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Abstract: This paper presents an attempt to use the hybrid rocket for marine applications with a
500 N class hybrid motor. A 5-port high density polyethylene (HDPE) fuel grain was used as a
test-bed for the preliminary assessment of the underwater boosting device. A rupture disc preset to
burst at a given pressure was attached to the nozzle exit to prevent water intrusion where a careful
hot-firing sequence was unconditionally required to avoid the wet environment within the chamber.
The average thrust level around 450 N was delivered by both a ground test and an underwater
test using a water-proof load cell. However, it was found that instantaneous underwater thrusts
were prone to vibration, which was due in part to the wake structure downstream of the nozzle exit.
Distinctive ignition curves depending on the rupture disc bursting pressure and oxidizer mass flow
rate were also investigated. To assess the soft-start capability of the hybrid motor, the minimum
power thrust, viewed as the idle test case, was evaluated by modulating the flow controlling valve.
It was found that an optimum valve angle, delivering 16.3% of the full throttle test case, sustained
the minimum thrust level. This preliminary study suggests that the throttable hybrid propulsion
system can be a justifiable candidate for a short-duration, high-speed marine boosting system as an
alternative to the solid underwater propulsion system.

Keywords: hybrid rocket; marine propulsion; rupture disc; idling operation; underwater
environment

1. Introduction

Underwater propulsion systems using conventional chemical rockets are uncommon and quite
rare because of their short operating time, high noise, non-stealthiness, and shallow water depth
operability with respect to the screw propeller driven system. These result from the limitations
of a hot gas jet propulsive mechanism, which differs from the mechanical driver device where
two-phase flow and high water-to-gas density ratios are present at the exit of the convergent/divergent
nozzle, complicating the flow structure [1,2]. Mechanical driver devices, i.e., screw propellers,
are usually driven by diesel engines, gas turbines, or even nuclear reactors for marine vessels,
while, with the exception of rare trials using rocket propulsion, compressed heated air, electric
motors, monopropellants, and gas turbines are used mostly for torpedoes. Modern marine vehicle
development, either for watercrafts or torpedoes, focuses on speed augmentation, longer range and
noise reduction, and additional depth increase for the underwater apparatus [3]. None of these factors
are favorable for rocket application for marine propulsion, except for the speed augmentation, since the
objective of a high-speed exhaust gas jet is a means of propulsion rather than noise reduction [4]. If a
short-range and high-speed vehicle is enough for tactical purpose without taking any countermeasure
for the noise, the underwater rocket propulsion could be an answer [4–6].
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From the 20th century until today, marine propulsion designers and engineers have worked to
increase torpedo speeds such that the modern high performing torpedo generally operates at around
50 knots. It is known that the increase of necessary power is proportional to the cubic of the rotational
shaft speed, and therefore 240% increase in power output is required for a speed increase from 45 to 60
knots with a mechanically driven screw propeller [5,6]. Thus, rocket propulsion has been sporadically
considered even up to the present time. From the first US Navy trial of the Ericsson rocket [4] proposed
in the early 1880s to the recent “supercavitating rocket” [7], the underwater rocket has its own heritage
with respect to the conventional torpedo in terms of cost, lack of moving parts, simplicity, minimal
preparation, low maintenance, and low weight, depending on the rocket type. Research interest in
high-speed torpedoes relying on solid propellant rockets increased in the past mid-twentieth century
following World War II due to their speed, low cost, reliability, and negligible pre-launch preparation
requirements [4]. To the authors’ knowledge, projects such as HEYDAY [4], CAMROSE [4,5] for
anti-torpedo mission shown in Figure 1a, and BOOTLEG [4,5] for anti-ship missions were the earliest
rocket-propelled torpedo studies conceived by the British since World War II. However, these projects
were all abandoned due to the lack of financial support, which instead prioritized noise reduction
studies. The focus of this study is not on supercavitating rockets nor on torpedo applications. Rather,
the work proposed in this paper is focused on conventional chemical rocket propulsion systems for
marine vessels.

