Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = volatile organic metabolites (VOMs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2353 KiB  
Article
New Contributions to Deepen the Quality-Based Safety Assessment in the Consumption of Edible Nasturtium Flowers—The Role of Volatilome
by Rosa Perestrelo, Maria da Graça Lopes, Alda Pereira da Silva, Maria do Céu Costa and José S. Câmara
Life 2025, 15(7), 1053; https://doi.org/10.3390/life15071053 - 30 Jun 2025
Viewed by 636
Abstract
The garden Nasturtium (Tropaeolum majus L.) is increasingly consumed worldwide due to its culinary appeal and perceived health benefits. However, the chemical markers underlying its functional properties remain insufficiently characterized. Building on evidence from a recent human pilot study confirming both high [...] Read more.
The garden Nasturtium (Tropaeolum majus L.) is increasingly consumed worldwide due to its culinary appeal and perceived health benefits. However, the chemical markers underlying its functional properties remain insufficiently characterized. Building on evidence from a recent human pilot study confirming both high acceptability and dietary safety, we conducted a comprehensive volatilomic and phytochemical analysis of T. majus flowers and their juice. Headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry (HS-SPME/GC-MS) was employed to establish the volatilomic fingerprint of floral tissues and juice. Our analysis revealed a striking dominance of benzyl isothiocyanate and benzonitrile, which together accounted for 88% of the total volatile organic metabolites (VOMs) in the juice, 67% and 21%, respectively. In the floral tissues, benzyl isothiocyanate was even more prevalent, representing 95% of the total volatile profile. Complementary in vitro assays confirmed a substantial total phenolic content and strong antioxidant activity in the flowers. These findings provide a robust chemical rationale for the potential health-promoting attributes of T. majus, while identifying key volatilomic markers that could support future functional and safety claims. In parallel, a benefit–risk assessment framework is discussed in accordance with the European Food Safety Authority (EFSA) guidelines for the Qualified Presumption of Safety (QPS) of edible flowers. Given that both benzyl isothiocyanate and benzonitrile are classified as Cramer Class III substances, a conservative intake threshold of 1.5 μg/kg body weight per day is proposed. To enable quantitative exposure modeling and support the derivation of a tolerable daily intake (TDI), future studies should integrate organic solvent-based extraction methodologies to estimate the total volatile load per gram of floral biomass. This would align risk–benefit assessments with the EFSA’s evolving framework for novel foods and functional ingredients. Full article
(This article belongs to the Section Pharmaceutical Science)
Show Figures

Figure 1

24 pages, 5739 KiB  
Article
Multifaceted Biological Activities of Culinary Herb and Spice Extracts: In Vitro and In Silico Simulation Insights into Inflammation-Related Targets
by Nance Hontman, Jéssica Gonçalves, José S. Câmara and Rosa Perestrelo
Foods 2025, 14(9), 1456; https://doi.org/10.3390/foods14091456 - 23 Apr 2025
Viewed by 687
Abstract
Culinary herbs and spices are valued worldwide for their flavor, aroma, and medicinal benefits. They encompass diverse bioactive metabolites, such as polyphenols and terpenoids, which contribute to plant defense and offer anticarcinogenic, anti-inflammatory, antioxidant, and cognitive-enhancing effects. This study aimed to establish the [...] Read more.
Culinary herbs and spices are valued worldwide for their flavor, aroma, and medicinal benefits. They encompass diverse bioactive metabolites, such as polyphenols and terpenoids, which contribute to plant defense and offer anticarcinogenic, anti-inflammatory, antioxidant, and cognitive-enhancing effects. This study aimed to establish the volatile fingerprint of culinary herbs (lemon verbena, chives, basil, sage, coriander, and parsley) and spices (curcuma, nutmeg, cumin, black pepper, Jamaica pepper, and juniper berry) using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME/GC-MS). The predominant volatile organic metabolites (VOMs) identified were subjected to in silico molecular docking simulations of anti-Alzheimer’s (e.g., acetylcholinesterase (AChE), butyrylcholinesterase (BChE)), antioxidants (e.g., monoamine oxidase B (MAO-B), inducible nitric oxide synthase (iNOS)), and anti-inflammatory receptors (e.g., 5-lipoxygenase (5-LOX), cyclooxygenase-2 (COX-2)). The culinary herb and spice extracts were also subjected to in vitro assays to evaluate their potential as antioxidant (DPPH, ABTS, and ORAC) and anti-inflammatory (% protein denaturation) agents. A total of 121 VOMs were identified in the culinary herbs and spices, with the predominant chemical families being monoterpenoids (48.3%), sesquiterpenoids (14.0%), esters (11.9%), and carbonyl compounds (8.8%). In silico molecular docking simulations revealed that cuminaldehyde, β-caryophyllene, γ-curcumene, germacrene D, and τ-cadinol exhibited the strongest inhibitory activities against the selected receptors. Among the extracts, Jamaica pepper showed the highest antioxidant and anti-inflammatory activities, while lemon verbena exhibited the lowest ones. These findings highlight the promising potential of the studied culinary herbs and spices in the modulation of inflammatory processes related to Alzheimer’s disease. However, further investigations, particularly clinical studies, are recommended to validate these results and explore their therapeutic applications. Full article
Show Figures

