
Viewed by 1843
Abstract
Background: Ticks (Acari: Ixodida) pose a serious medical and veterinary threat as vectors of tick-borne pathogens. The wide variety of tick repellents available on the market primarily consist of synthetic preparations that may disrupt the ecological balance and accumulate in the environment, leading [...] Read more.
Background: Ticks (Acari: Ixodida) pose a serious medical and veterinary threat as vectors of tick-borne pathogens. The wide variety of tick repellents available on the market primarily consist of synthetic preparations that may disrupt the ecological balance and accumulate in the environment, leading to harmful effects on humans and animals. The aim of the study was to develop an ecological preparation based on natural raw materials (biopolymers) with the addition of a mixture of essential oils that act as tick repellents. Methods: The preparations were acquired through the emulsification method, specifically the oil-in-water emulsion technique. The assessment encompassed an analysis of their physicochemical properties, including centrifugal and thermal stability, dynamic viscosity, wetting angle, and conductivity. Additionally, their biodegradation and ecotoxicity profiles were evaluated, as well as their impact on tick behavior. Results: The preparations exhibited stability, rapid biodegradation, and absence of ecotoxicity. Additionally, they had repellent properties against the two tested species of ticks (Ixodes ricinus and Dermacentor reticulatus). Conclusions: Emulsion formulations comprising natural ingredients have significant research potential for combating ticks, thus mitigating the risk of tick-borne diseases in both human and animal populations. Full article
(This article belongs to the Special Issue New Formulations of Natural Substances against Insect Pests)
Show Figures

Figure 1

25 pages, 7559 KiB  
Article
Effect of Plasma Treatment on Self-Cleaning Features of Acrylic Paint/TiO2-Coated Surfaces for Environmental Pollutant Removal
by Andrijana Bilić, Sanja J. Armaković, Mirjana V. Šiljegović, Milica Kisić, Maja Šćepanović, Mirjana Grujić-Brojčin, Nataša Simić, Lazar Gavanski, Stevan Armaković and Maria M. Savanović
Catalysts 2024, 14(11), 799; https://doi.org/10.3390/catal14110799 - 8 Nov 2024
Viewed by 1166
Abstract
This study investigates the characterization and performance of self-cleaning TiO2 surfaces synthesized through a one-step preparation process, followed by enhancement via plasma treatment. The process involved coating aluminum foil with an acrylic paint mixture containing nanoparticles of different mass compositions and subsequent [...] Read more.
This study investigates the characterization and performance of self-cleaning TiO2 surfaces synthesized through a one-step preparation process, followed by enhancement via plasma treatment. The process involved coating aluminum foil with an acrylic paint mixture containing nanoparticles of different mass compositions and subsequent plasma treatment using a continuous plasma arc. Scanning electron microscopy revealed the morphology of the treated surfaces, showing an increase in surface area of plasma-treated materials. Energy-dispersive X-ray spectroscopy revealed changes in oxygen and titanium in acrylic paint/TiO2 surfaces as the TiO2 content increased, indicating successful TiO2 incorporation. Raman spectroscopy showed that the bulk structure of self-cleaning acrylic paints is mainly preserved after plasma treatment. Alternating current impedance spectroscopy assessed that plasma treatment reduced agglomeration and increased active sites, especially for the acrylic paint/TiO2 surfaces with 0.5 mg/cm3 TiO2. The contact angle measurements indicated that plasma treatment enhanced the superhydrophobic characteristics and potential self-cleaning abilities of produced acrylic paint/TiO2 surfaces. The efficacy of these plasma-treated surfaces in self-cleaning was evaluated by testing their performance against puddle sediment and automotive oil samples. The study demonstrated that plasma treatment positively impacted the self-cleaning ability of the acrylic paint/TiO2 surfaces, particularly those with 0.5 mg/cm3 TiO2. This enhancement was attributed to the formation of functional groups, improved water repellency, and possible increases in surface area, which collectively contribute to the sustainable self-cleaning properties of the treated surfaces. Full article
(This article belongs to the Special Issue Advances in Heterojunction Photocatalysts, 2nd Edition)
Show Figures