In addition to a pure underwater main propulsion device, a rocket can also be envisaged as an
auxiliary propulsion device for boosting the already running watercraft for some duration when used
together with the conventional screw propeller driven system [8–12]. If a further rocket thrust variation
is achievable, it would increase the mission flexibility of a marine vessel. It is also important to mention
that thrust control for a soft-start is essential for marine vessels because the sudden acceleration in the
start-up stage is dangerous, since it can disrupt the balance of the marine vehicle. Hence, the throttable
rocket propulsion system can not only be applied to conventional vessels but also to high-speed vessels,
which can be faster than the speed of ”Ghost” (50 knots), built by Juliet Marine System shown in
Figure 1b, which uses a gas turbine based engine [13].
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Until now, there has been no systematic classification of solid, liquid, and hybrid rockets for
underwater environments. Marine propulsion using a solid propellant rocket has two main drawbacks:
(1) the lack of thrust modulation capability with respect to hybrid and liquid counterparts; and (2) the
low thrust level required for somewhat longer underwater operations. For the former, a lack of thrust
modulation capability by means of propellant feed rate is a key classical drawback of solid propellant
rockets since the thrust controllability is not frequently demanded for solid propellant systems. For the
latter, solid propellant underwater propulsion systems have no choice but to have low thrust levels
because these solid propellant rockets are forced to have “end-burning” grain configurations for
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prolonged operation time. The enlargement of propellant grain diameter required for a tubular port
solid propellant grain is not a good solution for increasing the thrust level or for increasing the
operating time because the drag force is increased as the square of the diameter. Concerning the liquid
propellant rocket, it is obvious that its relatively heavy weight, large dimension, and complicated
plumbing system are not very effective for underwater application.

Meanwhile, with its thrust controllability, the hybrid rocket used to be known as a cost-saving
rocket with many advantages in terms of insensitivity of fuel, multiple shut on/off capability, easy
handling, and environmental friendliness compared to solid and liquid propellant rockets. In addition,
a typical hybrid propellant system can achieve a higher specific impulse than a solid propellant system,
even though the belief that the hybrid propulsion system has a lower thrust/weight ratio than the solid
propulsion system due to the addition of an oxidizer tank is still controversial in the field. Nonetheless,
the throttleability of a propulsion system using a solidified fuel by means of a single oxidizer flow
is very attractive since it reduces tremendous plumbing unlike conventional liquid bi-propellant
systems. Owing to this, the underwater hybrid rocket can be an attractive alternative to solid or liquid
counterparts, not to mention a safer alternative. Furthermore, common solid fuels used in the hybrid
rocket propulsion system are suitable in humid environments due to the moisture-resistance of these
fuels. From this point of view, a novel application of a hybrid rocket propulsion system for underwater
application is introduced in this paper.

This study aimed to demonstrate the feasibility of the hybrid rocket application in an underwater
environment rather than underlying interests on motor performance, e.g., use of high performing
cryogenic oxidizers like liquid oxygen (LOX) [14–16] and use of high regression rate fuels with energetic
particle addition [16–18] or swirl assisted injectors [19,20]. For this reason, nitrous oxide (N2O) was
selected as the oxidizer since it does not require an additional pressurization system, while high
density polyethylene (HDPE) was selected as the fuel since HDPE is known to be easily accessible
for academic purposes in laboratory scale experiments. This is one of the simplest and most compact
hybrid propulsion systems that can minimize the vehicle weight and the number of components.
A series of hot firing tests was conducted to demonstrate the feasibility of the hybrid rocket application
in an underwater environment where the 500 N class lab-scale hybrid rocket motors were used together
for the underwater experimental set-up. A rupture disc was attached to the nozzle exit during each
test to prevent the intrusion of water. Special emphasis was also placed on investigating the oxidizer
supply timing and ignition characteristics. We also investigated the feasibility of an underwater hybrid
rocket system in terms of full power thrust and factors to be assessed for minimum power thrust, i.e.,
the idle case.

2. Underwater Setup

2.1. Underwater Experimental System

Figure 2 shows the schematic of the experimental setup for the 500 N class lab-scale hybrid rocket
motor used for the static-tests. The experimental setup of each unit was composed of an oxidizer feed
system, ignition system, data acquisition (DAQ) system, and the hybrid rocket motor, where the unit
number 8 represented the water filled tank. For the ground test, the hybrid motor was out of the water
tank, while for the underwater test, a supplemental cap plugged in the rocket nozzle exit and the water
filled tank accommodating the hybrid motor were additionally used.

