Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = water accommodated fraction (WAF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1455 KiB  
Article
Oxidative Stress Responses and Recovery of Marine Medaka (Oryzias melastigma) in Early-Life Stages After Acute Exposure to Crude Oil
by Xishan Li, Yuekun Dai, Xin Li, Haiqiang Guo, Jiarui Dai, Haonan Wang, Deqi Xiong and Guoxiang Liao
J. Mar. Sci. Eng. 2025, 13(5), 965; https://doi.org/10.3390/jmse13050965 - 15 May 2025
Cited by 2 | Viewed by 489
Abstract
Oil spills pose a significant threat to marine ecosystems, with potentially adverse impacts on fish in early-life stages. Despite numerous studies reporting the developmental toxicity of oil exposure, knowledge about the recovery capacity of fish after oil exposure remains limited. Therefore, this study [...] Read more.
Oil spills pose a significant threat to marine ecosystems, with potentially adverse impacts on fish in early-life stages. Despite numerous studies reporting the developmental toxicity of oil exposure, knowledge about the recovery capacity of fish after oil exposure remains limited. Therefore, this study investigated the effects of water-accommodated fractions (WAFs) of Oman crude oil on the development and oxidative stress of marine medaka (Oryzias melastigma) embryos during a 7-day acute exposure period followed by a 14-day recovery period in clean seawater. Results revealed that WAF exposure caused concentration-dependent developmental toxicity gradually becoming apparent during the recovery period, including reduced survival and hatching rates, and increased morphological abnormalities. During the exposure period, low WAF concentrations triggered antioxidant responses (elevated SOD and CAT activities, and GSH content), while higher concentrations caused a concentration-dependent increase in lipid peroxidation (elevated MDA content). Differently, during the recovery period, all groups showed impaired antioxidant capacity (decreased SOD, CAT, GSH) and immune function (reduced AKP activity). Principal component analysis revealed strong correlations between survival, oxidative stress markers, and developmental toxicity. These findings could provide valuable insights into the recovery capacity of fish exposed to crude oil and give references for assessing the recovery potential of marine ecosystems after oil spills. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

15 pages, 1623 KiB  
Article
Acute and Chronic Effects of Crude Oil Water-Accommodated Fractions on the Early Life Stages of Marine Medaka (Oryzias melastigma, McClelland, 1839)
by Fei Jin, Ying Wang, Fuwei Yu, Xing Liu, Mingxing Zhang, Zhaochuan Li, Ziwei Yao, Yi Cong and Juying Wang
Toxics 2023, 11(3), 236; https://doi.org/10.3390/toxics11030236 - 28 Feb 2023
Cited by 8 | Viewed by 2428
Abstract
Oil spill is a major marine environmental pollution issue. Research regarding the long-term effects of oil spills on the early life stage of marine fish is still limited. In this study, the potential adverse impact of crude oil from one oil spill accident [...] Read more.
Oil spill is a major marine environmental pollution issue. Research regarding the long-term effects of oil spills on the early life stage of marine fish is still limited. In this study, the potential adverse impact of crude oil from one oil spill accident which occurred in the Bohai Sea on the early life stages of marine medaka (Oryzias melastigma, McClelland, 1839) was evaluated. A 96-h acute test (larvae) and a 21-d chronic test (embryo–larvae) of water-accommodated fractions (WAFs) from crude oil were conducted, respectively. The results of the acute test showed that only the highest concentration of WAFs (100.00%) significantly affected the mortality of larvae (p < 0.01) and that the 96 h-LC50 was 68.92% (4.11 mg·L-1 expressed as total petroleum hydrocarbons (TPHs)). Larval heart demonstrated histopathological alterations in all WAF-exposed groups. The chronic test results showed that, except for larval mortality, the total hatching success (%)/hatching time of embryos in WAF treatments was not significantly different from those of the control group (p > 0.05), and no malformation was found in surviving larvae after 21 d of exposure. Nevertheless, the exposed embryos and larvae in the highest concentration of WAFs (60.00%) demonstrated significantly reduced heart rate (p < 0.05) and increased mortality (p < 0.01), respectively. Overall, our results indicated that both acute and chronic WAF exposures had adverse impacts on the survival of marine medaka. In the early life stages, the heart of the marine medaka was the most sensitive organ which showed both structural alteration and cardiac dysfunction. Full article
Show Figures

