Antioxidant Response and Oxidative Stress in the Respiratory Tree of Sea Cucumber (Apostichopus japonicus) Following Exposure to Crude Oil and Chemical Dispersant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Water-Accommodated Fractions (WAF), Chemically Enhanced WAF (CEWAF), and Chemical Dispersant (DISP) Solutions
2.2. Sea Cucumber Maintenance and Acute Toxicity Tests
2.3. Reactive Oxygen Species (ROS) Production
2.4. Antioxidant Capacity
2.5. Oxidative Damage Assessment
2.6. Integrated Biomarker Response (IBR) Index
2.7. Chemicals Analysis
2.8. Statistical Analysis
3. Results
3.1. Analytical Chemistry
3.2. Survival Rates
3.3. ROS Levels
3.4. Antioxidant Capacity
3.5. Oxidative Damage
3.6. IBR Index
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gao, Y.; Xiong, D.; Qi, Z.; Li, X.; Ju, Z.; Zhuang, X. Distribution of polycyclic aromatic hydrocarbons in sunken oils in the presence of chemical dispersant and sediment. J. Mar. Sci. Eng. 2019, 7, 282. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhao, X.; Ju, Z.; Yu, Y.; Qi, Z.; Xiong, D. Effects of the suspended sediment concentration and oil type on the formation of sunken and suspended oils in the Bohai Sea. Environ. Sci.-Process Impacts 2018, 20, 1404–1413. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Qi, Z.; Fu, S.; Yu, X.; Li, W.; Xiong, D. Effects of wave conditions and particle size on the release of oil from oil-contaminated sediments in a wave tank. J. Mar. Sci. Eng. 2019, 7, 256. [Google Scholar] [CrossRef] [Green Version]
- Pan, G.; Qiu, S.; Liu, X.; Hu, X. Estimating the economic damages from the Penglai 19-3 oil spill to the Yantai fisheries in the Bohai Sea of northeast China. Mar. Pol. 2015, 62, 18–24. [Google Scholar] [CrossRef] [Green Version]
- National Research Council of the National Academies. Oil Spill Dispersants: Efficacy and Effects; The National Academies Press: Washington, DC, USA, 2005; p. 396.
- Prince, R.C. Oil spill dispersants: Boon or bane? Environ. Sci. Technol. 2015, 49, 6376–6384. [Google Scholar] [CrossRef] [Green Version]
- Katsumiti, A.; Nicolussi, G.; Bilbao, D.; Prieto, A.; Etxebarria, N.; Cajaraville, M.P. In vitro toxicity testing in hemocytes of the marine mussel Mytilus galloprovincialis (L.) to uncover mechanisms of action of the water accommodated fraction (WAF) of a naphthenic North Sea crude oil without and with dispersant. Sci. Total Environ. 2019, 670, 1084–1094. [Google Scholar] [CrossRef]
- Li, X.; Ding, G.; Xiong, Y.; Ma, X.; Fan, Y.; Xiong, D. Toxicity of water-accommodated fractions (WAF), chemically enhanced WAF (CEWAF) of Oman crude oil and dispersant to early-life stages of zebrafish (Danio rerio). Bull. Environ. Contam. Toxicol. 2018, 101, 314–319. [Google Scholar] [CrossRef]
- Mu, J.; Jin, F.; Ma, X.; Lin, Z.; Wang, J. Comparative effects of biological and chemical dispersants on the bioavailability and toxicity of crude oil to early life stages of marine medaka (Oryzias melastigma). Environ. Toxicol. Chem. 2014, 33, 2576–2583. [Google Scholar] [CrossRef]
- Lee, K.-W.; Shim, W.J.; Yim, U.H.; Kang, J.-H. Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus. Chemosphere 2013, 92, 1161–1168. [Google Scholar] [CrossRef] [PubMed]
- Hamel, J.-F.; Mercier, A. Population status, fisheries and trade of sea cucumbers in temperate areas of the Northern Hemisphere. In Sea Cucumbers: A Global Review of Fisheries and Trade; FAO Fisheries and Aquaculture Technical Paper: Rome, Italy, 2008; pp. 257–292. [Google Scholar]
- Fisheries and Fisheries Administration Bureau of the Ministry of Agriculture. China Fishery Statistical Yearbook 2018; China Argriculture Press: Beijing, China, 2018; p. 181.