The cross-sectional view of the lab-scale hybrid motor used both for ground and underwater
combustion experiments is shown in Figure 3a. From the head-end, a shower head injector,
pre-chamber, fuel grain, post-combustion chamber and a water-cooled copper nozzle used to prevent
over-heating of the environment were all attached in-line making a total motor length of 457 mm.
Pressure transducers were each mounted in the pre-chamber and post-chamber for static pressure
measurement with a K type thermocouple to monitor the temperature level in the nozzle section.
Figure 3b is an outer tank view showing the vertical transfer line, nozzle cooling line, and a cap
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plugged into the nozzle exit with the motor unit. The supplemental cap for the underwater firing test
comprised a rupture disc provided by FDC Co. Ltd. (shown in Figure 4a,b) that not only prevented
the intrusion of water during the ignition stage, but also blasts at a given preset chamber pressure.
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Figure 5 shows the oxidizer supply system for the ground and underwater experiments.
All combustion experiments were conducted in blow down mode using liquid N2O by assuming no
spontaneous mixing of the liquid and vapor during the evacuation of N2O from the tank. The oxidizer
run tank was charged from two N2O tanks, and the oxidizer mass flow rate was measured by a load
cell capable of measuring the weight change in the run tank. Additionally, plumbing was installed
at the bottom of the oxidizer run tank so that the liquid N2O could be discharged in advance of gas
phase N2O.
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2.2. Internal Ballistics

Table 1 lists some specifications of the basic experimental conditions and fuel geometry, where
liquid nitrous oxide and HDPE were used for the oxidizer and solid fuel, respectively. A 5-port fuel
grain was chosen to shorten the motor length instead of a single port grain to avoid an unrealistically
long motor unit. Figure 6a,b shows the front and side view of the 5-port grain, respectively, with an
initial port diameter of 10 mm and distance between port’s centers of 25.5 mm before the test. On the
other hand, Figure 7a,b each shows the front and rear view of the grain after combustion. One can
notice that with a burning time of 10 s, there was no merging event between ports during the hot firing
tests. An in-depth analysis on port merging can be found in reference [21].

Table 1. Specifications of the experimental conditions for underwater firing test.

Heading Heading

Design thrust (kgf) 50
Oxidizer Liquid nitrous oxide
Solid fuel High density polyethylene (HDPE)

Igniter Potassium nitrate/sorbitol (KNSB) propellant
Fuel density (kg/m3) 950

Burning time (s) 10
Oxidizer mass flow rate range (g/s) 15–134

Initial port diameter (mm) 10
Grain outer diameter (mm) 104.5

Port number 5
Grain length (mm) 146

In a typical hybrid rocket internal ballistic design, knowledge of the fuel regression rate is of
primary importance and crucial for the right performance prediction. Therefore, for the design of the
500 N class motor, the empirical regression rate of our previous works [21–24] for multi-port grains
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were used. The empirical relation used in this study for the overall regression rate,
.
r, was a time–space

(burning time–fuel length) averaged value:

.
r = 0.01G0.83

o (1)

The overall regression rate can be evaluated with the measured fuel mass difference ∆m, initial
and final port radius (Rpi and Rp f ) from the cross-section areas (Api and Ap f ), the port number N,
the fuel density ρ, and the fuel length L by following equations:

∆m
Nρ

=
(

Ap f − Api

)
L (2)

.
r ∼=

Rp f − Rpi

tb
(3)

Go is the averaged oxidizer mass flux defined as:

Go
∼=

4
.

mo

π
(

Rpi + Rp f

)2
N

(4)

where
.

mo is the averaged oxidizer mass flow rate. The complete details of the procedure can be found
in references [21–24]. Figure 8 shows the N2O/HDPE multi-port regression rate correlations [22]
where Equation (1) is the empirical relation corresponding to “three to seven” ports shown by the red
dotted line. It was found that three to seven-port HDPE laboratory scale grain can be fitted by a single
empirical regression rate. Results of ground and underwater hot-firing experiments using the 5-port
grain motor are shown in Section 3.1 and idle cases in Section 3.4.
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2.3. Underwater Subsystem (Ignition, Flow Control, Thrust Measurement)

