Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (35)

Search Parameters:
Keywords = vitamin K-dependent carboxylation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3979 KiB  
Article
Vitamin K1 Administration Increases the Level of Circulating Carboxylated Osteocalcin in Critically Ill Patients
by Nadide Aydin, Thomas Kander, Ulf Schött and Sassan Hafizi
Nutrients 2025, 17(2), 348; https://doi.org/10.3390/nu17020348 - 19 Jan 2025
Viewed by 1561
Abstract
Background/Objectives: Vitamin K-dependent proteins (VKDPs) all commonly possess specially modified γ-carboxyglutamic acid residues created in a vitamin K-dependent manner. Several liver-derived coagulation factors are well characterised VKDPs. However, much less is known about extrahepatic VKDPs, which are more diverse in their molecular structures [...] Read more.
Background/Objectives: Vitamin K-dependent proteins (VKDPs) all commonly possess specially modified γ-carboxyglutamic acid residues created in a vitamin K-dependent manner. Several liver-derived coagulation factors are well characterised VKDPs. However, much less is known about extrahepatic VKDPs, which are more diverse in their molecular structures and functions, and some of which have been implicated in inflammatory disorders. Vitamin K metabolism was shown to be impaired in critically ill patients, in whom systemic inflammation and sepsis are common features. Therefore, the aim of this study was to investigate the effect of vitamin K administration to these patients on their circulating levels of selected VKDPs. A particular novelty of this study was the measurement of specifically carboxylated forms of these proteins in addition to their overall levels. Methods: Blood samples were taken from 47 patients in the intensive care unit before and approximately 24 h after intravenous vitamin K1 (10 mg) administration, and proteins were analysed by specific immunoassay. Results: Vitamin K1 induced increases in plasma levels of carboxylated osteocalcin and total Gas6 (p = 0.0002 and p = 0.0032, respectively). No changes were detected in levels of carboxylated Gas6 or PIVKA-II (undercarboxylated prothrombin), although the latter positively correlated with undercarboxylated osteocalcin (r = 0.38). Conclusion: Injected vitamin K1 increases the blood levels of two distinct VKDPs in critically ill patients, both of which have been implicated in inflammation regulation, including the increased carboxylation of one of them. Full article
Show Figures

Figure 1

19 pages, 3129 KiB  
Article
Transcriptional Regulation of the Human MGP Promoter: Identification of Downstream Repressors
by Helena Caiado, M. Leonor Cancela and Natércia Conceição
Int. J. Mol. Sci. 2024, 25(23), 12597; https://doi.org/10.3390/ijms252312597 - 23 Nov 2024
Cited by 1 | Viewed by 1269
Abstract
Matrix Gla protein (MGP) is a vitamin K-dependent γ-carboxylated protein that was initially identified as a physiological inhibitor of ectopic calcification, primarily affecting cartilage and the vascular system. Mutations in the MGP gene were found to be responsible for the Keutel syndrome, a [...] Read more.
Matrix Gla protein (MGP) is a vitamin K-dependent γ-carboxylated protein that was initially identified as a physiological inhibitor of ectopic calcification, primarily affecting cartilage and the vascular system. Mutations in the MGP gene were found to be responsible for the Keutel syndrome, a condition characterized by abnormal calcifications in the cartilage, lungs, brain, and vascular system. MGP has been shown to be dysregulated in several tumors, including cervical, ovarian, urogenital, and breast cancers. Using bioinformatic approaches, transcription factor binding sites (TFBSs) containing CpG dinucleotides were identified in the MGP promoter, including those for YY1, GATA1, and C/EBPα. We carried out functional tests using transient transfections with a luciferase reporter assay, primarily for the transcription factors YY1, GATA1, C/EBPα, and RUNX2. By co-transfection analysis, we found that YY1, GATA1, and C/EBPα repressed the MGP promoter. Furthermore, the co-transfection with RUNX2 activated the MGP promoter. In addition, MGP expression is negatively or positively correlated with the studied TFs’ expression levels in several cancer types. This study provides novel insights into MGP regulation by demonstrating that YY1, GATA1, and C/EBPα are negative regulators of the MGP promoter, and DNA methylation may influence their activity. The dysregulation of these mechanisms in cancer should be further elucidated. Full article
(This article belongs to the Special Issue Genes and Human Diseases 2.0)
Show Figures