Figure 1

25 pages, 3592 KiB  
Article
Edible Flowers in Modern Gastronomy: A Study of Their Volatilomic Fingerprint and Potential Health Benefits
by Begoña Fernández-Pintor, Rosa Perestelo, Sonia Morante-Zarcero, Isabel Sierra and José S. Câmara
Molecules 2025, 30(8), 1799; https://doi.org/10.3390/molecules30081799 - 17 Apr 2025
Viewed by 822
Abstract
Given the transformation that gastronomy has undergone in recent years, there is a need to characterize some new foods that are being incorporated into the modern diet. Among them, edible flowers stand out, which are used today not only to enhance the organoleptic [...] Read more.
Given the transformation that gastronomy has undergone in recent years, there is a need to characterize some new foods that are being incorporated into the modern diet. Among them, edible flowers stand out, which are used today not only to enhance the organoleptic properties of gourmet dishes but also for some of the beneficial properties they provide to human health. In this study, the volatilomic fingerprint of seven edible flowers that are used daily in Michelin-starred restaurants on Madeira Island was established. For this purpose, the extraction of volatile organic metabolites (VOMs) was carried out using the headspace solid-phase microextraction (HS-SPME) technique followed by gas chromatography coupled to mass spectrometry (GC-MS). The results showed a wide variability among the analyzed flowers. While fewer VOMs were detected in some flowers, other flowers, such as Viola tricolor and Rosa spp., exhibited a greater number of these compounds. Acmella oleracea had the highest number of detected VOMs. Each of these VOMs contributes to the characteristic aroma representative of the respective flower, highlighting their potential health benefits, as some are known for their anti-inflammatory, antimicrobial, and even anticancer properties. Full article
Show Figures