- Huo, D.; Sun, L.; Zhang, L.; Ru, X.; Liu, S.; Yang, X.; Yang, H. Global-warming-caused changes of temperature and oxygen alter the proteomic profile of sea cucumber Apostichopus japonicus. J. Proteom. 2019, 193, 27–43. [Google Scholar] [CrossRef]
- Xia, S.; Yang, H.; Li, Y.; Liu, S.; Zhou, Y.; Zhang, L. Effects of different seaweed diets on growth, digestibility, and ammonia-nitrogen production of the sea cucumber Apostichopus japonicus (Selenka). Aquaculture 2012, 338–341, 304–308. [Google Scholar] [CrossRef]
- Purcell, S.; Conand, C.; Uthicke, S.; Byrne, M. Ecological roles of exploited sea cucumbers. Oceanogr. Mar. Biol. 2016, 54, 367–386. [Google Scholar]
- Ding, K.; Zhang, L.; Sun, L.; Lin, C.; Feng, Q.; Zhang, S.; Yang, H.; Brinkman, R.; Lin, G.; Huang, Z. Transcriptome analysis provides insights into the molecular mechanisms responsible for evisceration behavior in the sea cucumber Apostichopus japonicus. Comp. Biochem. Physiol. D-Genom. 2019, 30, 143–157. [Google Scholar] [CrossRef] [PubMed]
- OSPAR. OSPAR guidelines for monitoring the environmental impact of offshore oil and gas activities. In Proceedings of the Meeting of the OSPAR Offshore Industries Committee (OIC), London, UK, 28–30 September 2004; pp. 1–19. [Google Scholar]
- Solé, M.; Lima, D.; Reis-Henriques, M.A.; Santos, M.M. Stress biomarkers in juvenile senegal sole, Solea senegalensis, exposed to the water-accommodated fraction of the “Prestige” fuel oil. Bull. Environ. Contam. Toxicol. 2008, 80, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, D.B.; Mello, A.d.A.; Allodi, S.; de Barros, C.M. Acute exposure to water-soluble fractions of marine diesel oil: Evaluation of apoptosis and oxidative stress in an ascidian. Chemosphere 2018, 211, 308–315. [Google Scholar] [CrossRef]
- Valko, M.; Leibfritz, D.; Moncol, J.; Cronin, M.T.D.; Mazur, M.; Telser, J. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 2007, 39, 44–84. [Google Scholar] [CrossRef]
- Hannam, M.L.; Bamber, S.D.; John Moody, A.; Galloway, T.S.; Jones, M.B. Immunotoxicity and oxidative stress in the Arctic scallop Chlamys islandica: Effects of acute oil exposure. Ecotoxicol. Environ. Saf. 2010, 73, 1440–1448. [Google Scholar] [CrossRef]
- Han, J.; Kim, H.-S.; Kim, I.-C.; Kim, S.; Hwang, U.-K.; Lee, J.-S. Effects of water accommodated fractions (WAFs) of crude oil in two congeneric copepods Tigriopus sp. Ecotoxicol. Environ. Saf. 2017, 145, 511–517. [Google Scholar] [CrossRef]
- Duan, M.; Xiong, D.; Gao, Y.; Bai, X.; Xiong, Y.; Gao, X.; Ding, G. Transgenerational effects of heavy fuel oil on the sea urchin Strongylocentrotus intermedius considering oxidative stress biomarkers. Mar. Environ. Res. 2018, 141, 138–147. [Google Scholar] [CrossRef]
- Jasperse, L.; Levin, M.; Tsantiris, K.; Smolowitz, R.; Perkins, C.; Ward, J.E.; De Guise, S. Comparative toxicity of Corexit® 9500, oil, and a Corexit®/oil mixture on the eastern oyster, Crassostrea virginica (Gmelin). Aquat. Toxicol. 2018, 203, 10–18. [Google Scholar] [CrossRef]
- Counihan, K.L. The physiological effects of oil, dispersant and dispersed oil on the bay mussel, Mytilus trossulus, in Arctic/Subarctic conditions. Aquat. Toxicol. 2018, 199, 220–231. [Google Scholar] [CrossRef] [PubMed]
- Telahigue, K.; Rabeh, I.; Bejaoui, S.; Hajji, T.; Nechi, S.; Chelbi, E.; El Cafsi, M.h.; Soudani, N. Mercury disrupts redox status, up-regulates metallothionein and induces genotoxicity in respiratory tree of sea cucumber (Holothuria forskali). Drug Chem. Toxicol. 2020, 43, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Huo, D.; Sun, L.; Zhang, L.; Ru, X.; Liu, S.; Yang, H. Metabolome responses of the sea cucumber Apostichopus japonicus to multiple environmental stresses: Heat and hypoxia. Mar. Pollut. Bull. 2019, 138, 407–420. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.M.; Aurand, D.; Bragin, G.E.; Clark, J.R.; Coelho, G.M.; Sowby, M.L.; Tjeerdema, R.S. Standardization of the preparation and quantitation of water-accommodated fractions of petroleum for toxicity testing. Mar. Pollut. Bull. 2000, 40, 1007–1016. [Google Scholar] [CrossRef]