Figure 1

13 pages, 840 KiB  
Article
Differences in Bone Metabolism between Children with Prader–Willi Syndrome during Growth Hormone Treatment and Healthy Subjects: A Pilot Study
by Joanna Gajewska, Magdalena Chełchowska, Katarzyna Szamotulska, Witold Klemarczyk, Małgorzata Strucińska and Jadwiga Ambroszkiewicz
Int. J. Mol. Sci. 2024, 25(17), 9159; https://doi.org/10.3390/ijms25179159 - 23 Aug 2024
Cited by 2 | Viewed by 1666
Abstract
Despite therapy with growth hormone (GH) in children with Prader–Willi syndrome (PWS), low bone mineral density and various orthopedic deformities have been observed often. Therefore, this study aimed to analyze bone markers, with an emphasis on vitamin K-dependent proteins (VKDPs), in normal-weight children [...] Read more.
Despite therapy with growth hormone (GH) in children with Prader–Willi syndrome (PWS), low bone mineral density and various orthopedic deformities have been observed often. Therefore, this study aimed to analyze bone markers, with an emphasis on vitamin K-dependent proteins (VKDPs), in normal-weight children with PWS undergoing GH therapy and a low-energy dietary intervention. Twenty-four children with PWS and 30 healthy children of the same age were included. Serum concentrations of bone alkaline phosphatase (BALP), osteocalcin (OC), carboxylated-OC (Gla-OC), undercarboxylated-OC (Glu-OC), periostin, osteopontin, osteoprotegerin (OPG), sclerostin, C-terminal telopeptide of type I collagen (CTX-I), and insulin-like growth factor-I (IGF-I) were determined using immunoenzymatic methods. OC levels and the OC/CTX-I ratios were lower in children with PWS than in healthy children (p = 0.011, p = 0.006, respectively). Glu-OC concentrations were lower (p = 0.002), but Gla-OC and periostin concentrations were higher in patients with PWS compared with the controls (p = 0.005, p < 0.001, respectively). The relationships between IGF-I and OC (p = 0.013), Gla-OC (p = 0.042), and the OC/CTX-I ratio (p = 0.017) were significant after adjusting for age in children with PWS. Bone turnover disorders in children with PWS may result from impaired bone formation due to the lower concentrations of OC and the OC/CTX-I ratio. The altered profile of OC forms with elevated periostin concentrations may indicate more intensive carboxylation processes of VKDPs in these patients. The detailed relationships between the GH/IGF-I axis and bone metabolism markers, particularly VKDPs, in children with PWS requires further research. Full article
Show Figures

Figure 1

12 pages, 1123 KiB  
Review
The Importance of Vitamin K and the Combination of Vitamins K and D for Calcium Metabolism and Bone Health: A Review
by Jan O. Aaseth, Trine Elisabeth Finnes, Merete Askim and Jan Alexander
Nutrients 2024, 16(15), 2420; https://doi.org/10.3390/nu16152420 - 25 Jul 2024
Cited by 10 | Viewed by 26482
Abstract
The aim of the present review is to discuss the roles of vitamin K (phylloquinone or menaquinones) and vitamin K-dependent proteins, and the combined action of the vitamins K and D, for the maintenance of bone health. The most relevant vitamin K-dependent proteins [...] Read more.
The aim of the present review is to discuss the roles of vitamin K (phylloquinone or menaquinones) and vitamin K-dependent proteins, and the combined action of the vitamins K and D, for the maintenance of bone health. The most relevant vitamin K-dependent proteins in this respect are osteocalcin and matrix Gla-protein (MGP). When carboxylated, these proteins appear to have the ability to chelate and import calcium from the blood to the bone, thereby reducing the risk of osteoporosis. Carboxylated osteocalcin appears to contribute directly to bone quality and strength. An adequate vitamin K status is required for the carboxylation of MGP and osteocalcin. In addition, vitamin K acts on bone metabolism by other mechanisms, such as menaquinone 4 acting as a ligand for the nuclear steroid and xenobiotic receptor (SXR). In this narrative review, we examine the evidence for increased bone mineralization through the dietary adequacy of vitamin K. Summarizing the evidence for a synergistic effect of vitamin K and vitamin D3, we find that an adequate supply of vitamin K, on top of an optimal vitamin D status, seems to add to the benefit of maintaining bone health. More research related to synergism and the possible mechanisms of vitamins D3 and K interaction in bone health is needed. Full article
(This article belongs to the Special Issue The Impact of Food Fortification on Health and Nutrition Outcomes)
Show Figures

