Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = wakeful idling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7819 KiB  
Review
Low-Power Wake-Up Receivers for Resilient Cellular Internet of Things
by Siyu Wang, Trevor J. Odelberg, Peter W. Crary, Mason P. Obery and David D. Wentzloff
Information 2025, 16(1), 43; https://doi.org/10.3390/info16010043 - 13 Jan 2025
Viewed by 2220
Abstract
Smart Cities leverage large networks of wirelessly connected nodes embedded with sensors and/or actuators. Cellular IoT, such as NB-IoT and 5G RedCap, is often preferred for these applications thanks to its long range, extensive coverage, and good quality of service. In these networks, [...] Read more.
Smart Cities leverage large networks of wirelessly connected nodes embedded with sensors and/or actuators. Cellular IoT, such as NB-IoT and 5G RedCap, is often preferred for these applications thanks to its long range, extensive coverage, and good quality of service. In these networks, wireless communication dominates power consumption, motivating research on energy-efficient yet resilient and robust wireless systems. Many IoT use cases require low latency but cannot afford high-power radios continuously operating to accomplish this. In these cases, wake-up receivers (WURs) are a promising solution: while the high-power main radio (MR) is turned off/idle, a lightweight WUR is continuously monitoring the RF channel; when it detects a wake-up sequence, the WUR will turn on the MR for subsequent communications. This article provides an overview of WUR hardware design considerations and challenges for 4G and 5G cellular IoT, summarizes the recent 3GPP activities to standardize NB-IoT and 5G wake-up signals, and presents a state-of-the-art WUR chip. Full article
(This article belongs to the Special Issue IoT-Based Systems for Resilient Smart Cities)
Show Figures

Graphical abstract

15 pages, 1154 KiB  
Article
Super-Regenerative Receiver Wake-Up Radio Solution for 5G New Radio Communications
by Francesc Xavier Moncunill-Geniz, Francisco del-Águila-López, Ilker Demirkol, Jordi Bonet-Dalmau and Pere Palà-Schönwälder
Electronics 2023, 12(24), 5011; https://doi.org/10.3390/electronics12245011 - 14 Dec 2023
Viewed by 1874
Abstract
Wake-up radio is a promising solution to reduce the energy wasted by mobile devices during an idle state. In this paper, we propose a new wake-up radio solution for 5G mobile devices based on a super-regenerative receiver characterized by its low cost and [...] Read more.
Wake-up radio is a promising solution to reduce the energy wasted by mobile devices during an idle state. In this paper, we propose a new wake-up radio solution for 5G mobile devices based on a super-regenerative receiver characterized by its low cost and low power consumption and investigate how to build on the orthogonal frequency-division multiplexing (OFDM) modulation capability at the base station to generate optimal wake-up signals. After presenting the relevant features and limitations of super-regenerative receivers operating in different 5G New Radio (NR) frequency bands, we evaluate how the numerology, the number of resource blocks, and the quadrature amplitude modulation (QAM) scheme used affect the sensitivity of the super-regenerative wake-up receiver. The results show that a 256-QAM modulation scheme, together with the highest numerology values, achieves optimal receiver sensitivity with a minimal number of resource blocks, yielding higher duty cycle pulses that also facilitate symbol synchronization tasks. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

21 pages, 1778 KiB  
Review
The Birth of the Mammalian Sleep
by Rubén V. Rial, Francesca Canellas, Mourad Akaârir, José A. Rubiño, Pere Barceló, Aida Martín, Antoni Gamundí and M. Cristina Nicolau
Biology 2022, 11(5), 734; https://doi.org/10.3390/biology11050734 - 11 May 2022
Cited by 5 | Viewed by 4580
Abstract
Mammals evolved from small-sized reptiles that developed endothermic metabolism. This allowed filling the nocturnal niche. They traded-off visual acuity for sensitivity but became defenseless against the dangerous daylight. To avoid such danger, they rested with closed eyes in lightproof burrows during light-time. This [...] Read more.
Mammals evolved from small-sized reptiles that developed endothermic metabolism. This allowed filling the nocturnal niche. They traded-off visual acuity for sensitivity but became defenseless against the dangerous daylight. To avoid such danger, they rested with closed eyes in lightproof burrows during light-time. This was the birth of the mammalian sleep, the main finding of this report. Improved audition and olfaction counterweighed the visual impairments and facilitated the cortical development. This process is called “The Nocturnal Evolutionary Bottleneck”. Pre-mammals were nocturnal until the Cretacic-Paleogene extinction of dinosaurs. Some early mammals returned to diurnal activity, and this allowed the high variability in sleeping patterns observed today. The traits of Waking Idleness are almost identical to those of behavioral sleep, including homeostatic regulation. This is another important finding of this report. In summary, behavioral sleep seems to be an upgrade of Waking Idleness Indeed, the trait that never fails to show is quiescence. We conclude that the main function of sleep consists in guaranteeing it during a part of the daily cycle. Full article
(This article belongs to the Special Issue Advance in Sleep and Circadian Rhythms)
Show Figures