- LeBel, C.P.; Ischiropoulos, H.; Bondy, S.C. Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 1992, 5, 227–231. [Google Scholar] [CrossRef] [Green Version]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Valavanidis, A.; Vlachogianni, T.; Fiotakis, C. 8-hydroxy-2′-deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J. Environ. Sci. Health Pt. C-Environ. Carcinog. Ecotoxicol. Rev. 2009, 27, 120–139. [Google Scholar] [CrossRef] [Green Version]
- Levine, R.L.; Garland, D.; Oliver, C.N.; Amici, A.; Climent, I.; Lenz, A.-G.; Ahn, B.-W.; Shaltiel, S.; Stadtman, E.R. Determination of carbonyl content in oxidatively modified proteins. In Methods Enzymol; Academic Press: New York, NY, USA, 1990; pp. 464–478. [Google Scholar]
- Levine, R.L.; Williams, J.A.; Stadtman, E.P.; Shacter, E. Carbonyl assays for determination of oxidatively modified proteins. In Methods Enzymol; Academic Press: New York, NY, USA, 1994; pp. 346–357. [Google Scholar]
- Buege, J.A.; Aust, S.D. Microsomal lipid peroxidation. In Methods Enzymol; Fleischer, S., Packer, L., Eds.; Academic Press: New York, NY, USA, 1978; pp. 302–310. [Google Scholar]
- Beliaeff, B.; Burgeot, T. Integrated biomarker response: A useful tool for ecological risk assessment. Environ. Toxicol. Chem. 2002, 21, 1316–1322. [Google Scholar] [CrossRef]
- Sanchez, W.; Burgeot, T.; Porcher, J.-M. A novel “Integrated Biomarker Response” calculation based on reference deviation concept. Environ. Sci. Pollut. Res. 2013, 20, 2721–2725. [Google Scholar] [CrossRef]
- Vieira, C.E.D.; Pérez, M.R.; Acayaba, R.D.A.; Raimundo, C.C.M.; dos Reis Martinez, C.B. DNA damage and oxidative stress induced by imidacloprid exposure in different tissues of the Neotropical fish Prochilodus lineatus. Chemosphere 2018, 195, 125–134. [Google Scholar] [CrossRef]
- Li, X.; Xiong, D.; Ding, G.; Fan, Y.; Ma, X.; Wang, C.; Xiong, Y.; Jiang, X. Exposure to water-accommodated fractions of two different crude oils alters morphology, cardiac function and swim bladder development in early-life stages of zebrafish. Chemosphere 2019, 235, 423–433. [Google Scholar] [CrossRef] [PubMed]
- SAC. GB 17378.4-2007 The specification for marine monitoring—Part 4: Seawater analysis. In Standardization Administration of the People’s Republic of China; Standards Press of China: Beijing, China, 2007; Volume GB 17378.4-2007, pp. 44–45. [Google Scholar]
- EPA. Method 610: Polynuclear Aromatic Hydrocarbons; U.S. Environmental Protection Agency: Washington, DC, USA, 1984; p. 25.
- EPA. Method 3510C: Separatory Funnel Liquid-liquid Extraction; U.S. Environmental Protection Agency: Washington, DC, USA, 1996; p. 8.
- EPA. Method 3630C: Silica gel Cleanup, Part of Test Methods for Evaluating Solid Waste, Physical/Chemical Methods; U.S. Environmental Protection Agency: Washington, DC, USA, 1996; p. 15.
- ISO. Water quality—Determination of 16 polycyclic aromatic hydrocarbons (PAH). In Water—Method Using Gas Chromatography with Mass Spectrometric Detection (GC-MS); International Organization for Standardization: Geneva, Switzerland, 2011; p. 24. [Google Scholar]
- National Academies of Sciences Engineering and Medicine. The Use of Dispersants in Marine Oil Spill Response; The National Academies Press: Washington, DC, USA, 2019; p. 410. [Google Scholar]
- Laramore, S.; Krebs, W.; Garr, A. Effects of exposure of pink shrimp, Farfantepenaeus duorarum, larvae to Macondo Canyon 252 crude oil and the Corexit dispersant. J. Mar. Sci. Eng. 2016, 4, 24. [Google Scholar] [CrossRef] [Green Version]
- Rabeh, I.; Telahigue, K.; Bejaoui, S.; Hajji, T.; Chouba, L.; El Cafsi, M.h.; Soudani, N. Effects of mercury graded doses on redox status, metallothionein levels and genotoxicity in the intestine of sea cucumber Holothuria forskali. Chem. Ecol. 2019, 35, 204–218. [Google Scholar] [CrossRef]
- Cuypers, A.; Karen, S.; Jos, R.; Kelly, O.; Els, K.; Tony, R.; Nele, H.; Nathalie, V.; Suzy, V.S.; Frank, V.B.; et al. The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. J. Plant Physiol. 2011, 168, 309–316. [Google Scholar] [CrossRef]