Figure 1

12 pages, 564 KiB  
Article
Low Vitamin K Status in Patients with Psoriasis Vulgaris: A Pilot Study
by Simona R. Gheorghe, Tamás Ilyés, Gabriela A. Filip, Ana S. Dănescu, Teodora L. Timiș, Meda Orăsan, Irina Stamate, Alexandra M. Crăciun and Ciprian N. Silaghi
Biomedicines 2024, 12(6), 1180; https://doi.org/10.3390/biomedicines12061180 - 26 May 2024
Viewed by 2297
Abstract
Psoriasis vulgaris (PV) is a disease characterized by skin manifestations and systemic inflammation. There are no published studies to date on vitamin K status assessed by extrahepatic vitamin K-dependent proteins [e.g., osteocalcin (OC) and matrix Gla protein (MGP)] in patients with PV, even [...] Read more.
Psoriasis vulgaris (PV) is a disease characterized by skin manifestations and systemic inflammation. There are no published studies to date on vitamin K status assessed by extrahepatic vitamin K-dependent proteins [e.g., osteocalcin (OC) and matrix Gla protein (MGP)] in patients with PV, even if vitamin K was found to promote wound contraction and decrease the healing time of the skin. Metabolic syndrome (MS), a comorbidity of PV, was found to influence vitamin K status, and vitamin D was found to be involved in the pathogenesis of PV. Therefore, our aim was to assess the status of vitamins K and D in subjects with PV. We enrolled 44 patients with PV and 44 age- and sex-matched subjects as a control group (CG), of which individuals with MS were designated the CG with MS subgroup. Furthermore, the PV patients were stratified into two subgroups: those with MS (n = 20) and those without MS (n = 24). In addition to the quantification of vitamin D and MGP in all subjects, the uncarboxylated OC/carboxylated OC (ucOC/cOC) ratio was also assessed as an inversely proportional marker of vitamin K status. We found an increased ucOC/cOC ratio in the PV group compared to CG but also a greater ucOC/cOC ratio in the PV with MS subgroup than in the CG with MS subgroup. MGP was decreased in the PV with MS subgroup compared to CG with MS subgroup. There was no difference in the vitamin D concentration between the groups. This is the first study to report decreased vitamin K status in patients with PV, independent of the presence of MS. Full article
(This article belongs to the Special Issue Vitamin K and Vitamin D in Health and Disease)
Show Figures

Figure 1

20 pages, 2911 KiB  
Article
Modification of Gas6 Protein in the Brain by a Functional Endogenous Tissue Vitamin K Cycle
by Nadide Aydin, Bouchra Ouliass, Guylaine Ferland and Sassan Hafizi
Cells 2024, 13(10), 873; https://doi.org/10.3390/cells13100873 - 18 May 2024
Cited by 3 | Viewed by 2507
Abstract
The TAM receptor ligand Gas6 is known for regulating inflammatory and immune pathways in various organs including the brain. Gas6 becomes fully functional through the post-translational modification of multiple glutamic acid residues into γ-carboxyglutamic in a vitamin K-dependent manner. However, the significance of [...] Read more.
The TAM receptor ligand Gas6 is known for regulating inflammatory and immune pathways in various organs including the brain. Gas6 becomes fully functional through the post-translational modification of multiple glutamic acid residues into γ-carboxyglutamic in a vitamin K-dependent manner. However, the significance of this mechanism in the brain is not known. We report here the endogenous expression of multiple components of the vitamin K cycle within the mouse brain at various ages as well as in distinct brain glial cells. The brain expression of all genes was increased in the postnatal ages, mirroring their profiles in the liver. In microglia, the proinflammatory agent lipopolysaccharide caused the downregulation of all key vitamin K cycle genes. A secreted Gas6 protein was detected in the medium of both mouse cerebellar slices and brain glial cell cultures. Furthermore, the endogenous Gas6 γ-carboxylation level was abolished through incubation with the vitamin K antagonist warfarin and could be restored through co-incubation with vitamin K1. Finally, the γ-carboxylation level of the Gas6 protein within the brains of warfarin-treated rats was found to be significantly reduced ex vivo compared to the control brains. In conclusion, we demonstrated for the first time the existence of a functional vitamin K cycle within rodent brains, which regulates the functional modification of endogenous brain Gas6. These results indicate that vitamin K is an important nutrient for the brain. Furthermore, the measurement of vitamin K-dependent Gas6 functionality could be an indicator of homeostatic or disease mechanisms in the brain, such as in neurological disorders where Gas6/TAM signalling is impaired. Full article
(This article belongs to the Section Cells of the Nervous System)
Show Figures