Figure 1

23 pages, 7186 KiB  
Article
QMMAC: Quorum-Based Multichannel MAC Protocol for Wireless Sensor Networks
by Eman Alzahrani and Fatma Bouabdallah
Sensors 2021, 21(11), 3789; https://doi.org/10.3390/s21113789 - 30 May 2021
Cited by 8 | Viewed by 3132
Abstract
In wireless sensor networks, energy conservation is a critical task. Thus, it is crucial to design an effective MAC protocol that minimizes energy consumption while guaranteeing high network throughput and low delay. In this article, we propose a quorum-based multichannel MAC protocol (QMMAC) [...] Read more.
In wireless sensor networks, energy conservation is a critical task. Thus, it is crucial to design an effective MAC protocol that minimizes energy consumption while guaranteeing high network throughput and low delay. In this article, we propose a quorum-based multichannel MAC protocol (QMMAC) for corona-based WSNs. QMMAC utilizes the multichannel communication feature and the quorum concept to greatly increase the throughput while conserving energy. The aim of this protocol is to allow each node and all its forwarders to wake up at the same time while avoiding collision and overhearing by separating their simultaneous communications using the multichannel feature. More precisely, the main idea of QMMAC is twofold. First, QMMAC wakeup scheduling is designed to minimize the end-to-end delay by allowing nodes to wake up at exactly the same time as their potential forwarders, whereas nodes that are not acting as forwarders for each other wake up at a completely different time, and thus overhearing, idle listening and collisions are avoided. Second, channel assignment, which also uses the concept of quorums, is used to share data channels so that there is no conflict or additional packet exchange required to negotiate the availability of channels. Thus, the end-to-end delay is further minimized as well as collisions between conflicting neighbors are avoided. Simulation results indicate that the network performance is improved by QMMAC in terms of energy efficiency, throughput and end-to-end delay. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

19 pages, 3226 KiB  
Article
An Emergency Alert Broadcast Based on the Convergence of 5G and ATSC 3.0
by Yoon-Kwan Byun, Sekchin Chang and Seong Jong Choi
Electronics 2021, 10(6), 758; https://doi.org/10.3390/electronics10060758 - 23 Mar 2021
Cited by 1 | Viewed by 3364
Abstract
We propose a novel emergency alert broadcast mechanism for mobile phone users, which is based on the convergence of 5G and ATSC 3.0. Cellular networks including 5G adopt a broadcast technique for emergency alert. This technique just delivers a text-based message. Moreover, the [...] Read more.
We propose a novel emergency alert broadcast mechanism for mobile phone users, which is based on the convergence of 5G and ATSC 3.0. Cellular networks including 5G adopt a broadcast technique for emergency alert. This technique just delivers a text-based message. Moreover, the message only includes a limited number of characters. Therefore, cellular networks cannot afford to provide abundant information in emergency cases. Broadcast networks such as ATSC 3.0 also offer an emergency alert broadcast service. This service can deliver a multimedia-based message in emergency cases. Therefore, the ATSC 3.0 supports more abundant information in the cases of emergency alert broadcasts. Especially, the ATSC 3.0 employs wake-up functionality and location information, which enables the delivery of emergency alerts to idle-state receivers in emergency areas. However, it is unlikely that the wake-up functionality and the location information are directly applicable to mobile phone users due to some practical issues. In order to improve the emergency alert broadcast service in mobile environments, we converge the 5G and the ATSC 3.0 networks, which effectively exploits the advantages of the networks. For the convergence network, we suggest a modified table, which associates the 5G message with the ATSC 3.0 message in the cases of emergency alerts. We also present a novel scenario for delivery of the emergency alert messages. Simulation results show that the convergence significantly enhances the receiver performance for emergency alert broadcast. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