Graphical abstract

13 pages, 4810 KiB  
Article
Characterization of the Volatilomic Fingerprint of Culinary Aromatic Herbs: A Comparative Study Based on Chemometric Analysis
by Sergio Izcara, Rosa Perestrelo, Sonia Morante-Zarcero, Isabel Sierra and José Sousa Câmara
Separations 2024, 11(6), 181; https://doi.org/10.3390/separations11060181 - 10 Jun 2024
Viewed by 1468
Abstract
Culinary aromatic herbs (CAHs), used worldwide for culinary and industrial purposes, are recognized for their wide range of beneficial health effects including antimicrobial, antioxidant, anti-hyperlipidemic, anti-inflammatory, anti-type 2 diabetes mellitus, antitumorigenic and anticarcinogenic, and anti-hypertensive properties, in addition to glucose- and cholesterol-lowering activities [...] Read more.
Culinary aromatic herbs (CAHs), used worldwide for culinary and industrial purposes, are recognized for their wide range of beneficial health effects including antimicrobial, antioxidant, anti-hyperlipidemic, anti-inflammatory, anti-type 2 diabetes mellitus, antitumorigenic and anticarcinogenic, and anti-hypertensive properties, in addition to glucose- and cholesterol-lowering activities as well as properties that affect mental health and cognition via their phytochemical constituents, such as polyphenols (flavonoids and non-flavonoids), sulfur- and nitrogen-containing compounds, alkaloids, minerals, and vitamins. Moreover, the volatile organic metabolites (VOMs) found in CAHs offer unique analytical biosignatures linked to their sensory qualities and organoleptic characteristics. This study aimed to establish the volatilomic pattern of CAHs commonly used in Europe and in the Mediterranean region, oregano (Origanum vulgare L.) and two savory species: savory (Satureja hortensis L.) and lemon savory (Satureja montana L. var. citriodora). The volatilomic pattern of CAHs was established using headspace solid-phase microextraction (HS-SPME) followed by gas chromatography–mass spectrometry (GC-MS) determination. This is a powerful strategy to unravel the potential health benefits related to the most important VOMs identified in each aromatic herb. This comprehensive understanding will aid in establishing the authenticity of these herbs, while also safeguarding against possible fraudulent activities and adulterations. A total of 112 VOMs from different chemical families were identified. Terpenoids amounted to the major chemical family in the investigated aromatic herbs accounting for 96.0, 95.1, and 79.7% of the total volatile composition for savory, lemon savory, and oregano, respectively. Apart from contributing to flavor profiles, certain identified VOMs also possess bioactive properties, opening interesting avenues for potential application in the food, pharmaceutical, and cosmetic sectors. The volatilomic pattern combined with unsupervised principal component analysis facilitated the differentiation of the aromatic herbs under investigation, revealing the most related VOMs in each sample, which can be used as markers for the authentication of these valuable aromatic herbs, such as caryophyllene oxide (103), camphene (6), p-cymene (23), and borneol (74), among others. In addition, some VOMs have a high influence on the aromatic herb’s bioactive potential, helping to prevent certain diseases including cancer, inflammatory-related diseases, diabetes, and cardiovascular diseases. Full article
Show Figures

Figure 1

13 pages, 1868 KiB  
Article
Rapid Detection of Volatile Organic Metabolites in Urine by High-Pressure Photoionization Mass Spectrometry for Breast Cancer Screening: A Pilot Study
by Ming Yang, Jichun Jiang, Lei Hua, Dandan Jiang, Yadong Wang, Depeng Li, Ruoyu Wang, Xiaohui Zhang and Haiyang Li
Metabolites 2023, 13(7), 870; https://doi.org/10.3390/metabo13070870 - 21 Jul 2023
Cited by 5 | Viewed by 2131
Abstract
Despite surpassing lung cancer as the most frequently diagnosed cancer, female breast cancer (BC) still lacks rapid detection methods for screening that can be implemented on a large scale in practical clinical settings. However, urine is a readily available biofluid obtained non-invasively and [...] Read more.
Despite surpassing lung cancer as the most frequently diagnosed cancer, female breast cancer (BC) still lacks rapid detection methods for screening that can be implemented on a large scale in practical clinical settings. However, urine is a readily available biofluid obtained non-invasively and contains numerous volatile organic metabolites (VOMs) that offer valuable metabolic information concerning the onset and progression of diseases. In this work, a rapid method for analysis of VOMs in urine by using high-pressure photon ionization time-of-flight mass spectrometry (HPPI-TOFMS) coupled with dynamic purge injection. A simple pretreatment process of urine samples by adding acid and salt was employed for efficient VOM sampling, and the numbers of metabolites increased and the detection sensitivity was improved after the acid (HCl) and salt (NaCl) addition. The established mass spectrometry detection method was applied to analyze a set of training samples collected from a local hospital, including 24 breast cancer patients and 27 healthy controls. Statistical analysis techniques such as principal component analysis, partial least squares discriminant analysis, and the Mann–Whitney U test were used, and nine VOMs were identified as differential metabolites. Finally, acrolein, 2-pentanone, and methyl allyl sulfide were selected to build a metabolite combination model for distinguishing breast cancer patients from the healthy group, and the achieved sensitivity and specificity were 92.6% and 91.7%, respectively, according to the receiver operating characteristic curve analysis. The results demonstrate that this technology has potential to become a rapid screening tool for breast cancer, with significant room for further development. Full article
Show Figures