Figure 1

23 pages, 30220 KiB  
Article
Substantiation of the Effectiveness of Water-Soluble Hydrophobic Agents on the Properties of Cement Composites
by Jakub Hodul, Tatiana Beníková and Rostislav Drochytka
Buildings 2024, 14(11), 3364; https://doi.org/10.3390/buildings14113364 - 24 Oct 2024
Cited by 1 | Viewed by 1352
Abstract
This paper aims to verify the effect of water-soluble hydrophobisations on cementitious composites such as concrete (S1) and cement-bonded particle boards (S2). The research was focused on the water-soluble hydrophobisations based on methylsilanolate (MS), a mixture of silanes and siloxanes (SS) and alcohol [...] Read more.
This paper aims to verify the effect of water-soluble hydrophobisations on cementitious composites such as concrete (S1) and cement-bonded particle boards (S2). The research was focused on the water-soluble hydrophobisations based on methylsilanolate (MS), a mixture of silanes and siloxanes (SS) and alcohol with the addition of nano-silica (N). The results provide a comprehensive overview of the benefits and effectiveness of water-soluble hydrophobisations in the context of building materials, outlining a direction towards the development of new, more environmentally friendly solutions in the construction industry. For this reason, alternative raw materials (brick recyclate and brick dust) were used for S1 substrate preparations. How the water-soluble hydrophobisations, including hydrophobisations with the addition of nano-silica (N), affect the process of water evaporation during hydration and the resulting water repellence of the S1 and S2 substrates were experimentally verified through a series of tests, e.g., measurement of the contact angle and depth of water penetration under pressure. The evaluation of the effect of hydrophobisations on the resistance of substrate to aggressive gaseous and liquid environments was observed by the determination of the resistance to carbonation and sulphation processes and the resistance of the concrete to aggressive liquid media (10% H2SO4, 10% CH3COOH). Although the hydrophobisations did not have a significant effect on some aspects of S1, such as the resistance to carbonation and sulphate attack, improvement was observed in other areas, such as the quadrupling increase in contact angle of the surface and 9 mm decrease in water pressure penetration into the concrete substrate. Full article
(This article belongs to the Special Issue Actual Trends in Rehabilitation and Reconstruction of Buildings)
Show Figures

Figure 1

19 pages, 18684 KiB  
Article
Experimental Study on the Protective Effect of High Alcoholysis Polyvinyl Alcohol (PVA) Solution Spraying on Loess Fill Slopes
by Xiangchao Kong, Faguo He, Qiang Liu, Xuemeng Lv, Tengfei Lu, Lizhi Zhang and Xin Yang
Sustainability 2024, 16(20), 9076; https://doi.org/10.3390/su16209076 - 19 Oct 2024
Viewed by 1445
Abstract
Loess has high water sensitivity and exhibits poor characteristics such as weak cementation and high porosity. Under heavy rainfall, loess fill slopes are prone to erosion and landslides, posing serious threats to public safety and property. In light of these serious threats, this [...] Read more.
Loess has high water sensitivity and exhibits poor characteristics such as weak cementation and high porosity. Under heavy rainfall, loess fill slopes are prone to erosion and landslides, posing serious threats to public safety and property. In light of these serious threats, this study employed the method of spraying polyvinyl alcohol (PVA) solution to improve loess fill slopes and systematically examine its protective effects. Through field investigations and combined laboratory and outdoor tests, this study comprehensively evaluated the mechanical properties, anti-aging and anti-erosion performance of loess after PVA solution spraying. Scanning electron microscopy was used to reveal the mechanism of PVA action at the microscopic level. The results showed that after treatment with PVA solutions of varying concentrations, the mechanical properties of loess samples were significantly enhanced, while also exhibiting excellent anti-aging and water resistance performance. Additionally, PVA-treated loess fill slopes exhibited excellent rain erosion resistance. A microscopic structural analysis showed that PVA fills the internal pores of loess, strengthens inter-particle bonding, and uses its hydrophobic groups’ water-repellent action to effectively enhance slope stability and erosion resistance. In conclusion, PVA treatment not only significantly enhances the protective effects of loess fill slopes but also holds important value in improving soil sustainability and environmental protection. Full article
Show Figures

Figure 1

Back to TopTop