Figure 1

24 pages, 1717 KiB  
Review
Extrahepatic Vitamin K-Dependent Gla-Proteins–Potential Cardiometabolic Biomarkers
by Bistra Galunska, Yoto Yotov, Miglena Nikolova and Atanas Angelov
Int. J. Mol. Sci. 2024, 25(6), 3517; https://doi.org/10.3390/ijms25063517 - 20 Mar 2024
Cited by 3 | Viewed by 2931
Abstract
One mechanism to regulate pathological vascular calcification (VC) is its active inhibition. Loss or inactivation of endogenic inhibitors is a major inductor of VC. Such inhibitors are proteins rich in gamma-glutamyl residues (Gla-proteins), whose function strongly depends on vitamin K. The current narrative [...] Read more.
One mechanism to regulate pathological vascular calcification (VC) is its active inhibition. Loss or inactivation of endogenic inhibitors is a major inductor of VC. Such inhibitors are proteins rich in gamma-glutamyl residues (Gla-proteins), whose function strongly depends on vitamin K. The current narrative review is focused on discussing the role of extrahepatic vitamin K-dependent Gla-proteins (osteocalcin, OC; matrix Gla-protein, MGP; Gla-rich protein, GRP) in cardio-vascular pathology. Gla-proteins possess several functionally active forms whose role in the pathogenesis of VC is still unclear. It is assumed that low circulating non-phosphorylated MGP is an indicator of active calcification and could be a novel biomarker of prevalent VC. High circulating completely inactive MGP is proposed as a novel risk factor for cardio-vascular events, disease progression, mortality, and vitamin K deficiency. The ratio between uncarboxylated (ucOC) and carboxylated (cOC) OC is considered as an indicator of vitamin K status indirectly reflecting arterial calcium. Despite the evidence that OC is an important energy metabolic regulator, its role on global cardio-vascular risk remains unclear. GRP acts as a molecular mediator between inflammation and calcification and may emerge as a novel biomarker playing a key role in these processes. Gla-proteins benefit clinical practice as inhibitors of VC, modifiable by dietary factors. Full article
Show Figures

Figure 1

14 pages, 1723 KiB  
Review
Vitamin K and Calcium Chelation in Vascular Health
by Jan O. Aaseth, Urban Alehagen, Trine Baur Opstad and Jan Alexander
Biomedicines 2023, 11(12), 3154; https://doi.org/10.3390/biomedicines11123154 - 27 Nov 2023
Cited by 4 | Viewed by 5473
Abstract
The observation that the extent of artery calcification correlates with the degree of atherosclerosis was the background for the alternative treatment of cardiovascular disease with chelator ethylenediamine tetraacetate (EDTA). Recent studies have indicated that such chelation treatment has only marginal impact on the [...] Read more.
The observation that the extent of artery calcification correlates with the degree of atherosclerosis was the background for the alternative treatment of cardiovascular disease with chelator ethylenediamine tetraacetate (EDTA). Recent studies have indicated that such chelation treatment has only marginal impact on the course of vascular disease. In contrast, endogenous calcium chelation with removal of calcium from the cardiovascular system paralleled by improved bone mineralization exerted, i.e., by matrix Gla protein (MGP) and osteocalcin, appears to significantly delay the development of cardiovascular diseases. After post-translational vitamin-K-dependent carboxylation of glutamic acid residues, MGP and other vitamin-K-dependent proteins (VKDPs) can chelate calcium through vicinal carboxyl groups. Dietary vitamin K is mainly provided in the form of phylloquinone from green leafy vegetables and as menaquinones from fermented foods. Here, we provide a review of clinical studies, addressing the role of vitamin K in cardiovascular diseases, and an overview of vitamin K kinetics and biological actions, including vitamin-K-dependent carboxylation and calcium chelation, as compared with the action of the exogenous (therapeutic) chelator EDTA. Consumption of vitamin-K-rich foods and/or use of vitamin K supplements appear to be a better preventive strategy than EDTA chelation for maintaining vascular health. Full article
(This article belongs to the Special Issue Advances in Cardiovascular Diseases (CVD))
Show Figures