Figure 1

18 pages, 3402 KiB  
Article
Differences in the Volatilomic Urinary Biosignature of Prostate Cancer Patients as a Feasibility Study for the Detection of Potential Biomarkers
by Giulia Riccio, Cristina V. Berenguer, Rosa Perestrelo, Ferdinando Pereira, Pedro Berenguer, Cristina P. Ornelas, Ana Célia Sousa, João Aragão Vital, Maria do Carmo Pinto, Jorge A. M. Pereira, Viviana Greco and José S. Câmara
Curr. Oncol. 2023, 30(5), 4904-4921; https://doi.org/10.3390/curroncol30050370 - 10 May 2023
Cited by 4 | Viewed by 4108
Abstract
Prostate cancer (PCa) continues to be the second most common malignant tumour and the main cause of oncological death in men. Investigating endogenous volatile organic metabolites (VOMs) produced by various metabolic pathways is emerging as a novel, effective, and non-invasive source of information [...] Read more.
Prostate cancer (PCa) continues to be the second most common malignant tumour and the main cause of oncological death in men. Investigating endogenous volatile organic metabolites (VOMs) produced by various metabolic pathways is emerging as a novel, effective, and non-invasive source of information to establish the volatilomic biosignature of PCa. In this study, headspace solid-phase microextraction combined with gas chromatography–mass spectrometry (HS-SPME/GC-MS) was used to establish the urine volatilomic profile of PCa and identify VOMs that can discriminate between the two investigated groups. This non-invasive approach was applied to oncological patients (PCa group, n = 26) and cancer-free individuals (control group, n = 30), retrieving a total of 147 VOMs from various chemical families. This included terpenes, norisoprenoid, sesquiterpenes, phenolic, sulphur and furanic compounds, ketones, alcohols, esters, aldehydes, carboxylic acid, benzene and naphthalene derivatives, hydrocarbons, and heterocyclic hydrocarbons. The data matrix was subjected to multivariate analysis, namely partial least-squares discriminant analysis (PLS-DA). Accordingly, this analysis showed that the group under study presented different volatomic profiles and suggested potential PCa biomarkers. Nevertheless, a larger cohort of samples is required to boost the predictability and accuracy of the statistical models developed. Full article
(This article belongs to the Collection New Insights into Prostate Cancer Diagnosis and Treatment)
Show Figures

Figure 1

21 pages, 4762 KiB  
Article
Spices Volatilomic Fingerprinting—A Comprehensive Approach to Explore Its Authentication and Bioactive Properties
by Sergio Izcara, Rosa Perestrelo, Sonia Morante-Zarcero, Isabel Sierra and José S. Câmara
Molecules 2022, 27(19), 6403; https://doi.org/10.3390/molecules27196403 - 28 Sep 2022
Cited by 14 | Viewed by 3339
Abstract
Volatile organic metabolites (VOMs) present in different spices can provide distinct analytical biosignatures related to organoleptic properties and health benefits. This study aimed to establish the volatilomic fingerprint of six of the most consumed spices all over the world (saffron (Crocus sativus [...] Read more.
Volatile organic metabolites (VOMs) present in different spices can provide distinct analytical biosignatures related to organoleptic properties and health benefits. This study aimed to establish the volatilomic fingerprint of six of the most consumed spices all over the world (saffron (Crocus sativus L.), cinnamon (Cinnamomum verum), cumin (Cuminum cyminum L.), black pepper, (Piper nigrum L.), sweet paprika (Capsicum annuum L.), and curry (a mix of different herbs and spices)). Based on headspace solid phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis, this is a powerful strategy to explore and establish the spice’s volatile pattern and unravel the potential health benefits related to the most important VOMs identified in each spice. This comprehensive knowledge will help in the definition of their authenticity, while simultaneously protecting against potential frauds and adulterations. A total of 162 VOMs were identified. Semi-quantitative assessments revealed that terpenoids and sesquiterpenoids amounted to the major volatile class in the investigated spices, except for cinnamon, where carbonyl compounds are the major group. Most of the studied spices comprised key characteristics of aroma and health bioactive compounds, e.g., dihydrojuneol in saffron, cinnamaldehyde in cinnamon, cuminaldehyde in cumin and curry, and caryophyllene in black pepper. The principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) successfully discriminated the investigated spices, being α-cubebene, 3-methyl butanal, β-patchoulene and β-selinene, the most important VOMs (highest VIP’s) that contributed to its discrimination. Moreover, some VOMs have a high influence on the spice’s bioactive potential, helping to prevent certain diseases including cancer, inflammatory-related diseases, diabetes, and cardiovascular diseases. Full article
(This article belongs to the Special Issue Advances in Functional Foods)
Show Figures

