Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = viral phylodynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6360 KiB  
Article
Phylodynamic of Tomato Brown Rugose Fruit Virus and Tomato Chlorosis Virus, Two Emergent Viruses in Mixed Infections in Argentina
by Julia M. Ibañez, Romina Zambrana, Pamela Carreras, Verónica Obregón, José M. Irazoqui, Pablo A. Vera, Tatiana E. Lattar, María D. Blanco Fernández, Andrea F. Puebla, Ariel F. Amadio, Carolina Torres and Paola M. López Lambertini
Viruses 2025, 17(4), 533; https://doi.org/10.3390/v17040533 - 5 Apr 2025
Viewed by 1004
Abstract
Tobamovirus fructirugosum (ToBRFV) and Crinivirus tomatichlorosis (ToCV) are emerging viral threats to tomato production worldwide, with expanding global distribution. Both viruses exhibit distinct biological characteristics and transmission mechanisms that influence their spread. This study aimed to reconstruct the complete genomes of ToBRFV and [...] Read more.
Tobamovirus fructirugosum (ToBRFV) and Crinivirus tomatichlorosis (ToCV) are emerging viral threats to tomato production worldwide, with expanding global distribution. Both viruses exhibit distinct biological characteristics and transmission mechanisms that influence their spread. This study aimed to reconstruct the complete genomes of ToBRFV and ToCV from infected tomato plants and wastewater samples in Argentina to explore their global evolutionary dynamics. Additionally, it compared the genetic diversity of ToBRFV in plant tissue and sewage samples. Using metagenomic analysis, the complete genome sequences of two ToBRFV isolates and two ToCV isolates from co-infected tomatoes, along with four ToBRFV isolates from sewage, were obtained. The analysis showed that ToBRFV exhibited higher genetic diversity in environmental samples than in plant samples. Phylodynamic analysis indicated that both viruses had a recent, single introduction in Argentina but predicted different times for ancestral diversification. The evolutionary analysis estimated that ToBRFV began its global diversification in June 2013 in Israel, with rapid diversification and exponential growth until 2020, after which the effective population size declined. Moreover, ToCV’s global expansion was characterized by exponential growth from 1979 to 2010, with Turkey identified as the most probable location with the current data available. This study highlights how sequencing and monitoring plant viruses can enhance our understanding of their global spread and impact on agriculture. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

18 pages, 5404 KiB  
Article
Evolutionary Studies on the Coxsackievirus A-24 Variants Causing Acute Hemorrhagic Conjunctivitis with Emphasis on the Recent Outbreak of 2023 in India
by Sanjaykumar Tikute, Jahnabee Boro, Vikas Sharma, Anita Shete, Alfia Fathima Ashraf, Ranjana Mariyam Raju, Sarah Cherian and Mallika Lavania
Viruses 2025, 17(3), 371; https://doi.org/10.3390/v17030371 - 5 Mar 2025
Viewed by 1163
Abstract
Acute Hemorrhagic Conjunctivitis (AHC) is primarily caused by viral infections, with Coxsackievirus A-24v (CV-A24v) being a significant culprit. Enteroviruses, including CV-A24v, are responsible for global AHC outbreaks. Over time, CV-A24v has evolved, and genotype IV (GIV) has become the dominant strain. This study [...] Read more.
Acute Hemorrhagic Conjunctivitis (AHC) is primarily caused by viral infections, with Coxsackievirus A-24v (CV-A24v) being a significant culprit. Enteroviruses, including CV-A24v, are responsible for global AHC outbreaks. Over time, CV-A24v has evolved, and genotype IV (GIV) has become the dominant strain. This study focused on examining the genetic features and evolutionary trends of CV-A24v responsible for the recent AHC outbreak of 2023 in India. Researchers isolated viral strains from ocular swabs and confirmed the presence of CV-A24v using reverse transcriptase quantitative PCR (RT-qPCR) and whole-genome sequencing. Genomic comparisons between isolates of 2023 and those from a previous outbreak in 2009 were conducted. Phylogenetic analysis revealed that the 2023 isolates formed a distinct cluster within GIV-5 and were related to recent strains from China and Pakistan. The older Indian isolates from 2009 grouped with GIV-3. New subclades, GIV-6 and GIV-7, were also identified in this study, indicating the diversification of CV-A24. Molecular clock and phylogeographic analysis traced the virus’s circulation back to the 1960s, with the common ancestor likely to have originated in Singapore in 1968. The 2023 Indian strains probably originated from Thailand around 2014, with subsequent spread to China and Pakistan. This study concluded that the 2023 outbreak was caused by a genetically distinct CV-A24v strain with nine mutations, underlining the virus’s ongoing evolution and adaptations and offering valuable insights for future outbreak control. Full article
Show Figures