19 pages, 2256 KiB  
Article
Energy-Efficient Method for Wireless Sensor Networks Low-Power Radio Operation in Internet of Things
by Mehdi Amirinasab Nasab, Shahaboddin Shamshirband, Anthony Theodore Chronopoulos, Amir Mosavi and Narjes Nabipour
Electronics 2020, 9(2), 320; https://doi.org/10.3390/electronics9020320 - 12 Feb 2020
Cited by 48 | Viewed by 6170
Abstract
The radio operation in wireless sensor networks (WSN) in Internet of Things (IoT) applications is the most common source for power consumption. Consequently, recognizing and controlling the factors affecting radio operation can be valuable for managing the node power consumption. Among essential factors [...] Read more.
The radio operation in wireless sensor networks (WSN) in Internet of Things (IoT) applications is the most common source for power consumption. Consequently, recognizing and controlling the factors affecting radio operation can be valuable for managing the node power consumption. Among essential factors affecting radio operation, the time spent for checking the radio is of utmost importance for monitoring power consumption. It can lead to false WakeUp or idle listening in radio duty cycles and ContikiMAC. ContikiMAC is a low-power radio duty-cycle protocol in Contiki OS used in WakeUp mode, as a clear channel assessment (CCA) for checking radio status periodically. This paper presents a detailed analysis of radio WakeUp time factors of ContikiMAC. Furthermore, we propose a lightweight CCA (LW-CCA) as an extension to ContikiMAC to reduce the Radio Duty-Cycles in false WakeUps and idle listening though using dynamic received signal strength indicator (RSSI) status check time. The simulation results in the Cooja simulator show that LW-CCA reduces about 8% energy consumption in nodes while maintaining up to 99% of the packet delivery rate (PDR). Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

16 pages, 2602 KiB  
Article
An Adaptive Wake-Up-Interval to Enhance Receiver-Based Ps-Mac Protocol for Wireless Sensor Networks
by Mohammed Sani Adam, Lip Yee Por, Mohammad Rashid Hussain, Nawsher Khan, Tan Fong Ang, Mohammad Hossein Anisi, Zhirui Huang and Ihsan Ali
Sensors 2019, 19(17), 3732; https://doi.org/10.3390/s19173732 - 29 Aug 2019
Cited by 11 | Viewed by 3832
Abstract
Many receiver-based Preamble Sampling Medium Access Control (PS-MAC) protocols have been proposed to provide better performance for variable traffic in a wireless sensor network (WSN). However, most of these protocols cannot prevent the occurrence of incorrect traffic convergence that causes the receiver node [...] Read more.
Many receiver-based Preamble Sampling Medium Access Control (PS-MAC) protocols have been proposed to provide better performance for variable traffic in a wireless sensor network (WSN). However, most of these protocols cannot prevent the occurrence of incorrect traffic convergence that causes the receiver node to wake-up more frequently than the transmitter node. In this research, a new protocol is proposed to prevent the problem mentioned above. The proposed mechanism has four components, and they are Initial control frame message, traffic estimation function, control frame message, and adaptive function. The initial control frame message is used to initiate the message transmission by the receiver node. The traffic estimation function is proposed to reduce the wake-up frequency of the receiver node by using the proposed traffic status register (TSR), idle listening times (ILTn, ILTk), and “number of wake-up without receiving beacon message” (NWwbm). The control frame message aims to supply the essential information to the receiver node to get the next wake-up-interval (WUI) time for the transmitter node using the proposed adaptive function. The proposed adaptive function is used by the receiver node to calculate the next WUI time of each of the transmitter nodes. Several simulations are conducted based on the benchmark protocols. The outcome of the simulation indicates that the proposed mechanism can prevent the incorrect traffic convergence problem that causes frequent wake-up of the receiver node compared to the transmitter node. Moreover, the simulation results also indicate that the proposed mechanism could reduce energy consumption, produce minor latency, improve the throughput, and produce higher packet delivery ratio compared to other related works. Full article
(This article belongs to the Special Issue Vehicular Sensor Networks: Applications, Advances and Challenges)
Show Figures