Graphical abstract

18 pages, 1554 KiB  
Review
Volatilomics: An Emerging and Promising Avenue for the Detection of Potential Prostate Cancer Biomarkers
by Cristina V. Berenguer, Ferdinando Pereira, Jorge A. M. Pereira and José S. Câmara
Cancers 2022, 14(16), 3982; https://doi.org/10.3390/cancers14163982 - 17 Aug 2022
Cited by 24 | Viewed by 4012
Abstract
Despite the spectacular advances in molecular medicine, including genomics, proteomics, transcriptomics, lipidomics, and personalized medicine, supported by the discovery of the human genome, prostate cancer (PCa) remains the most frequent malignant tumor and a leading cause of oncological death in men. New methods [...] Read more.
Despite the spectacular advances in molecular medicine, including genomics, proteomics, transcriptomics, lipidomics, and personalized medicine, supported by the discovery of the human genome, prostate cancer (PCa) remains the most frequent malignant tumor and a leading cause of oncological death in men. New methods for prognostic, diagnostic, and therapy evaluation are mainly based on the combination of imaging techniques with other methodologies, such as gene or protein profiling, aimed at improving PCa management and surveillance. However, the lack of highly specific and sensitive biomarkers for its early detection is a major hurdle to this goal. Apart from classical biomarkers, the study of endogenous volatile organic metabolites (VOMs) biosynthesized by different metabolic pathways and found in several biofluids is emerging as an innovative, efficient, accessible, and non-invasive approach to establish the volatilomic biosignature of PCa patients, unravelling potential biomarkers. This review provides a brief overview of the challenges of PCa screening methods and emergent biomarkers. We also focus on the potential of volatilomics for the establishment of PCa biomarkers from non-invasive matrices. Full article
(This article belongs to the Special Issue The Screening and Diagnostics of Prostate Cancer)
Show Figures

Figure 1

15 pages, 2317 KiB  
Article
Valorization of Spent Coffee Grounds as a Natural Source of Bioactive Compounds for Several Industrial Applications—A Volatilomic Approach
by Carolina Andrade, Rosa Perestrelo and José S. Câmara
Foods 2022, 11(12), 1731; https://doi.org/10.3390/foods11121731 - 13 Jun 2022
Cited by 21 | Viewed by 5601
Abstract
Coffee is one of the most popular beverages worldwide, whose production and consumption result in large amounts of waste, namely spent coffee grounds, constituting an important source of compounds for several industrial applications. This work focused on the establishment of the volatile fingerprint [...] Read more.
Coffee is one of the most popular beverages worldwide, whose production and consumption result in large amounts of waste, namely spent coffee grounds, constituting an important source of compounds for several industrial applications. This work focused on the establishment of the volatile fingerprint of five spent coffee grounds from different geographical origins using headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry (HS-SPME/GC-MS), as a strategy to identify volatile organic metabolites (VOMs) with potential application in the food industry as antioxidant, anti-inflammatory, and antiproliferative agents. One hundred eleven VOMs belonging to different chemical families were identified, of which 60 were found in all spent coffee grounds analyzed. Furanic compounds (34%), nitrogen compounds (30%), and esters (19%) contributed significant to the total volatile fingerprint. The data obtained suggest that spent coffee grounds have great potential to be used as raw material for different approaches in the food industry towards the development of new food ingredients or products for human consumption, in addition to pharmaceutical and cosmetic applications, namely as antioxidant (e.g., limonene, carvacrol), antimicrobial (e.g., pyrrole-2-carboxaldehyde, β-myrcene) and anti-inflammatory (e.g., furfural, 2-furanmethanol) agents, promoting their integral valorization within the circular bioeconomy concept. Full article
(This article belongs to the Special Issue Advances in the Valorization of Food Waste for Novel Products)
Show Figures