Figure 1

16 pages, 1781 KiB  
Article
Tracking the Pathways of West Nile Virus: Phylogenetic and Phylogeographic Analysis of a 2024 Isolate from Portugal
by Diogo Maroco, Ricardo Parreira, Fábio Abade dos Santos, Ângela Lopes, Fernanda Simões, Leonor Orge, Sofia G. Seabra, Teresa Fagulha, Erica Brazio, Ana M. Henriques, Ana Duarte, Margarida D. Duarte and Sílvia C. Barros
Microorganisms 2025, 13(3), 585; https://doi.org/10.3390/microorganisms13030585 - 4 Mar 2025
Cited by 1 | Viewed by 2402
Abstract
Birds are natural hosts for numerous zoonotic viral pathogens, including West Nile virus, which is transmitted by mosquitoes. During migration, birds can act as vectors for the geographic spread of viruses. WNV is endemic in Portugal, causing annual outbreaks, particularly in horses. Here, [...] Read more.
Birds are natural hosts for numerous zoonotic viral pathogens, including West Nile virus, which is transmitted by mosquitoes. During migration, birds can act as vectors for the geographic spread of viruses. WNV is endemic in Portugal, causing annual outbreaks, particularly in horses. Here, we report the first detection of an avian WNV strain isolated from a wild bird (Astur gentilis) collected in Portugal in mid-September 2024. Phylogenetic and phylogeographic analyses were conducted to trace the virus’s origin and potential transmission routes, integrating the obtained full-length genomic sequence with a dataset of WNV strains from Africa and Europe (1951–2024). Phylogenetic analysis of 92 WNV sequences spanning lineages 1–5 positioned the 2024 isolate within lineage 1a. Results obtained using phylodynamics-based analysis showed that this isolate likely originated in Africa and reached Portugal via Spain’s Cádiz coast, confirming previously described WNV dispersal patterns between Africa and Europe. The data suggest a migratory route from West Africa to Europe, extending through countries such as Senegal, Mauritania, Morocco, Portugal, Spain, Italy, and France, indicating a reciprocal flow of the virus back into Africa. These transmission routes match the migratory paths of Afro-Palearctic bird species, emphasizing the role of migratory birds in the long-distance spread of WNV. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

14 pages, 1479 KiB  
Article
Introduction of a Divergent Canine Parvovirus Type 2b Strain with a Dog in Sicily, Southern Italy, Through the Mediterranean Sea Route to Europe
by Francesco Mira, Giovanni Franzo, Giorgia Schirò, Domenico Vicari, Giuseppa Purpari, Vincenza Cannella, Elisabetta Giudice, Martino Trapani, Anna Carrozzo, Giada Spene, Virginia Talarico and Annalisa Guercio
Pathogens 2025, 14(2), 108; https://doi.org/10.3390/pathogens14020108 - 23 Jan 2025
Viewed by 1365
Abstract
Despite over four decades since its emergence, canine parvovirus type 2 (CPV-2) remains a relevant disease for dogs. Few studies, primarily only recent ones based on phylodynamic and phylogeography approaches, have highlighted the impact of rapid and long-distance transport of dogs on the [...] Read more.
Despite over four decades since its emergence, canine parvovirus type 2 (CPV-2) remains a relevant disease for dogs. Few studies, primarily only recent ones based on phylodynamic and phylogeography approaches, have highlighted the impact of rapid and long-distance transport of dogs on the CPV-2 spreading dynamics. The present study reports the genomic characterization of a CPV-2 strain detected in a dog introduced into Italy from the coasts of North Africa through the Mediterranean Sea route to Europe. The nearly complete CPV-2 sequence was obtained and analyzed. The viral isolate was characterized as a CPV-2b variant, showing genetic signatures distinct from those of CPV-2 strains detected to date in Europe. Phylodynamic and phylogeographic approaches revealed a close correlation with CPV-2 strains recently reported in the Middle East (Turkey and Egypt), which likely originated or co-evolved from Asian ones. It is at least suggestive that the inferred spreading pattern overlaps with the routes often followed by migrants travelling from Asia and Middle East to Europe, passing through Africa. This evidence for the introduction of CPV-2 via the Mediterranean Sea route to Europe highlights the relevant role of the dog movements in the global spread of emerging or re-emerging viral pathogens. Full article
Show Figures