Figure 1

23 pages, 4957 KiB  
Article
Hemocyte Health Status Based on Four Biomarkers to Assess Recovery Capacity in American Lobster (Homarus americanus) after Exposure to Marine Diesel and Diluted Bitumen
by Camille Berthod, Marie-Hélène Bénard-Déraspe, Jean-François Laplante, Nicolas Lemaire, Madeleine Nadeau, Nicolas Toupoint, Gaëlle Triffault-Bouchet and Richard Saint-Louis
J. Mar. Sci. Eng. 2021, 9(4), 370; https://doi.org/10.3390/jmse9040370 - 30 Mar 2021
Cited by 5 | Viewed by 2778
Abstract
The growing transportation of petroleum products pose a significant risk of marine diesel or diluted bitumen (dilbit) spills at sea. Despite the economic importance of the American lobster, there have been few studies assessing the impact study of such a spill on their [...] Read more.
The growing transportation of petroleum products pose a significant risk of marine diesel or diluted bitumen (dilbit) spills at sea. Despite the economic importance of the American lobster, there have been few studies assessing the impact study of such a spill on their population. In the lobster industry, lobster quality is monitored according to the Brix index of hemolymph. In our research, the effectiveness of three other biomarkers operative in the industry was assessed in hemolymph during contamination (over 96 h) by marine diesel and dilbit (Cold Lake Blend; CLB), as well as in the subsequent recovery period, according to two temperature cycles. At the end of the experiment, chemical and tainting assays were performed. Our results demonstrate that, among the four tested biomarkers, lysosomal stability and ethoxyresorufin O-deethylase (EROD) induction exhibit higher sensitivity. Increasing the temperature did not shorten the recovery period. Viability cellular impacts were greater in lobsters exposed to dilbit than that in those exposed to marine diesel. Marine diesel exposure appears to be more problematic for the lobster fishery, as the cooked lobster meat still presented a hydrocarbon odor even after 3 months of live holding. Finally, the high PAH concentrations measured in lobster eggs suggest potential adverse transgenerational effects of marine diesel exposure. Full article
(This article belongs to the Special Issue Pollutions of Nanocomposites in Aquatic Systems)
Show Figures

Figure 1

16 pages, 2729 KiB  
Article
Combined Effects of Elevated Temperature and Crude Oil Pollution on Oxidative Stress and Apoptosis in Sea Cucumber (Apostichopus japonicus, Selenka)
by Xishan Li, Chengyan Wang, Nan Li, Yali Gao, Zhonglei Ju, Guoxiang Liao and Deqi Xiong
Int. J. Environ. Res. Public Health 2021, 18(2), 801; https://doi.org/10.3390/ijerph18020801 - 19 Jan 2021
Cited by 28 | Viewed by 3508
Abstract
Currently, global climate change and oil pollution are two main environmental concerns for sea cucumber (Apostichopus japonicus) aquaculture. However, no study has been conducted on the combined effects of elevated temperature and oil pollution on sea cucumber. Therefore, in the present [...] Read more.
Currently, global climate change and oil pollution are two main environmental concerns for sea cucumber (Apostichopus japonicus) aquaculture. However, no study has been conducted on the combined effects of elevated temperature and oil pollution on sea cucumber. Therefore, in the present study, we treated sea cucumber with elevated temperature (26 °C) alone, water-accommodated fractions (WAF) of Oman crude oil at an optimal temperature of 16 °C, and Oman crude oil WAF at an elevated temperature of 26 °C for 24 h. Results showed that reactive oxygen species (ROS) level and total antioxidant capacity in WAF at 26 °C treatment were higher than that in WAF at 16 °C treatment, as evidenced by 6.03- and 1.31-fold-higher values, respectively. Oxidative damage assessments manifested that WAF at 26 °C treatment caused much severer oxidative damage of the biomacromolecules (including DNA, proteins, and lipids) than 26 °C or WAF at 16 °C treatments did. Moreover, compared to 26 °C or WAF at 16 °C treatments, WAF at 26 °C treatment induced a significant increase in cellular apoptosis by detecting the caspase-3 activity. Our results revealed that co-exposure to elevated temperature and crude oil could simulate higher ROS levels and subsequently cause much severer oxidative damage and cellular apoptosis than crude oil alone on sea cucumber. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Figure 1

