Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = vortex ring instabilities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4122 KB  
Article
Fluid Dynamics Analysis of Flow Characteristics in the Clearance of Hydraulic Turbine Seal Rings
by Leilei Chen, Wenhao Wu, Jian Deng, Bing Xue, Liuming Xu, Baosheng Xie and Yuchuan Wang
Energies 2025, 18(14), 3726; https://doi.org/10.3390/en18143726 - 14 Jul 2025
Viewed by 562
Abstract
The hydraulic turbine serves as the cornerstone of hydropower generation systems, with the sealing system’s performance critically influencing energy conversion efficiency and operational cost-effectiveness. The sealing ring is a pivotal component, which mitigates leakage and energy loss by regulating flow within the narrow [...] Read more.
The hydraulic turbine serves as the cornerstone of hydropower generation systems, with the sealing system’s performance critically influencing energy conversion efficiency and operational cost-effectiveness. The sealing ring is a pivotal component, which mitigates leakage and energy loss by regulating flow within the narrow gap between itself and the frame. This study investigates the intricate flow dynamics within the gap between the sealing ring and the upper frame of a super-large-scale Francis turbine, with a specific focus on the rotating wall’s impact on the flow field. Employing theoretical modeling and three-dimensional transient computational fluid dynamics (CFD) simulations grounded in real turbine design parameters, the research reveals that the rotating wall significantly alters shear flow and vortex formation within the gap. Tangential velocity exhibits a nonlinear profile, accompanied by heightened turbulence intensity near the wall. The short flow channel height markedly shapes flow evolution, driving the axial velocity profile away from a conventional parabolic pattern. Further analysis of rotation-induced vortices and flow instabilities, supported by turbulence kinetic energy monitoring and spectral analysis, reveals the periodic nature of vortex shedding and pressure fluctuations. These findings elucidate the internal flow mechanisms of the sealing ring, offering a theoretical framework for analyzing flow in microscale gaps. Moreover, the resulting flow field data establishes a robust foundation for future studies on upper crown gap flow stability and sealing ring dynamics. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

24 pages, 7772 KB  
Review
A Review of Experiment Methods, Simulation Approaches and Wake Characteristics of Floating Offshore Wind Turbines
by Xiaoxu Chen, Tengyuan Wang, Chang Cai, Jianshuang Liu, Xiaoxia Gao, Naizhi Guo and Qingan Li
J. Mar. Sci. Eng. 2025, 13(2), 208; https://doi.org/10.3390/jmse13020208 - 22 Jan 2025
Viewed by 3342
Abstract
With the urgent demand for net-zero emissions, renewable energy is taking the lead and wind power is becoming increasingly important. Among the most promising sources, offshore wind energy located in deep water has gained significant attention. This review focuses on the experimental methods, [...] Read more.
With the urgent demand for net-zero emissions, renewable energy is taking the lead and wind power is becoming increasingly important. Among the most promising sources, offshore wind energy located in deep water has gained significant attention. This review focuses on the experimental methods, simulation approaches, and wake characteristics of floating offshore wind turbines (FOWTs). The hydrodynamics and aerodynamics of FOWTs are not isolated and they interact with each other. Under the environmental load and mooring force, the floating platform has six degrees of freedom motions, which bring the changes in the relative wind speed to the turbine rotor, and furthermore, to the turbine aerodynamics. Then, the platform’s movements lead to a complex FOWT wake evolution, including wake recovery acceleration, velocity deficit fluctuations, wake deformation and wake meandering. In scale FOWT tests, it is challenging to simultaneously satisfy Reynolds number and Froude number similarity, resulting in gaps between scale model experiments and field measurements. Recently, progress has been made in scale model experiments; furthermore, a “Hardware in the loop” technique has been developed as an effective solution to the above contradiction. In numerical simulations, the coupling of hydrodynamics and aerodynamics is the concern and a typical numerical simulation of multi-body and multi-physical coupling is reviewed in this paper. Furthermore, recent advancements have been made in the analysis of wake characteristics, such as the application of instability theory and modal decomposition techniques in the study of FOWT wake evolution. These studies have revealed the formation of vortex rings and leapfrogging behavior in adjacent helical vortices, which deepens the understanding of the FOWT wake. Overall, this paper provides a comprehensive review of recent research on FOWT wake dynamics. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