Figure 1

37 pages, 2062 KiB  
Review
Vitamin K and the Visual System—A Narrative Review
by Michael A. Mong
Nutrients 2023, 15(8), 1948; https://doi.org/10.3390/nu15081948 - 18 Apr 2023
Cited by 2 | Viewed by 7783
Abstract
Vitamin K occupies a unique and often obscured place among its fellow fat-soluble vitamins. Evidence is mounting, however, that vitamin K (VK) may play an important role in the visual system apart from the hepatic carboxylation of hemostatic-related proteins. However, to our knowledge, [...] Read more.
Vitamin K occupies a unique and often obscured place among its fellow fat-soluble vitamins. Evidence is mounting, however, that vitamin K (VK) may play an important role in the visual system apart from the hepatic carboxylation of hemostatic-related proteins. However, to our knowledge, no review covering the topic has appeared in the medical literature. Recent studies have confirmed that matrix Gla protein (MGP), a vitamin K-dependent protein (VKDP), is essential for the regulation of intraocular pressure in mice. The PREDIMED (Prevención con Dieta Mediterránea) study, a randomized trial involving 5860 adults at risk for cardiovascular disease, demonstrated a 29% reduction in the risk of cataract surgery in participants with the highest tertile of dietary vitamin K1 (PK) intake compared with those with the lowest tertile. However, the specific requirements of the eye and visual system (EVS) for VK, and what might constitute an optimized VK status, is currently unknown and largely unexplored. It is, therefore, the intention of this narrative review to provide an introduction concerning VK and the visual system, review ocular VK biology, and provide some historical context for recent discoveries. Potential opportunities and gaps in current research efforts will be touched upon in the hope of raising awareness and encouraging continued VK-related investigations in this important and highly specialized sensory system. Full article
(This article belongs to the Special Issue Fat-Soluble Vitamins for Disease Prevention and Management)
Show Figures

Graphical abstract

10 pages, 707 KiB  
Article
First Comparative Evaluation of Short-Chain Fatty Acids and Vitamin-K-Dependent Proteins Levels in Mother–Newborn Pairs at Birth
by Tamás Ilyés, Marius Pop, Mihai Surcel, Daria M. Pop, Răzvan Rusu, Ciprian N. Silaghi, Gabriela C. Zaharie and Alexandra M. Crăciun
Life 2023, 13(3), 847; https://doi.org/10.3390/life13030847 - 21 Mar 2023
Cited by 4 | Viewed by 2603
Abstract
Background: The interplay between vitamin K (vitK) (as carboxylation cofactor, partially produced by the gut microbiota) and short-chain fatty acids (SCFAs), the end-product of fiber fermentation in the gut, has never been assessed in mother–newborn pairs, although newborns are considered vitK deficient and [...] Read more.
Background: The interplay between vitamin K (vitK) (as carboxylation cofactor, partially produced by the gut microbiota) and short-chain fatty acids (SCFAs), the end-product of fiber fermentation in the gut, has never been assessed in mother–newborn pairs, although newborns are considered vitK deficient and with sterile gut. Methods: We collected venous blood from 45 healthy mothers with uncomplicated term pregnancies and umbilical cord blood from their newborns at birth. The concentrations of total SCFAs and hepatic/extra-hepatic vitK-dependent proteins (VKDPs), as proxies of vitK status were assayed: undercarboxylated and total matrix Gla protein (ucMGP and tMGP), undercarboxylated osteocalcin (ucOC), undercarboxylated Gla-rich protein (ucGRP), and protein induced by vitK absence II (PIVKA-II). Results: We found significantly higher ucOC (18.6-fold), ucMGP (9.2-fold), and PIVKA-II (5.6-fold) levels in newborns, while tMGP (5.1-fold) and SCFAs (2.4-fold) were higher in mothers, and ucGRP was insignificantly modified. In mother–newborn pairs, only ucGRP (r = 0.746, p < 0.01) and SCFAs (r = 0.428, p = 0.01) levels were correlated. Conclusions: We report for the first time the presence of SCFAs in humans at birth, probably transferred through the placenta to the fetus. The increased circulating undercarboxylated VKDPSs in newborns revealed a higher vitamin K deficiency at the extrahepatic level compared to liver VKDPs. Full article
(This article belongs to the Section Reproductive and Developmental Biology)
Show Figures