9 pages, 2033 KiB  
Article
Sex-Specific Differences in the Toxic Effects of Heavy Fuel Oil on Sea Urchin (Strongylocentrotus intermedius)
by Xuanbo Wang, Hang Ren, Xishan Li, Huishu Chen, Zhonglei Ju and Deqi Xiong
Int. J. Environ. Res. Public Health 2021, 18(2), 499; https://doi.org/10.3390/ijerph18020499 - 9 Jan 2021
Cited by 12 | Viewed by 2775
Abstract
The purpose of this study was to explore and compare the sex-specific differences in the toxic effects of water-accommodated fractions of 380# heavy fuel oil (HFO WAF) on the sea urchin Strongylocentrotus intermedius. Sea urchins were acutely exposed to HFO WAF at [...] Read more.
The purpose of this study was to explore and compare the sex-specific differences in the toxic effects of water-accommodated fractions of 380# heavy fuel oil (HFO WAF) on the sea urchin Strongylocentrotus intermedius. Sea urchins were acutely exposed to HFO WAF at different nominal concentrations (0%, 10% and 20%) for seven days. The results showed that females had a higher polycyclic aromatic hydrocarbons (PAHs) bioaccumulation in gonad tissues and that both the total antioxidant capacity (TAC) and lipid peroxidation (LPO) levels in the gonad tissues of females were much higher than those of males. The PAHs bioaccumulation in gametes indicated that parents’ exposure could lead to a transfer of PAHs to their offspring, and eggs had higher TAC and LPO than sperms. After maternal and paternal exposure to HFO WAF, the frequency of morphological abnormalities of the offspring was increased when compared to the control. Overall, these results indicated that maternal exposure to HFO WAF could cause more significantly toxic effects on sea urchins than paternal exposure could, which could lead to more significantly negative effects on their offspring. Full article
(This article belongs to the Section Environmental Science and Engineering)
Show Figures

Figure 1

19 pages, 2981 KiB  
Article
Comparative Proteomics of Marinobacter sp. TT1 Reveals Corexit Impacts on Hydrocarbon Metabolism, Chemotactic Motility, and Biofilm Formation
by Saskia Rughöft, Nico Jehmlich, Tony Gutierrez and Sara Kleindienst
Microorganisms 2021, 9(1), 3; https://doi.org/10.3390/microorganisms9010003 - 22 Dec 2020
Cited by 16 | Viewed by 4252
Abstract
The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or [...] Read more.
The application of chemical dispersants during marine oil spills can affect the community composition and activity of marine microorganisms. Several studies have indicated that certain marine hydrocarbon-degrading bacteria, such as Marinobacter spp., can be inhibited by chemical dispersants, resulting in lower abundances and/or reduced biodegradation rates. However, a major knowledge gap exists regarding the mechanisms underlying these physiological effects. Here, we performed comparative proteomics of the Deepwater Horizon isolate Marinobacter sp. TT1 grown under different conditions. Strain TT1 received different carbon sources (pyruvate vs. n-hexadecane) with and without added dispersant (Corexit EC9500A). Additional treatments contained crude oil in the form of a water-accommodated fraction (WAF) or chemically-enhanced WAF (CEWAF; with Corexit). For the first time, we identified the proteins associated with alkane metabolism and alginate biosynthesis in strain TT1, report on its potential for aromatic hydrocarbon biodegradation and present a protein-based proposed metabolism of Corexit components as carbon substrates. Our findings revealed that Corexit exposure affects hydrocarbon metabolism, chemotactic motility, biofilm formation, and induces solvent tolerance mechanisms, like efflux pumps, in strain TT1. This study provides novel insights into dispersant impacts on microbial hydrocarbon degraders that should be taken into consideration for future oil spill response actions. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Graphical abstract