Figure 1

33 pages, 4443 KiB  
Review
Advances and Opportunities in Passive Wake-Up Radios with Wireless Energy Harvesting for the Internet of Things Applications
by Hilal Bello, Zeng Xiaoping, Rosdiadee Nordin and Jian Xin
Sensors 2019, 19(14), 3078; https://doi.org/10.3390/s19143078 - 12 Jul 2019
Cited by 41 | Viewed by 8947
Abstract
Wake-up radio is a promising approach to mitigate the problem of idle listening, which incurs additional power consumption for the Internet of Things (IoT) wireless transmission. Radio frequency (RF) energy harvesting technique allows the wake-up radio to remain in a deep sleep and [...] Read more.
Wake-up radio is a promising approach to mitigate the problem of idle listening, which incurs additional power consumption for the Internet of Things (IoT) wireless transmission. Radio frequency (RF) energy harvesting technique allows the wake-up radio to remain in a deep sleep and only become active after receiving an external RF signal to ‘wake-up’ the radio, thus eliminating necessary hardware and signal processing to perform idle listening, resulting in higher energy efficiency. This review paper focuses on cross-layer; physical and media access control (PHY and MAC) approaches on passive wake-up radio based on the previous works from the literature. First, an explanation of the circuit design and system architecture of the passive wake-up radios is presented. Afterward, the previous works on RF energy harvesting techniques and the existing passive wake-up radio hardware architectures available in the literature are surveyed and classified. An evaluation of the various MAC protocols utilized for the novel passive wake-up radio technologies is presented. Finally, the paper highlights the potential research opportunities and practical challenges related to the practical implementation of wake-up technology for future IoT applications. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

19 pages, 9458 KiB  
Article
Hybrid Rocket Underwater Propulsion: A Preliminary Assessment
by Heejang Moon, Seongjoo Han, Youngjun You and Minchan Kwon
Aerospace 2019, 6(3), 28; https://doi.org/10.3390/aerospace6030028 - 6 Mar 2019
Cited by 13 | Viewed by 9394
Abstract
This paper presents an attempt to use the hybrid rocket for marine applications with a 500 N class hybrid motor. A 5-port high density polyethylene (HDPE) fuel grain was used as a test-bed for the preliminary assessment of the underwater boosting device. A [...] Read more.
This paper presents an attempt to use the hybrid rocket for marine applications with a 500 N class hybrid motor. A 5-port high density polyethylene (HDPE) fuel grain was used as a test-bed for the preliminary assessment of the underwater boosting device. A rupture disc preset to burst at a given pressure was attached to the nozzle exit to prevent water intrusion where a careful hot-firing sequence was unconditionally required to avoid the wet environment within the chamber. The average thrust level around 450 N was delivered by both a ground test and an underwater test using a water-proof load cell. However, it was found that instantaneous underwater thrusts were prone to vibration, which was due in part to the wake structure downstream of the nozzle exit. Distinctive ignition curves depending on the rupture disc bursting pressure and oxidizer mass flow rate were also investigated. To assess the soft-start capability of the hybrid motor, the minimum power thrust, viewed as the idle test case, was evaluated by modulating the flow controlling valve. It was found that an optimum valve angle, delivering 16.3% of the full throttle test case, sustained the minimum thrust level. This preliminary study suggests that the throttable hybrid propulsion system can be a justifiable candidate for a short-duration, high-speed marine boosting system as an alternative to the solid underwater propulsion system. Full article
Show Figures

Figure 1

31 pages, 673 KiB  
Article
Potential of Wake-Up Radio-Based MAC Protocols for Implantable Body Sensor Networks (IBSN)—A Survey
by Vignesh Raja Karuppiah Ramachandran, Eyuel D. Ayele, Nirvana Meratnia and Paul J. M. Havinga
Sensors 2016, 16(12), 2012; https://doi.org/10.3390/s16122012 - 29 Nov 2016
Cited by 6 | Viewed by 5906
Abstract
With the advent of nano-technology, medical sensors and devices are becoming highly miniaturized. Consequently, the number of sensors and medical devices being implanted to accurately monitor and diagnose a disease is increasing. By measuring the symptoms and controlling a medical device as close [...] Read more.
With the advent of nano-technology, medical sensors and devices are becoming highly miniaturized. Consequently, the number of sensors and medical devices being implanted to accurately monitor and diagnose a disease is increasing. By measuring the symptoms and controlling a medical device as close as possible to the source, these implantable devices are able to save lives. A wireless link between medical sensors and implantable medical devices is essential in the case of closed-loop medical devices, in which symptoms of the diseases are monitored by sensors that are not placed in close proximity of the therapeutic device. Medium Access Control (MAC) is crucial to make it possible for several medical devices to communicate using a shared wireless medium in such a way that minimum delay, maximum throughput, and increased network life-time are guaranteed. To guarantee this Quality of Service (QoS), the MAC protocols control the main sources of limited resource wastage, namely the idle-listening, packet collisions, over-hearing, and packet loss. Traditional MAC protocols designed for body sensor networks are not directly applicable to Implantable Body Sensor Networks (IBSN) because of the dynamic nature of the radio channel within the human body and the strict QoS requirements of IBSN applications. Although numerous MAC protocols are available in the literature, the majority of them are designed for Body Sensor Network (BSN) and Wireless Sensor Network (WSN). To the best of our knowledge, there is so far no research paper that explores the impact of these MAC protocols specifically for IBSN. MAC protocols designed for implantable devices are still in their infancy and one of their most challenging objectives is to be ultra-low-power. One of the technological solutions to achieve this objective so is to integrate the concept of Wake-up radio (WuR) into the MAC design. In this survey, we present a taxonomy of MAC protocols based on their use of WuR technology and identify their bottlenecks to be used in IBSN applications. Furthermore, we present a number of open research challenges and requirements for designing an energy-efficient and reliable wireless communication protocol for IBSN. Full article
(This article belongs to the Special Issue Advances in Body Sensor Networks: Sensors, Systems, and Applications)
Show Figures