Figure 1

18 pages, 2536 KiB  
Article
Vitamin K-Dependent Carboxylation of Osteocalcin in Bone—Ally or Adversary of Bone Mineral Status in Rats with Experimental Chronic Kidney Disease?
by Marta Ziemińska, Dariusz Pawlak, Beata Sieklucka, Katarzyna Chilkiewicz and Krystyna Pawlak
Nutrients 2022, 14(19), 4082; https://doi.org/10.3390/nu14194082 - 1 Oct 2022
Cited by 6 | Viewed by 3208
Abstract
Chronic kidney disease (CKD) commonly occurs with vitamin K (VK) deficiency and impaired bone mineralization. However, there are no data explaining the metabolism of endogenous VK and its role in bone mineralization in CKD. In this study, we measured serum levels of phylloquinone [...] Read more.
Chronic kidney disease (CKD) commonly occurs with vitamin K (VK) deficiency and impaired bone mineralization. However, there are no data explaining the metabolism of endogenous VK and its role in bone mineralization in CKD. In this study, we measured serum levels of phylloquinone (VK1), menaquinone 4 and 7 (MK4, MK7), and VK-dependent proteins: osteocalcin, undercarboxylated osteocalcin (Glu-OC), and undercarboxylated matrix Gla protein (ucMGP). The carboxylated osteocalcin (Gla-OC), Glu-OC, and the expression of genes involved in VK cycle were determined in bone. The obtained results were juxtaposed with the bone mineral status of rats with CKD. The obtained results suggest that the reduced VK1 level observed in CKD rats may be caused by the accelerated conversion of VK1 to the form of menaquinones. The bone tissue possesses all enzymes, enabling the conversion of VK1 to menaquinones and VK recycling. However, in the course of CKD with hyperparathyroidism, the intensified osteoblastogenesis causes the generation of immature osteoblasts with impaired mineralization. The particular clinical significance seems to have a finding that serum osteocalcin and Glu-OC, commonly used biomarkers of VK deficiency, could be inappropriate in CKD conditions, whereas Gla-OC synthesized in bone appears to have an adverse impact on bone mineral status in this model. Full article
(This article belongs to the Special Issue Dietary Factors in Bone Health)
Show Figures

Figure 1

19 pages, 2170 KiB  
Review
Vitamin K-Dependent Protein Activation: Normal Gamma-Glutamyl Carboxylation and Disruption in Disease
by Kathleen L. Berkner and Kurt W. Runge
Int. J. Mol. Sci. 2022, 23(10), 5759; https://doi.org/10.3390/ijms23105759 - 20 May 2022
Cited by 27 | Viewed by 9920
Abstract
Vitamin K-dependent (VKD) proteins undergo an unusual post-translational modification, which is the conversion of specific Glu residues to carboxylated Glu (Gla). Gla generation is required for the activation of VKD proteins, and occurs in the endoplasmic reticulum during their secretion to either the [...] Read more.
Vitamin K-dependent (VKD) proteins undergo an unusual post-translational modification, which is the conversion of specific Glu residues to carboxylated Glu (Gla). Gla generation is required for the activation of VKD proteins, and occurs in the endoplasmic reticulum during their secretion to either the cell surface or from the cell. The gamma-glutamyl carboxylase produces Gla using reduced vitamin K, which becomes oxygenated to vitamin K epoxide. Reduced vitamin K is then regenerated by a vitamin K oxidoreductase (VKORC1), and this interconversion of oxygenated and reduced vitamin K is referred to as the vitamin K cycle. Many of the VKD proteins support hemostasis, which is suppressed during therapy with warfarin that inhibits VKORC1 activity. VKD proteins also impact a broad range of physiologies beyond hemostasis, which includes regulation of calcification, apoptosis, complement, growth control, signal transduction and angiogenesis. The review covers the roles of VKD proteins, how they become activated, and how disruption of carboxylation can lead to disease. VKD proteins contain clusters of Gla residues that form a calcium-binding module important for activity, and carboxylase processivity allows the generation of multiple Glas. The review discusses how impaired carboxylase processivity results in the pseudoxanthoma elasticum-like disease. Full article
Show Figures