16 pages, 1969 KiB  
Article
Marine Snow Aggregates are Enriched in Polycyclic Aromatic Hydrocarbons (PAHs) in Oil Contaminated Waters: Insights from a Mesocosm Study
by Hernando P. Bacosa, Manoj Kamalanathan, Joshua Cullen, Dawei Shi, Chen Xu, Kathleen A. Schwehr, David Hala, Terry L. Wade, Anthony H. Knap, Peter H. Santschi and Antonietta Quigg
J. Mar. Sci. Eng. 2020, 8(10), 781; https://doi.org/10.3390/jmse8100781 - 7 Oct 2020
Cited by 16 | Viewed by 4881
Abstract
Marine snow was implicated in the transport of oil to the seafloor during the Deepwater Horizon oil spill, but the exact processes remain controversial. In this study, we investigated the concentrations and distributions of the 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) in [...] Read more.
Marine snow was implicated in the transport of oil to the seafloor during the Deepwater Horizon oil spill, but the exact processes remain controversial. In this study, we investigated the concentrations and distributions of the 16 USEPA priority polycyclic aromatic hydrocarbons (PAHs) in marine snow aggregates collected during a mesocosm experiment. Seawater only, oil in a water accommodated fraction (WAF), and Corexit-enhanced WAF (DCEWAF) were incubated for 16 d. Both WAF and DCEWAF aggregates were enriched in heavy molecular weight PAHs but depleted in naphthalene. DCEWAF aggregates had 2.6 times more total 16 PAHs than the WAF (20.5 vs. 7.8 µg/g). Aggregates in the WAF and DCEWAF incorporated 4.4% and 19.3%, respectively of the total PAHs in the mesocosm tanks. Our results revealed that marine snow sorbed and scavenged heavy molecular weight PAHs in the water column and the application of Corexit enhanced the incorporation of PAHs into the sinking aggregates. Full article
(This article belongs to the Special Issue Degradation of Marine Oil Pollution)
Show Figures

Figure 1

14 pages, 1955 KiB  
Article
Antioxidant Response and Oxidative Stress in the Respiratory Tree of Sea Cucumber (Apostichopus japonicus) Following Exposure to Crude Oil and Chemical Dispersant
by Xishan Li, Guoxiang Liao, Zhonglei Ju, Chengyan Wang, Nan Li, Deqi Xiong and Yulu Zhang
J. Mar. Sci. Eng. 2020, 8(8), 547; https://doi.org/10.3390/jmse8080547 - 22 Jul 2020
Cited by 23 | Viewed by 3625
Abstract
Sea cucumber (Apostichopus japonicus) is mainly cultured in the coastal zone, where it is easily threatened by accidental oil spills. Chemical dispersant is one of the efficient oil spill responses for mitigating the overall environmental damage of oil spills. However, the [...] Read more.
Sea cucumber (Apostichopus japonicus) is mainly cultured in the coastal zone, where it is easily threatened by accidental oil spills. Chemical dispersant is one of the efficient oil spill responses for mitigating the overall environmental damage of oil spills. However, the impact of crude oil and chemical dispersants on sea cucumber is less well known. Hence, the present study focused on exploring the antioxidant response and oxidative stress in the respiratory tree of sea cucumber following exposure to GM-2 chemical dispersant (DISP), water-accommodated fractions (WAF), and chemically enhanced WAF (CEWAF) of Oman crude oil for 24 h. Results manifested that WAF exposure caused a significant increase in the reactive oxygen species (ROS) level (5.29 ± 0.30 AU·mgprot−1), and the effect was much more obvious in CEWAF treatment (5.73 ± 0.16 AU·mgprot−1). Total antioxidant capacity (T-AOC), as an important biomarker of the antioxidant defense capacity, showed an increasing trend following WAF exposure (0.95 ± 0.12 U·mgprot−1) while a significant reduction in T-AOC was observed following CEWAF exposure (0.23 ± 0.13 U·mgprot−1). Moreover, we also evaluated the oxidative damage of the macromolecules (DNA, protein, and lipid), and our results revealed that the presence of chemical dispersant enhanced oxidative damage caused by crude oil to sea cucumber. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