Figure 1

14 pages, 1848 KiB  
Article
Urinary Volatomic Expression Pattern: Paving the Way for Identification of Potential Candidate Biosignatures for Lung Cancer
by Khushman Taunk, Priscilla Porto-Figueira, Jorge A. M. Pereira, Ravindra Taware, Nattane Luíza da Costa, Rommel Barbosa, Srikanth Rapole and José S. Câmara
Metabolites 2022, 12(1), 36; https://doi.org/10.3390/metabo12010036 - 4 Jan 2022
Cited by 7 | Viewed by 2628
Abstract
The urinary volatomic profiling of Indian cohorts composed of 28 lung cancer (LC) patients and 27 healthy subjects (control group, CTRL) was established using headspace solid phase microextraction technique combined with gas chromatography mass spectrometry methodology as a powerful approach to identify urinary [...] Read more.
The urinary volatomic profiling of Indian cohorts composed of 28 lung cancer (LC) patients and 27 healthy subjects (control group, CTRL) was established using headspace solid phase microextraction technique combined with gas chromatography mass spectrometry methodology as a powerful approach to identify urinary volatile organic metabolites (uVOMs) to discriminate among LC patients from CTRL. Overall, 147 VOMs of several chemistries were identified in the intervention groups—including naphthalene derivatives, phenols, and organosulphurs—augmented in the LC group. In contrast, benzene and terpenic derivatives were found to be more prevalent in the CTRL group. The volatomic data obtained were processed using advanced statistical analysis, namely partial least square discriminative analysis (PLS-DA), support vector machine (SVM), random forest (RF), and multilayer perceptron (MLP) methods. This resulted in the identification of nine uVOMs with a higher potential to discriminate LC patients from CTRL subjects. These were furan, o-cymene, furfural, linalool oxide, viridiflorene, 2-bromo-phenol, tricyclazole, 4-methyl-phenol, and 1-(4-hydroxy-3,5-di-tert-butylphenyl)-2-methyl-3-morpholinopropan-1-one. The metabolic pathway analysis of the data obtained identified several altered biochemical pathways in LC mainly affecting glycolysis/gluconeogenesis, pyruvate metabolism, and fatty acid biosynthesis. Moreover, acetate and octanoic, decanoic, and dodecanoic fatty acids were identified as the key metabolites responsible for such deregulation. Furthermore, studies involving larger cohorts of LC patients would allow us to consolidate the data obtained and challenge the potential of the uVOMs as candidate biomarkers for LC. Full article
(This article belongs to the Special Issue Cancer Metabolomic 2020)
Show Figures

Graphical abstract

14 pages, 1808 KiB  
Article
Tangerines Cultivated on Madeira Island—A High Throughput Natural Source of Bioactive Compounds
by José A. Figueira, Priscilla Porto-Figueira, Jorge A. M. Pereira and José S. Câmara
Foods 2020, 9(10), 1470; https://doi.org/10.3390/foods9101470 - 15 Oct 2020
Cited by 11 | Viewed by 3343
Abstract
Tangerines (Citrus reticulata) are popular fruits worldwide, being rich in many bioactive metabolites. The setubalense variety cultivated on Madeira Island has an intense aroma easily distinguishable from other tangerines, being traditionally used to enrich several foods and beverages. Nonetheless, setubalense volatile [...] Read more.
Tangerines (Citrus reticulata) are popular fruits worldwide, being rich in many bioactive metabolites. The setubalense variety cultivated on Madeira Island has an intense aroma easily distinguishable from other tangerines, being traditionally used to enrich several foods and beverages. Nonetheless, setubalense volatile composition has never been characterized, and we aimed to unveil the bioactive potential of peels and juices of setubalense tangerines and compare them with the murcott variety grown in Portugal mainland. Using headspace solid-phase microextraction coupled to gas chromatography mass spectrometry (HS-SPME/GC-MS), we identified a total of 128 volatile organic metabolites (VOMs) in the juice and peels, with d-limonene, γ-terpinene, β-myrcene, α- and β-pinene, o-cymene, and terpinolene, the most dominant in both cultivars. In contrast, setubalense juices are richer in terpenes, many of them associated with health protection. Discriminant analysis revealed a pool of VOMs, including β-caryophyllene and E-ocimene, with bioactive properties able to differentiate among tangerines according to variety and sample type (peel vs. juice). This is the first report on the volatile composition of setubalense tangerines grown on Madeira Island revealing that its pungent aroma is constituted by secondary metabolites with specific aroma notes and health properties. This is strong evidence of the higher nutraceutical value of such fruit for the human diet. Full article
(This article belongs to the Special Issue The Metabolism and Health Benefits of Bioactive Compounds in Foods)
Show Figures