Concerning the ignition system, Potassium Nitrate/Sorbitol (KNSB), widely used in
semi-professional rocketry, was used as a pyrotechnic ignition for simplicity. The KNSB igniter
was mounted upstream of the fuel port entrance inside the pre-combustion chamber, as shown in
Figure 9. The amount of igniter chosen was either 30 g or 60 g depending on the preset rupture disc
bursting pressure. The oxidizer mass flow control system was made using a commercially available
throttle valve with a stepping motor in which they are connected by a coupling for accurate alignment.
Among numerous valve types, pintle valves are known to be best fitted for hybrid and liquid propellant
rockets. However, they are expensive and custom-made. For this study, being a preliminary assessment
of an underwater hybrid rocket application, with the exception of the water-proof load cell, which
directly contacted the water, all underwater systems were assembled using conventional systems that
were widely available and cost effective, such as the ball valve, stepping motor, and KNSB ignition
system. Thus, the ball valve was selected for the oxidizer flow control considering the temperature
range of liquid nitrous oxide (–40 to 24 ◦C). The specification of the oxidizer control valve and stepping
motor are presented in Tables 2 and 3, respectively.
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Table 2. Specification of oxidizer mass flow control valve.

Model Supplier
(Country)

Orifice Diameter
(mm)

Temperature Rating
(◦C)

Pressure Rating
(bar)

VL82A-D-4T-S DK-lok (KOR) 3.2 −54 to 65 172

Table 3. Specification of oxidizer mass flow control motor.

Model Supplier
(Country) Motor Type Motion Max. Resolution

(deg/pulse)
Min. Resolution

(deg/pulse)

MDrive 23 Plus Schneider
Electric (USA) Stepping Motor CW/CCW 1.8 0.007

2.4. Water Filled Tank Containing the Motor

Figure 10 shows the accommodated laboratory scale motor within the filled water tank prior to
the underwater test. Three pressure transducers each measuring the static pressure of the injector
manifold, pre-chamber and post-chamber can be seen with a water-proof load cell (CAS SB-100L)
situated at the head end of the motor. The water tank was designed to have a minimum length and
width so that the wake reflected back from the far end of the tank wall would not disturb the jet flame
coming out of the nozzle. For the time being, we assumed that the reflected wake would merely
disturb the nozzle exit area. The width and depth were set as 1 m × 1 m with a total water capacity of
3 tons. The side wall of the water tank was made of tempered glass to aid in visualizing and observing
the wake structure. Figure 10 also shows the vertical transfer system that submerged the hybrid rocket
motor into the water where the motor base was set to be located at 70 cm beneath the water surface.
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2.5. Signal Command and Sequence

In order to guarantee a smooth and uniform ignition curve, the “pressure signal triggering loop”
was tested following the flow chart shown in Figure 11. During the ignition sequence, at the time when
the pre-chamber pressure attained the “preset Ox. v/v opening pressure”, the main oxidizer valve was
opened, and the igniter power was turned off simultaneously. The “preset Ox. v/v opening pressure”
was preset (before the combustion test) to 1.2 bar due to a delay time (0.5–0.7 s) existing between
power signal “on” and the real valve opening moment. As the rupture disc bursting pressure was
set to 2 bar (or 3 bar), the valve opening command was signaled earlier than expected to compensate
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this delay time. Figure 4a,b shows two rupture discs set to burst at a gauge pressure of 2 bar and
3 bar, respectively. If the hot firing test of 10 s duration is successful, nitrogen is purged for 8 s
and the sequence is terminated. On the contrary, if ignition does not occur within 15 s and thus,
the pre-chamber pressure does not rise, the test is stopped immediately. Detailed experimental cases
are shown in Table 4.
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Table 4. Ground and underwater hot-firing test cases.