44 pages, 12238 KB  
Perspective
Laser and Astrophysical Plasmas and Analogy between Similar Instabilities
by Stjepan Lugomer
Atoms 2024, 12(4), 23; https://doi.org/10.3390/atoms12040023 - 16 Apr 2024
Cited by 2 | Viewed by 2614
Abstract
Multipulse laser–matter interactions initiate nonlinear and nonequilibrium plasma fluid flow dynamics and their instability creating microscale vortex filaments, loop-soliton chains, and helically paired structures, similar to those at the astrophysical mega scale. We show that the equation with the Hasimoto structure describes both, [...] Read more.
Multipulse laser–matter interactions initiate nonlinear and nonequilibrium plasma fluid flow dynamics and their instability creating microscale vortex filaments, loop-soliton chains, and helically paired structures, similar to those at the astrophysical mega scale. We show that the equation with the Hasimoto structure describes both, the creation of loop solitons by torsion of vortex filaments and the creation of solitons by helical winding of magnetic field lines in the Crab Nebula. Our experiments demonstrate that the breakup of the loop solitons creates vortex rings with (i) quasistatic toroidal Kelvin waves and (ii) parametric oscillatory modes—i.e., with the hierarchical instability order. For the first time, we show that the same hierarchical instability at the micro- and the megascale establishes the conceptual frame for their unique classification based on the hierarchical order of Bessel functions. Present findings reveal that conditions created in the laser-target regions of a high filament density lead to their collective behavior and formation of helically paired and filament-braided “complexes”. We also show, for the first time, that morphological and topological characteristics of the filament-bundle “complexes” with the loop solitons indicate the analogy between similar laser-induced plasma instabilities and those of the Crab and Double-Helix Nebulas—thus enabling conceptualization of fundamental characteristics. These results reveal that the same rotating metric accommodates the complexity of the instabilities of helical filaments, vortex rings, and filament jets in the plasmatic micro- and megascale astrophysical objects. Full article
Show Figures

Figure 1

15 pages, 3631 KB  
Article
Spatiotemporal Evolution of Wind Turbine Wake Characteristics at Different Inflow Velocities
by Qian Xu, Hui Yang, Yuehong Qian and Yikun Wei
Energies 2024, 17(2), 357; https://doi.org/10.3390/en17020357 - 10 Jan 2024
Viewed by 1520
Abstract
In this paper, the spatiotemporal evolution of wind turbine (WT) wake characteristics is studied based on lattice Boltzmann method-large eddy simulations (LBM-LES) and grid adaptive encryption at different incoming flow velocities. It is clearly captured that secondary flow occurs in the vortex ring [...] Read more.
In this paper, the spatiotemporal evolution of wind turbine (WT) wake characteristics is studied based on lattice Boltzmann method-large eddy simulations (LBM-LES) and grid adaptive encryption at different incoming flow velocities. It is clearly captured that secondary flow occurs in the vortex ring under shear force in the incoming flow direction, the S-wave and the Kelvin–Helmholtz instability occur in the major vortex ring mainly due to the unstable vortex ring interface with small disturbance of shear velocity along the direction of flow velocity. The S-wave and Kelvin–Helmholtz instability are increasingly enhanced in the main vortex ring, and three-dimensional disturbances are inevitable along the mainstream direction when it evolves along the flow direction. With increasing incoming flow, the S-wave and Kelvin–Helmholtz instability are gradually enhanced due to the increasing shear force in the flow direction. This is related to the nonlinear growth mechanism of the disturbance. The analysis of the velocity signal, as well as the pressure signal with a fast Fourier transform, indicates that the interaction between the vortices effectively accelerates the turbulence generation. In the near-field region of the wake, the dissipation mainly occurs at the vortex at the blade tip, and the velocity distribution appears asymmetric around the turbine centerline under shear and the mixing of fluids with different velocities in the wake zone also leads to asymmetric distributions. Full article
(This article belongs to the Special Issue Recent Advances in Wind Farms)
Show Figures