Figure 1

18 pages, 2609 KiB  
Article
Nanoencapsulation of Gla-Rich Protein (GRP) as a Novel Approach to Target Inflammation
by Carla S. B. Viegas, Nuna Araújo, Joana Carreira, Jorge F. Pontes, Anjos L. Macedo, Maurícia Vinhas, Ana S. Moreira, Tiago Q. Faria, Ana Grenha, António A. de Matos, Leon Schurgers, Cees Vermeer and Dina C. Simes
Int. J. Mol. Sci. 2022, 23(9), 4813; https://doi.org/10.3390/ijms23094813 - 27 Apr 2022
Cited by 7 | Viewed by 2570
Abstract
Chronic inflammation is a major driver of chronic inflammatory diseases (CIDs), with a tremendous impact worldwide. Besides its function as a pathological calcification inhibitor, vitamin K-dependent protein Gla-rich protein (GRP) was shown to act as an anti-inflammatory agent independently of its gamma-carboxylation status. [...] Read more.
Chronic inflammation is a major driver of chronic inflammatory diseases (CIDs), with a tremendous impact worldwide. Besides its function as a pathological calcification inhibitor, vitamin K-dependent protein Gla-rich protein (GRP) was shown to act as an anti-inflammatory agent independently of its gamma-carboxylation status. Although GRP’s therapeutic potential has been highlighted, its low solubility at physiological pH still constitutes a major challenge for its biomedical application. In this work, we produced fluorescein-labeled chitosan-tripolyphosphate nanoparticles containing non-carboxylated GRP (ucGRP) (FCNG) via ionotropic gelation, increasing its bioavailability, stability, and anti-inflammatory potential. The results indicate the nanosized nature of FCNG with PDI and a zeta potential suitable for biomedical applications. FCNG’s anti-inflammatory activity was studied in macrophage-differentiated THP1 cells, and in primary vascular smooth muscle cells and chondrocytes, inflamed with LPS, TNFα and IL-1β, respectively. In all these in vitro human cell systems, FCNG treatments resulted in increased intra and extracellular GRP levels, and decreased pro-inflammatory responses of target cells, by decreasing pro-inflammatory cytokines and inflammation mediators. These results suggest the retained anti-inflammatory bioactivity of ucGRP in FCNG, strengthening the potential use of ucGRP as an anti-inflammatory agent with a wide spectrum of application, and opening up perspectives for its therapeutic application in CIDs. Full article
Show Figures

Figure 1

17 pages, 2011 KiB  
Review
The Molecular Basis of FIX Deficiency in Hemophilia B
by Guomin Shen, Meng Gao, Qing Cao and Weikai Li
Int. J. Mol. Sci. 2022, 23(5), 2762; https://doi.org/10.3390/ijms23052762 - 2 Mar 2022
Cited by 25 | Viewed by 10756
Abstract
Coagulation factor IX (FIX) is a vitamin K dependent protein and its deficiency causes hemophilia B, an X-linked recessive bleeding disorder. More than 1000 mutations in the F9 gene have been identified in hemophilia B patients. Here, we systematically summarize the structural and [...] Read more.
Coagulation factor IX (FIX) is a vitamin K dependent protein and its deficiency causes hemophilia B, an X-linked recessive bleeding disorder. More than 1000 mutations in the F9 gene have been identified in hemophilia B patients. Here, we systematically summarize the structural and functional characteristics of FIX and the pathogenic mechanisms of the mutations that have been identified to date. The mechanisms of FIX deficiency are diverse in these mutations. Deletions, insertions, duplications, and indels generally lead to severe hemophilia B. Those in the exon regions generate either frame shift or inframe mutations, and those in the introns usually cause aberrant splicing. Regarding point mutations, the bleeding phenotypes vary from severe to mild in hemophilia B patients. Generally speaking, point mutations in the F9 promoter region result in hemophilia B Leyden, and those in the introns cause aberrant splicing. Point mutations in the coding sequence can be missense, nonsense, or silent mutations. Nonsense mutations generate truncated FIX that usually loses function, causing severe hemophilia B. Silent mutations may lead to aberrant splicing or affect FIX translation. The mechanisms of missense mutation, however, have not been fully understood. They lead to FIX deficiency, often by affecting FIX’s translation, protein folding, protein stability, posttranslational modifications, activation to FIXa, or the ability to form functional Xase complex. Understanding the molecular mechanisms of FIX deficiency will provide significant insight for patient diagnosis and treatment. Full article
Show Figures