Identifier GT_Lab-01 UT_Lab-01 UT_Lab-02 UT_Lab-03 UT_Lab-04

Test environment Ground Underwater

Oxidizer control valve angle (deg) w/o v/v w/o v/v 52 54 56

Average oxidizer mass flow rate (g/s) 121.1 134.6 15.0 22.0 32.0

Average fuel mass flow rate (g/s) 21.2 21.8 - 8.5 10.5

Average oxidizer-to-fuel (O/F) ratio 5.7 6.2 - 2.6 3.0

Rupture disc bursting pressure (bar) 2 2 3 3 3

Preset Ox. v/v opening pressure (bar) 1.2 1.2 1.2 1.2 1.2

Amount of pyrotechnic igniter (g) 30 30 60 60 60

3. Results and Discussion

3.1. Ground Tests versus Underwater Tests

In order to assess the technical feasibility of the hybrid rocket application in the underwater
environment, comparisons between underwater test results with ground test results were performed.
Firing test comparisons on these two different mediums were necessary to check any difference that
may exist on the chamber pressure and thrust level, or that may be revealed during the ignition time
and combustion period. Therefore, two identical hybrid motors, one for the ground test and one
another for the underwater test, were made and designated for their own medium. The pressure and
thrust curves of the ground tests are shown in Figure 12a,b, respectively, while those of underwater
tests are shown in Figure 12c,d. The unstable wavy pressure curve (from 7.5 to 11 s) in the early stage
of the ground test (GT_Lab-01) was due to the lengthy oxidizer feeding line, which required a settling
time until a sufficient amount of oxidizer was stably supplied. Due to the inherent characteristics
of the self-pressurized liquid nitrous oxide, whose tank pressure depends highly on the ambient
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temperature, the injected oxidizer supply pressure of ground and underwater cases could show a
difference. However, as seen in Figure 12a,c, the difference was minor. Additionally, the average thrust
level around 45 kgf, which corresponded to 90% of the design thrust, was observed for both cases.
Comparing the ground test data of Figure 12a,b with the underwater test data of Figure 12c,d, it was
found that there were no significant qualitative differences in chamber pressure curves and mean
thrust levels. The snapshots of hot-firing tests in atmospheric and underwater media are shown in
Figures 13 and 14, respectively.

It should be pointed out that as far as the nozzle throat is choked, the built-up pressure of the
combustion chamber for both the ground and underwater tests would behave similarly for the two
mediums. Conversely, it is expected that the combustion characteristics within the chamber of the
underwater rocket motor would differentiate with respect to the ground test case for the non-choked
nozzle, since the underwater back pressure, downstream of the nozzle exit, is subject to a violent
change during jet evacuation. However, in terms of thrust behavior in the underwater environment
and under choked nozzle conditions, it is questionable whether the underwater environment gives
a notable effect on thrust variation with respect to the ground case. Therefore, the following section
assesses the outer motor underwater environment.
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3.2. Thrust Oscillation in Underwater Environment

Extensive works [1,2,25–31] have reported that the gaseous jet injected into water results in
complicated flow structures due mainly to the high water-to-gas density ratio leading to an extremely
unsteady and turbulent multiphasic environment. In addition, the intermittent pulses of back
pressure and nozzle exit pressure make the prediction and measurement of the flow structures
extremely challenging either by computational fluid dynamics or experiments. From the literature [1,2],
the nozzle exit environment can be categorized as expansion, bulge, necking/breaking, and back-attack
depending on the formation and dissipation of the gas bag at the rear of the nozzle. In order to check
and validate the gas bag formation encountered in this study, snapshots of exiting gaseous jets as
well as Fast Fourier Transform (FFT) analysis of chamber pressure and of thrust were performed.
Figure 15a,b shows the snapshots of the flow structure at the onset of jet exhaust into the water where
the aforementioned four categorized phenomena can be depicted. The three snapshots of Figure 15b
show the presence of necking/breaking and back-attack phenomena in which a high pressurized
gas bag situated just downstream of the necking region is clearly seen. Following Tang et al. [1,2],
it is believed that the oscillating back pressure can result in oscillating thrust. Accordingly, this fact
may have triggered the thrust vibration observed in Figure 12d. It should be pointed out that the
back-pressure variation of an underwater medium does not affect the chamber pressure for the case of
the maximum supply oxidizer flow rate, i.e., with a choked nozzle throat. At the contrary, the chamber
pressure can interact with the gas bag (filled with hot gas) downstream of the nozzle for the case of
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low oxidizer flow rate, i.e., with non-choking condition. To clarify this, FFT analyses were performed
with the data from post-chamber pressure (Figure 16) and from thrust data (Figure 17). From the
comparison shown in Figure 16, one can observe that the chamber pressure FFTs of the ground and
underwater firing tests were nearly the same for both environments. Thus, one can confirm that the
underwater test was conducted well within the choked condition. The observed frequency band of 18
Hz and 33 Hz was the signal noise frequency. Meanwhile, the thrust FFTs analyses of GT_lab-01 and
UT_lab-01, shown in Figure 17, behaved differently as a consequence of gas bag presence in the water.
Comparing the UT_Lab-01 spectrum shown in Figures 17 and 18 of Tang et al. [1,2], one can remark
that the amplitude observed in the frequency bandwidth of 0–100 Hz of this study nearly matched the
one observed by Tang et al.
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3.3. Ignition Characteristics

For a rocket motor submerged in the water, a dry environment of the combustion chamber
is necessary especially for pyrotechnic ignition. The rupture disc is used to prevent the eventual
intrusion of water and to keep the environment in the chamber dry, at least during the initial stage of
ignition. The pyrotechnic ignition characteristics, with a rupture disc bursting at 2 bar for ground and
underwater environments, are shown in Figure 19a,b, respectively. These two tests were conducted
under identical experimental conditions (i.e., with the same rupture disc bursting pressure, the same
“preset Ox. v/v opening pressure”, and the same amount of igniter).