Figure 1

17 pages, 8440 KB  
Article
Turbulence Characteristics in the Mixing Layer of a Submerged Cavitating Jet at High Reynolds Numbers
by Yongfei Yang, Gaowei Wang, Weidong Shi, Wei Li, Leilei Ji and Hongliang Wang
Sustainability 2022, 14(19), 11963; https://doi.org/10.3390/su141911963 - 22 Sep 2022
Cited by 8 | Viewed by 2025
Abstract
In this paper, unsteady and time-averaged turbulence characteristics in a submerged cavitating jet with a high Reynolds number are studied using large eddy simulation. The simulation is validated by comparing the vapor distribution using CFD and a high-speed photography experiment. The results indicate [...] Read more.
In this paper, unsteady and time-averaged turbulence characteristics in a submerged cavitating jet with a high Reynolds number are studied using large eddy simulation. The simulation is validated by comparing the vapor distribution using CFD and a high-speed photography experiment. The results indicate that the currently used numerical method can predict the evolution of the cavitation cloud in the jet accurately. The instantaneous and time-averaged flow fields of the submerged jet with three different cavitation numbers are studied. Comparing the frequency spectral of jets with different cavitation numbers, it is found that, for a fixed location, the frequency increases with the decrease in the cavitation number. Comparing the vorticity distribution at different streamwise locations, the instability process of the ring-shapes vortexes is revealed. Comparing the shape of the cavitation cloud and the vortexes in the jet finds that their spatial distribution and the temporal evolution are similar, indicating that the dynamic characteristics of the vortex and the cavitation affect each other. For the currently investigated cavitating jets, the Reynolds number increases with the decrease in the cavitation number. However, the spreading rate is lower for the jet with higher Reynolds numbers here. This is means that the momentum exchange between the jet and submerging water is reduced by the cavitation phenomenon. Full article
(This article belongs to the Special Issue Ocean and Hydropower)
Show Figures

Figure 1

14 pages, 13481 KB  
Article
Analysis of Internal Flow Characteristics of a Startup Pump Turbine at the Lowest Head under No-Load Conditions
by Wei Wang, Xi Wang, Zhengwei Wang, Mabing Ni and Chunan Yang
J. Mar. Sci. Eng. 2021, 9(12), 1360; https://doi.org/10.3390/jmse9121360 - 1 Dec 2021
Cited by 12 | Viewed by 2756
Abstract
The instability of the no-load working condition of the pump turbine directly affects the grid connection of the unit, and will cause vibration and damage to the components of the unit in severe cases. In this paper, a three-dimensional full flow numerical model [...] Read more.
The instability of the no-load working condition of the pump turbine directly affects the grid connection of the unit, and will cause vibration and damage to the components of the unit in severe cases. In this paper, a three-dimensional full flow numerical model including the runner gap and the pressure-balance pipe was established. The method SST k-ω model was used to predict the internal flow characteristics of the pump turbine. The pressure pulsation of the runner under different operating conditions during the no-load process was compared. Because the rotation speed, flow rate, and guide vane opening of the unit change in a small range during the no-load process, the pressure pulsation characteristics of the runner are basically the same. Therefore, a working condition was selected to analyze the transient characteristics of the flow field, and it was found that there was a high-speed ring in the vaneless zone, and a stable channel vortex was generated in the runner flow passage. Analyzing the axial water thrust of each part of the runner, it was found that the axial water thrust of the runner gap was much larger than the axial water thrust of the runner blades, and it changed with time periodically. It was affected by rotor stator interaction. The main frequency was expressed as a multiple of the number of guide vanes, that is, vanes passing frequency, 22fn. During the entire no-load process, the axial water thrust of the runner changed slowly with time and fluctuated slightly. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

13 pages, 3458 KB  
Article
Vortex Creation without Stirring in Coupled Ring Resonators with Gain and Loss
by Aleksandr Ramaniuk, Nguyen Viet Hung, Michael Giersig, Krzysztof Kempa, Vladimir V. Konotop and Marek Trippenbach
Symmetry 2018, 10(6), 195; https://doi.org/10.3390/sym10060195 - 1 Jun 2018
Cited by 4 | Viewed by 3651
Abstract
We present the study of the dynamics of a two-ring waveguide structure with space-dependent coupling, linear gain and nonlinear absorption; the system that can be implemented in polariton condensates, optical waveguides and nanocavities. We show that by turning on and off local coupling [...] Read more.
We present the study of the dynamics of a two-ring waveguide structure with space-dependent coupling, linear gain and nonlinear absorption; the system that can be implemented in polariton condensates, optical waveguides and nanocavities. We show that by turning on and off local coupling between rings, one can selectively generate a permanent vortex in one of the rings. We find that due to the modulation instability, it is also possible to observe several complex nonlinear phenomena, including spontaneous symmetry breaking, stable inhomogeneous states with an interesting structure of currents flowing between rings, the generation of stable symmetric and asymmetric circular flows with various vorticities, etc. The latter can be created in pairs (for relatively narrow coupling length) or as a single vortex in one of the channels, which later alternates between channels. Full article
(This article belongs to the Special Issue Broken Symmetry)
Show Figures

Figure 1

Back to TopTop