Figure 1

12 pages, 931 KiB  
Article
Fat-Soluble Vitamins in Standard vs. Liposomal Form Enriched with Vitamin K2 in Cystic Fibrosis: A Randomized Multi-Center Trial
by Jan Krzysztof Nowak, Patrycja Krzyżanowska-Jankowska, Sławomira Drzymała-Czyż, Joanna Goździk-Spychalska, Irena Wojsyk-Banaszak, Wojciech Skorupa, Ewa Sapiejka, Anna Miśkiewicz-Chotnicka, Jan Brylak, Barbara Zielińska-Psuja, Aleksandra Lisowska and Jarosław Walkowiak
J. Clin. Med. 2022, 11(2), 462; https://doi.org/10.3390/jcm11020462 - 17 Jan 2022
Cited by 6 | Viewed by 3456
Abstract
Background: We aimed to assess a liposomal fat-soluble vitamin formulation containing vitamin K2 with standard treatment in cystic fibrosis (CF). Methods: A multi-center randomized controlled trial was carried out in 100 pancreatic-insufficient patients with CF. The liposomal formulation contained vitamin A as retinyl [...] Read more.
Background: We aimed to assess a liposomal fat-soluble vitamin formulation containing vitamin K2 with standard treatment in cystic fibrosis (CF). Methods: A multi-center randomized controlled trial was carried out in 100 pancreatic-insufficient patients with CF. The liposomal formulation contained vitamin A as retinyl palmitate (2667 IU daily) and beta-carotene (1333 IU), D3 (4000 IU), E (150 IU), K1 (2 mg), and K2 as menaquinone-7 (400 µg). It was compared with the standard vitamin preparations in the closest possible doses (2500 IU, 1428 IU, 4000 IU, 150 IU, 2.14 mg, respectively; no vitamin K2) over 3 months. Results: Forty-two patients finished the trial in the liposomal and 49 in the control group (overall 91 pts: 22.6 ± 7.6 years, 62.6% female, BMI 19.9 ± 2.8 kg/m2, FEV1% 70% ± 30%). The main outcome was the change of vitamin status in the serum during the study (liposomal vs. standard): all-trans-retinol (+1.48 ± 95.9 vs. −43.1 ± 121.4 ng/mL, p = 0.054), 25-hydroxyvitamin D3 (+9.7 ± 13.4 vs. +2.0 ± 9.8 ng/mL, p = 0.004), α-tocopherol (+1.5 ± 2.5 vs. −0.2 ± 1.6 µg/mL, p < 0.001), %undercarboxylated osteocalcin (−17.2 ± 24.8% vs. −8.3 ± 18.5%, p = 0.061). The secondary outcome was the vitamin status at the trial end: all-trans-retinol (370.0 ± 116.5 vs. 323.1 ± 100.6 ng/mL, p = 0.045), 25-hydroxyvitamin D3 (43.2 ± 16.6 vs. 32.7 ± 11.5 ng/mL, p < 0.001), α-tocopherol (9.0 ± 3.1 vs. 7.7 ± 3.0 µg/mL, p = 0.037), %undercarboxylated osteocalcin (13.0 ± 11.2% vs. 22.7 ± 22.0%, p = 0.008). Conclusion: The liposomal fat-soluble vitamin supplement containing vitamin K2 was superior to the standard form in delivering vitamin D3 and E in pancreatic-insufficient patients with CF. The supplement was also more effective in strengthening vitamin K-dependent carboxylation, and could improve vitamin A status. Full article
(This article belongs to the Section Gastroenterology & Hepatopancreatobiliary Medicine)
Show Figures

Figure 1

Back to TopTop