Figure 1

18 pages, 1559 KiB  
Article
Molecular Identification and VOMs Characterization of Saccharomyces cerevisiae Strains Isolated from Madeira Region Winery Environments
by Mariangie Castillo, Emanuel da Silva, José S. Câmara and Mahnaz Khadem
Processes 2020, 8(9), 1058; https://doi.org/10.3390/pr8091058 - 31 Aug 2020
Cited by 10 | Viewed by 3372
Abstract
The quality and typical characteristic of wines depends, among other factors, on the volatile organic metabolites (VOMs) that are biosynthesized by yeasts, mainly Saccharomyces cerevisiae species. The yeast strain influences the diversity and proportions of the VOMs produced during the fermentation process, as [...] Read more.
The quality and typical characteristic of wines depends, among other factors, on the volatile organic metabolites (VOMs) that are biosynthesized by yeasts, mainly Saccharomyces cerevisiae species. The yeast strain influences the diversity and proportions of the VOMs produced during the fermentation process, as the genetic predisposition of the strains is a by-product of selective adaptation to the ecosystem. The present work reports the characterization of S. cerevisiae strains isolated from grape must, used in the Demarcated Region of Madeira (DRM) for winemaking. Yeast species were identified by amplification and by restriction fragment length polymorphism (RFLP) analysis of the region 5.8S-internal transcribed spacers (PCR-RFLP of 5.8S-ITS) of ribosomal DNA (rDNA). The strains identification was performed by analyzing the RFLP pattern of mitochondrial DNA (RFLP-mtDNA). The representative strains were selected for the characterization of the volatile profile through headspace solid-phase microextraction (HS-SPME) followed by gas chromatography-mass spectrometry (GC-MS) analysis. A total of 77 VOMs were identified. Higher alcohols, esters, and fatty acids were the major chemical families representing 63%, 16%, and 9%, respectively, in strain A and 54%, 23%, and 15% in strain B. The results indicate the influence of the strain metabolism in the production of VOMs, many of which probably participate in the aroma of the corresponding wines. Full article
Show Figures

Graphical abstract

15 pages, 1721 KiB  
Article
Typicality Assessment of Onions (Allium cepa) from Different Geographical Regions Based on the Volatile Signature and Chemometric Tools
by Sara Fernandes, André Gois, Fátima Mendes, Rosa Perestrelo, Sonia Medina and José S. Câmara
Foods 2020, 9(3), 375; https://doi.org/10.3390/foods9030375 - 24 Mar 2020
Cited by 26 | Viewed by 5459
Abstract
Onion (Allium cepa L.) is one of the main agricultural commodities produced and consumed around the world. In the present work, for the first time, the volatile signature of onions from different geographical regions of Madeira Island (Caniço, Santa Cruz, Ribeira Brava, [...] Read more.
Onion (Allium cepa L.) is one of the main agricultural commodities produced and consumed around the world. In the present work, for the first time, the volatile signature of onions from different geographical regions of Madeira Island (Caniço, Santa Cruz, Ribeira Brava, and Porto Moniz) was tested with headspace solid-phase microextraction (HS-SPME/GC-qMS) and chemometric tools, showing that the volatile signature was affected by the geographical region of cultivation. Sulfur compounds, furanic compounds, and aldehydes are the most dominant chemical groups. Some of the identified volatile organic metabolites (VOMs) were detected only in onions cultivated in specific regions; 17 VOMs were only identified in onions cultivated at Caniço, eight in Porto Moniz, two in Santa Cruz, two in Ribeira Brava, while 12 VOMs are common to all samples from the four regions. Moreover, some VOMs belonging to sulfur compounds (dipropyl disulfide, 3-(acetylthio)-2-methylfuran), furanic compounds (dimethylmethoxyfuranone, ethyl furanone, acetyloxy-dimethylfuranone), and lactones (whiskey lactone isomer), could be applied as potential geographical markers of onions, providing a useful tool to authenticate onions by farming regions where the influence of latitude seems to be an important factor for yielding the chemical profile and may contribute to geographical protection of food and simultaneously benefiting both consumers and farmers. Full article
Show Figures

Graphical abstract

Back to TopTop