As cited in Section 2.5, when the growing pre-chamber pressure attains the “preset Ox. v/v
opening pressure”, the main oxidizer valve opening signal is triggered (signal on), and the igniter
power is turned off simultaneously. The “preset Ox. v/v opening pressure” was preset to 1.2 bar
due to a delay time (0.5–0.7 s) existing between the power signal “on” and the real valve opening
moment. The rupture disc bursting pressure being set to 2 bar (gauge), the valve opening command
was signaled on earlier to compensate this delay time. The optimal condition would be the exact
moment when the oxidizer valve opens at the bursting event of the rupture disc. In order to find
out the valve opening delay time after the command signal, numerous ignition tests were performed.
It was found that a preset gauge pressure of 1.2 bar for the “preset Ox. v/v opening pressure” was the
best preset value to resolve this delay. Since then, the “Identifier” number was given, e.g., UT_Lab-01.
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the main oxidizer started to deliver fresh oxidizer to the combustion chamber mixed with KNSB 

Figure 19. Ignition curve, (a) GT_Lab-01 w/rupture disc 2 bar; (b) UT_Lab-01 w/rupture disc 2 bar.

Figures 19 and 20 show the moment of signal transmission time, rupture disc bursting time, and
oxidizer valve opening time for a clearer observation of the ignition sequence. It can be seen that after
the rupture disc burst, the chamber pressure started to decrease toward atmospheric pressure followed
later by the opening of the oxidizer valve that triggered the combustion leading to an abrupt pressure
rise. It was observed that water intrusion was prevented during the ignition stage of the underwater
tests. Figure 19a,b also shows early bursting events (below 2 bar) prior to the expected preset rupture
disc bursting pressure. It seems that this was a consequence of the direct exposure of high temperature
gases to the plate of the rupture disc, which resided in the small internal volume of the lab-scale motor.
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Figure 20. Ignition curve, (a) UT_Lab-03 w/rupture disc 3 bar; (b) UT_Lab-04 w/rupture disc 3 bar.

When the minimum ignitable oxidizer mass flow rate was supplied to the combustion chamber,
the pressure rise occurred very slowly with respect to the full throttle test case and there may have
been a possibility of extinguishment due to water intrusion. In order to find out the safe operating
condition for the minimum achievable and ignitable oxidizer mass flow rate, the amount of KNSB
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propellant as well as the rupture disc bursting pressure were varied and investigated (cf. Table 4).
Figure 20a,b shows the case of the oxidizer valve angle of 54 degrees (UT_lab-03) and of 56 degrees
(UT_lab-04), respectively. These correspond to 16.3% and 23.7% of the maximum (UT_Lab-01) oxidizer
mass flow rate, respectively, where the minimum chamber pressure could be maintained at a gauge
pressure of 0.5 bar and 1.2 bar, respectively. These conditions were achieved by increasing the amount
of KNSB to 60 g.