18 pages, 1003 KiB  
Communication
Combining Different In Vitro Bioassays to Evaluate Genotoxicity of Water-Accommodated Fractions from Petroleum Products
by Sarah Johann, Mira Goßen, Peter A. Behnisch, Henner Hollert and Thomas-Benjamin Seiler
Toxics 2020, 8(2), 45; https://doi.org/10.3390/toxics8020045 - 26 Jun 2020
Cited by 15 | Viewed by 5223
Abstract
Genotoxicity assessment is of high relevance for crude and refined petroleum products, since oil compounds are known to cause DNA damage with severe consequences for aquatic biota as demonstrated in long-term monitoring studies. This study aimed at the optimization and evaluation of small-scale [...] Read more.
Genotoxicity assessment is of high relevance for crude and refined petroleum products, since oil compounds are known to cause DNA damage with severe consequences for aquatic biota as demonstrated in long-term monitoring studies. This study aimed at the optimization and evaluation of small-scale higher-throughput assays (Ames fluctuation, micronucleus, Nrf2-CALUX®) covering different mechanistic endpoints as first screening tools for genotoxicity assessment of oils. Cells were exposed to native and chemically dispersed water-accommodated fractions (WAFs) of three oil types varying in their processing degree. Independent of an exogenous metabolic activation system, WAF compounds induced neither base exchange nor frame shift mutations in bacterial strains. However, significantly increased chromosomal aberrations in zebrafish liver (ZF-L) cells were observed. Oxidative stress was indicated for some treatments and was not correlated with observed DNA damage. Application of a chemical dispersant increased the genotoxic potential rather by the increased bioavailability of dissolved and particulate oil compounds. Nonetheless, the dispersant induced a clear oxidative stress response, indicating a relevance for general toxic stress. Results showed that the combination of different in vitro assays is important for a reliable genotoxicity assessment. Especially, the ZF-L capable of active metabolism and DNA repair seems to be a promising model for WAF testing. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

18 pages, 2009 KiB  
Article
Effects of Exposure of Pink Shrimp, Farfantepenaeus duorarum, Larvae to Macondo Canyon 252 Crude Oil and the Corexit Dispersant
by Susan Laramore, William Krebs and Amber Garr
J. Mar. Sci. Eng. 2016, 4(1), 24; https://doi.org/10.3390/jmse4010024 - 8 Mar 2016
Cited by 7 | Viewed by 5242
Abstract
The release of oil into the Gulf of Mexico (GOM) during the Deepwater Horizon event coincided with the white and pink shrimp spawning season. To determine the potential impact on shrimp larvae a series of static acute (24–96 h) toxicity studies with water [...] Read more.
The release of oil into the Gulf of Mexico (GOM) during the Deepwater Horizon event coincided with the white and pink shrimp spawning season. To determine the potential impact on shrimp larvae a series of static acute (24–96 h) toxicity studies with water accommodated fractions (WAFs) of Macondo Canyon (MC) 252 crude oil, the Corexit 9500A dispersant, and chemically enhanced WAFS (CEWAFs) were conducted with nauplii, zoea, mysid, and postlarval Farfantepenaeus duorarum. Median lethal concentrations (LC50) were calculated and behavior responses (swimming, molting, light sensitivity) evaluated. Impacts were life stage dependent with zoea being the most sensitive. Behavioral responses for all stages, except postlarvae, occurred at below LC50 values. Dispersants had the greatest negative impact while WAFs had the least. No short-term effects (survival, growth) were noted for nauplii exposed to sub-lethal CEWAFs 39 days post-exposure. This study points to the importance of evaluating multiple life stages to assess population effects following contaminant exposure and further, that the use of dispersants as a method of oil removal increases oil toxicity. Full article
(This article belongs to the Special Issue Marine Oil Spills)
Show Figures

Figure 1

Back to TopTop