Figure 1

19 pages, 2939 KiB  
Article
On-Demand Sensor Node Wake-Up Using Solar Panels and Visible Light Communication
by Carolina Carrascal, Ilker Demirkol and Josep Paradells
Sensors 2016, 16(3), 418; https://doi.org/10.3390/s16030418 - 22 Mar 2016
Cited by 15 | Viewed by 10574
Abstract
To significantly reduce, or eliminate completely, the energy waste caused by the standby (idle) mode of wireless sensor nodes, we propose a novel on-demand wake-up system, which allows the nodes to be put into sleep mode unless their activation is truly necessary. Although [...] Read more.
To significantly reduce, or eliminate completely, the energy waste caused by the standby (idle) mode of wireless sensor nodes, we propose a novel on-demand wake-up system, which allows the nodes to be put into sleep mode unless their activation is truly necessary. Although there have been many studies proposing RF-based wake-up radio systems, in this work, we develop the first visible light communication (VLC)-based wake-up system. The developed system can extend the existing VLC systems and can be exploited to derive new application areas such as VLC tags. The system uses an off-the-shell indoor solar panel as receptor device of the wake-up signal as well as for energy harvesting purposes, through which it is able to harvest enough energy for its autonomous work. The design, implementation details and the experimental evaluation results are presented, which include flickering characterization and wake-up range evaluations. The results show that the developed system achieve reasonable wake-up distances for indoor environments, mainly where the use of VLC systems are considered. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Graphical abstract

33 pages, 3847 KiB  
Article
An On-Demand Emergency Packet Transmission Scheme for Wireless Body Area Networks
by Moshaddique Al Ameen and Choong Seon Hong
Sensors 2015, 15(12), 30584-30616; https://doi.org/10.3390/s151229819 - 4 Dec 2015
Cited by 16 | Viewed by 6801
Abstract
The rapid developments of sensor devices that can actively monitor human activities have given rise to a new field called wireless body area network (BAN). A BAN can manage devices in, on and around the human body. Major requirements of such a network [...] Read more.
The rapid developments of sensor devices that can actively monitor human activities have given rise to a new field called wireless body area network (BAN). A BAN can manage devices in, on and around the human body. Major requirements of such a network are energy efficiency, long lifetime, low delay, security, etc. Traffic in a BAN can be scheduled (normal) or event-driven (emergency). Traditional media access control (MAC) protocols use duty cycling to improve performance. A sleep-wake up cycle is employed to save energy. However, this mechanism lacks features to handle emergency traffic in a prompt and immediate manner. To deliver an emergency packet, a node has to wait until the receiver is awake. It also suffers from overheads, such as idle listening, overhearing and control packet handshakes. An external radio-triggered wake up mechanism is proposed to handle prompt communication. It can reduce the overheads and improve the performance through an on-demand scheme. In this work, we present a simple-to-implement on-demand packet transmission scheme by taking into considerations the requirements of a BAN. The major concern is handling the event-based emergency traffic. The performance analysis of the proposed scheme is presented. The results showed significant improvements in the overall performance of a BAN compared to state-of-the-art protocols in terms of energy consumption, delay and lifetime. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Graphical abstract