3.4. Motor Idling Condition in Underwater Environment

The sudden acceleration in the start-up stage is dangerous since it can disrupt the balance of
the marine vehicles. Thus, finding idling conditions for the soft-start is crucial for stable operation.
Experiments were carried out to find the optimum valve angle that can sustain the minimum thrust
level. Figure 21a–c shows the results of experiments performed in the water where the valve angles
were set to 52 degrees, 54 degrees, and 56 degrees, representing around 11.1%, 16.3% and 23.7% of the
full throttle oxidizer supply, respectively. For all tests, the oxidizer tank pressure was initially set to
48 bar intentionally to retain the exact initial conditions of Figure 12c, i.e., the full throttle case. For all
three Figures, one can clearly see that a bump in pre-chamber pressure trace was observed following
the “rupture disc burst” event. This bump represents the pressure build-up section where the main
oxidizer started to deliver fresh oxidizer to the combustion chamber mixed with KNSB propellant,
which was still continuously burning. Looking to the case of valve angle 52 degrees (Figure 21a),
it was confirmed that 11.1% of maximum flow rate was not enough to trigger any pressure rise, since
the oxidizer mass flux was too low to sustain the main combustion in the chamber. Thus, the flame
extinguished due to the extremely low oxidizer-to-fuel (O/F) ratio. However, three pressure build-up
sections are depicted in Figure 21b,c (16.3% and 23.7% of the maximum flow rate, respectively) where
the combustion was sustained, representing the motor idle case. The first pressure build-up section
was due to KNSB propellant burning before the “rupture disc burst” event, while the second pressure
build-up section that lies on the bump was due to the mixture of supplied fresh main oxidizer with
the still burning KNSB as cited earlier. Finally, the third pressure build-up section was purely caused
by the main combustion of N2O/HDPE in which the low slopes shown in Figure 21b,c resulted from
the low oxidizer supply of 54 degrees and 56 degrees valve angles, respectively. It is worthwhile to
note that the ignition delay after the second pressure build-up was decreased for augmented oxidizer
mass flow. The ignition delays for the 54 degrees and 56 degrees cases were approximately 5 s and
2.3 s, respectively, while for the final combustion chamber pressure, it attained up to 3 bar and 7.5 bar,
respectively. Meanwhile, Figure 22 shows the thrust and normalized thrust curve for underwater
idling conditions. Due to the existing “bump” in the early operating stage and the self-pressurizing
N2O blow down nature, fluctuations of instantaneous thrust were inevitable. For a clearer quantitative
observation, we displayed the normalized thrust in percent with a double Y-axis. The thrust delivered
from the main combustion of N2O/HDPE starting at 14.5 s (UT_Lab-03) and the one starting at 10 s
(UT_Lab-04) each reached 6% and 12% of the maximum thrust, respectively.
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4. Conclusions

In this study, attempts at hybrid rocket motor hot-firing tests were conducted in an underwater
environment for marine application. A laboratory scale hybrid motor of 500 N class using liquid
nitrous oxide and 5-port high density polyethylene (HDPE) fuel grain was used as a test-bed for the
preliminary assessment of the underwater main propulsion or auxiliary boosting device. The use of
a rupture disc for preventing the water intrusion, and the rupture disc blast timing both required a
special precaution of the ignition signal command and sequence. From the FFT analysis of chamber
pressure for the ground and underwater tests, no critical and notable difference was observed for
the combustion chamber environment, while FFT analysis of underwater motor thrust revealed a
vibration-prone environment, which was due in part to the wake structure downstream of the nozzle
exit, a common fact encountered for a jet propulsive system compared to a screw propeller system.

Compared to the solid rocket counterpart, the hybrid rocket, with its throttleability, can offer a
soft-start capability, which is essential for a marine vessel’s early stage of operation. The minimum
power thrust, viewed as the idle test case with stable operation, was evaluated depending on the
flow controlling optimum valve angle. It was found that 16.3% of the full throttle case sustained the
minimum thrust level. Under full power, severe thrust oscillation was not observed in the underwater
environment. These factors imply that the throttable hybrid rocket propulsion system can be a
justifiable candidate for a short duration, high speed, marine boosting system or applied as a tactical
system for naval application as an alternative to the solid propellant underwater rocket.

Author Contributions: Supervision, H.M.; conceptualization, H.M. and S.H.; investigation, S.H.; writing—review
and editing, H.M. and S.H.; project management, Y.Y. and M.K.

Funding: This research was funded by the Agency for Defense Development (No. UE161021GD) and Advanced
Research Center Program (NRF-2013R1A5A1073861).

Acknowledgments: This work was supported by the Defense Acquisition Program Administration and Agency
for Defense Development (UE161021GD) Korea and supported by the Advanced Research Center Program
(NRF-2013R1A5A1073861) through the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIP), contracted through the Advanced Space Propulsion Research Center at Seoul
National University.

Conflicts of Interest: The authors declare no conflict of interest



Aerospace 2019, 6, 28 18 of 19

Nomenclature

Api Initial cross-section area (m2)
Ap f Final cross-section area (m2)
Go Averaged oxidizer mass flux (kg·m–2·s–1)
L Fuel grain length (m)
∆m Fuel mass difference (kg)
.

mo Averaged oxidizer mass flow rate (kg·s–1)
N Port number (-)
.
r Overall regression rate (m·s–1)
Rpi Initial port radius (m)
Rp f Final port radius (m)
tb Burning time (s)
ρ Fuel density (kg·m–3)
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