- Sardi, A.E.; Renaud, P.E.; Morais, G.C.; Martins, C.C.; da Cunha Lana, P.; Camus, L. Effects of an in situ diesel oil spill on oxidative stress in the clam Anomalocardia flexuosa. Environ. Pollut. 2017, 230, 891–901. [Google Scholar] [CrossRef]
- Ghiselli, A.; Serafini, M.; Natella, F.; Scaccini, C. Total antioxidant capacity as a tool to assess redox status: Critical view and experimental data. Free Radical Biol. Med. 2000, 29, 1106–1114. [Google Scholar] [CrossRef]
- Ozhan, K.; Zahraeifard, S.; Smith, A.P.; Bargu, S. Induction of reactive oxygen species in marine phytoplankton under crude oil exposure. Environ. Sci. Pollut. Res. 2015, 22, 18874–18884. [Google Scholar] [CrossRef]
- Schieber, M.; Chandel, N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014, 24, R453–R462. [Google Scholar] [CrossRef] [Green Version]
- Tairova, Z.; Frantzen, M.; Mosbech, A.; Arukwe, A.; Gustavson, K. Effects of water accommodated fraction of physically and chemically dispersed heavy fuel oil on beach spawning capelin (Mallotus villosus). Mar. Environ. Res. 2019, 147, 62–71. [Google Scholar] [CrossRef]
- Hodson, P.V. The toxicity to fish embryos of PAH in crude and refined oils. Arch. Environ. Contam. Toxicol. 2017, 73, 12–18. [Google Scholar] [CrossRef]
- Incardona, J.P. Molecular mechanisms of crude oil developmental toxicity in fish. Arch. Environ. Contam. Toxicol. 2017, 73, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Patri, M.; Padmini, A.; Babu, P.P. Polycyclic aromatic hydrocarbons in air and their neurotoxic potency in association with oxidative stress: A brief perspective. Ann. Neurosci. 2010, 16, 22–30. [Google Scholar] [CrossRef]
- Han, J.; Won, E.-J.; Hwang, D.-S.; Shin, K.-H.; Lee, Y.S.; Leung, K.M.-Y.; Lee, S.-J.; Lee, J.-S. Crude oil exposure results in oxidative stress-mediated dysfunctional development and reproduction in the copepod Tigriopus japonicus and modulates expression of cytochrome P450 (CYP) genes. Aquat. Toxicol. 2014, 152, 308–317. [Google Scholar] [CrossRef] [PubMed]
- Almeda, R.; Cosgrove, S.; Buskey, E.J. Oil spills and dispersants can cause the initiation of potentially harmful dinoflagellate blooms (“red tides”). Environ. Sci. Technol. 2018, 52, 5718–5724. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ding, G.; Li, X.; Xiong, D. Comparison of toxicity effects of fuel oil treated by different dispersants on marine medaka (Oryzias melastigma) embryo. Acta Oceanol. Sin. 2018, 37, 123–132. [Google Scholar] [CrossRef]
- Afshar-Mohajer, N.; Fox, M.A.; Koehler, K. The human health risk estimation of inhaled oil spill emissions with and without adding dispersant. Sci. Total Environ. 2019, 654, 924–932. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Liao, G.; Ju, Z.; Wang, C.; Li, N.; Xiong, D.; Zhang, Y. Antioxidant Response and Oxidative Stress in the Respiratory Tree of Sea Cucumber (Apostichopus japonicus) Following Exposure to Crude Oil and Chemical Dispersant. J. Mar. Sci. Eng. 2020, 8, 547. https://doi.org/10.3390/jmse8080547
Li X, Liao G, Ju Z, Wang C, Li N, Xiong D, Zhang Y. Antioxidant Response and Oxidative Stress in the Respiratory Tree of Sea Cucumber (Apostichopus japonicus) Following Exposure to Crude Oil and Chemical Dispersant. Journal of Marine Science and Engineering. 2020; 8(8):547. https://doi.org/10.3390/jmse8080547
Chicago/Turabian StyleLi, Xishan, Guoxiang Liao, Zhonglei Ju, Chengyan Wang, Nan Li, Deqi Xiong, and Yulu Zhang. 2020. "Antioxidant Response and Oxidative Stress in the Respiratory Tree of Sea Cucumber (Apostichopus japonicus) Following Exposure to Crude Oil and Chemical Dispersant" Journal of Marine Science and Engineering 8, no. 8: 547. https://doi.org/10.3390/jmse8080547
APA StyleLi, X., Liao, G., Ju, Z., Wang, C., Li, N., Xiong, D., & Zhang, Y. (2020). Antioxidant Response and Oxidative Stress in the Respiratory Tree of Sea Cucumber (Apostichopus japonicus) Following Exposure to Crude Oil and Chemical Dispersant. Journal of Marine Science and Engineering, 8(8), 547. https://doi.org/10.3390/jmse8080547