19 pages, 834 KiB  
Article
A Long-Range Directional Wake-Up Radio for Wireless Mobile Networks
by Wen-Chan Shih, Raja Jurdak, David Abbott, Pai H. Chou and Wen-Tsuen Chen
J. Sens. Actuator Netw. 2015, 4(3), 189-207; https://doi.org/10.3390/jsan4030189 - 3 Aug 2015
Cited by 4 | Viewed by 8371
Abstract
This paper describes a long-range directional wake-up radio (LDWuR) for wireless mobile networks. In contrast to most wake-up radios (WuR) to date, which are short range, ours is applicable to long-range deployments. Existing studies achieve long distance by using modulation and coding schemes [...] Read more.
This paper describes a long-range directional wake-up radio (LDWuR) for wireless mobile networks. In contrast to most wake-up radios (WuR) to date, which are short range, ours is applicable to long-range deployments. Existing studies achieve long distance by using modulation and coding schemes or by directional antennas, though the latter require exploring the direction of the transmitter. To address this issue, our LDWuR adopts both static and dynamic antennas, where the static ones are directional, while the dynamic ones are omnidirectional for beamforming. We present our LDWuR prototype and design principle. Simulation results show that our LDWuR and event-driven MAC protocol suppress the idle-listening of Wi-Fi stations in a wireless network, thereby enhancing the Wi-Fi power savings. Full article
(This article belongs to the Special Issue Directional Antenna Enhanced Wireless Ad Hoc and Sensor Networks)
Show Figures

Figure 1

18 pages, 316 KiB  
Article
Modeling and Performance Analysis of State Transitions for Energy-Efficient Femto Base Stations
by YunWon Chung
Energies 2015, 8(5), 4629-4646; https://doi.org/10.3390/en8054629 - 21 May 2015
Cited by 2 | Viewed by 4216
Abstract
Lowering the energy required by base stations (BSs) is one of the hot issues nowadays in order to achieve green cellular networks. The energy consumption of femto BSs can be reduced, by turning off the radio interface when there is no mobile station [...] Read more.
Lowering the energy required by base stations (BSs) is one of the hot issues nowadays in order to achieve green cellular networks. The energy consumption of femto BSs can be reduced, by turning off the radio interface when there is no mobile station (MS) under the coverage area of the femto BSs or MSs served by the femto BSs do not transmit or receive data packets for a long time, especially late at night. In the energy-efficient femto BSs, if MSs have any data packet to transmit and the radio interface of femto BSs is in the off state, MSs wake up the radio interface of femto BSs by using an additional low-power radio interface. In this paper, active (data), idle, active (signaling), sleep entering, sleep and waking up states are defined for the state model for the energy-efficient femto BSs, and the state transitions are modeled analytically. The steady-state probability of each state is derived thoroughly using a semi-Markov approach. Then, the performance of the energy-efficient femto BSs is analyzed in detail, from the aspects of energy consumption, cumulative average delay, cost and low-power radio signaling load. From the results, the tradeoff relationship between energy consumption and cumulative average delay is analyzed in detail, and it was concluded that an appropriate inactivity timer value should be selected to balance the tradeoff. Full article
Show Figures

16 pages, 394 KiB  
Article
The Changing Effectiveness of Monetary Policy
by Jonathan E. Leightner
Economies 2013, 1(3), 49-64; https://doi.org/10.3390/economies1030049 - 13 Nov 2013
Cited by 1 | Viewed by 7285
Abstract
In the wake of the 2008 financial crisis, many countries are hoping that massive increases in their money supplies will revive their economies. Evaluating the effectiveness of this strategy using traditional statistical methods would require the construction of an extremely complex economic model [...] Read more.
In the wake of the 2008 financial crisis, many countries are hoping that massive increases in their money supplies will revive their economies. Evaluating the effectiveness of this strategy using traditional statistical methods would require the construction of an extremely complex economic model of the world that showed how each country’s situation affected all other countries. No matter how complex that model was, it would always be subject to the criticism that it had omitted important variables. Omitting important variables from traditional statistical methods ruins all estimates and statistics. This paper uses a relatively new statistical method that solves the omitted variables problem. This technique produces a separate slope estimate for each observation which makes it possible to see how the estimated relationship has changed over time due to omitted variables. I find that the effectiveness of monetary policy has fallen between the first quarter of 2003 and the fourth quarter of 2012 by 14%, 36%, 38%, 32%, 29% and 69% for Japan, the UK, the USA, the Euro area, Brazil, and the Russian Federation respectively. I hypothesize that monetary policy is suffering from diminishing returns because it cannot address the fundamental problem with the world’s economy today; that problem is a global glut of savings that is either sitting idle or funding speculative bubbles. Full article
(This article belongs to the Special Issue Effects of Fiscal and Monetary Policy in the Great Recession)
Show Figures

Figure 1

Back to TopTop