Figure 1

12 pages, 559 KiB  
Article
Clinical Features of Human Parvovirus B19-Associated Encephalitis Identified in the Dakar Region, Senegal, and Viral Genome Characterization
by Al Ousseynou Seye, Fatou Kiné Top, Maimouna Mbanne, Moussa Moise Diagne, Ousmane Faye, Amadou Alpha Sall, Ndongo Dia, Jean-Michel Heraud and Martin Faye
Viruses 2025, 17(1), 111; https://doi.org/10.3390/v17010111 - 15 Jan 2025
Viewed by 1340
Abstract
Neurological manifestations associated with human parvovirus B19 (B19V) infections are rare and varied. Acute encephalitis and encephalopathy are the most common, accounting for 38.8% of all neurological manifestations associated with human B19V. Herein, we report on the clinical features of 13 laboratory-confirmed human [...] Read more.
Neurological manifestations associated with human parvovirus B19 (B19V) infections are rare and varied. Acute encephalitis and encephalopathy are the most common, accounting for 38.8% of all neurological manifestations associated with human B19V. Herein, we report on the clinical features of 13 laboratory-confirmed human cases of B19V-associated encephalitis in Senegal in the framework of a hospital-based surveillance of acute viral encephalitis conducted from 2021 to 2023. Overall, B19V was detected from 13 cerebrospinal fluid samples using specific real time PCR. The mean age was 16.7 years among B19V-positive patients, with a higher prevalence in 0–5-year-old children and the sex ratio (male/female) was 2.25. The B19V-positive patients mainly exhibited hypoleukocytosis, normal glycorrhachia, and normal proteinorrachia in the cerebrospinal fluid. While the main neurological symptoms included meningeal and infectious syndromes. Furthermore, three complete B19V genome sequences were successfully characterized using next-generation sequencing. The newly characterized sequences belonged to the genotype 1a and represent, to date, the first complete B19V genome sequences from Senegal. These sequences could be useful not only in future phylodynamic studies of B19V but also in the development of prevention or treatment countermeasures. Our study is noteworthy for the identification of acute B19V-associated encephalitis in Senegal More investigations on the risk factors associated with B19V transmission in Africa are warranted. Full article
(This article belongs to the Special Issue Advances in Parvovirus Research 2024)
Show Figures

Figure 1

17 pages, 2272 KiB  
Article
Genomic Evolution and Phylodynamics of the Species Orthomarburgvirus marburgense (Marburg and Ravn Viruses) to Understand Viral Adaptation and Marburg Virus Disease’s Transmission Dynamics
by Claude Mambo Muvunyi, Nouh Saad Mohamed, Emmanuel Edwar Siddig and Ayman Ahmed
Pathogens 2024, 13(12), 1107; https://doi.org/10.3390/pathogens13121107 - 14 Dec 2024
Cited by 2 | Viewed by 1631
Abstract
In this review, we investigated the genetic diversity and evolutionary dynamics of the Orthomarburgvirus marburgense species that includes both Marburg virus (MARV) and Ravn virus (RAVV). Using sequence data from natural reservoir hosts and human cases reported during outbreaks, we conducted comprehensive analyses [...] Read more.
In this review, we investigated the genetic diversity and evolutionary dynamics of the Orthomarburgvirus marburgense species that includes both Marburg virus (MARV) and Ravn virus (RAVV). Using sequence data from natural reservoir hosts and human cases reported during outbreaks, we conducted comprehensive analyses to explore the genetic variability, constructing haplotype networks at both the genome and gene levels to elucidate the viral dynamics and evolutionary pathways. Our results revealed distinct evolutionary trajectories for MARV and RAVV, with MARV exhibiting higher adaptability across different ecological regions. MARV showed substantial genetic diversity and evidence of varied evolutionary pressures, suggesting an ability to adapt to diverse environments. In contrast, RAVV demonstrated limited genetic diversity, with no detected recombination events, suggesting evolutionary stability. These differences indicate that, while MARV continues to diversify and adapt across regions, RAVV may be constrained in its evolutionary potential, possibly reflecting differing roles within the viral ecology of the Orthomarburgvirus marburgense species. Our analysis explains the evolutionary mechanisms of these viruses, highlighting that MARV is going through evolutionary adaptation for human-to-human transmission, alarmingly underscoring the global concern about MARV causing the next pandemic. However, further transdisciplinary One Health research is warranted to answer some remaining questions including the host range and genetic susceptibility of domestic and wildlife species as well as the role of the biodiversity network in the disease’s ecological dynamics. Full article
(This article belongs to the Special Issue Marburg Virus)
Show Figures

Figure 1

26 pages, 1818 KiB  
Review
Bioinformatics Goes Viral: I. Databases, Phylogenetics and Phylodynamics Tools for Boosting Virus Research
by Federico Vello, Francesco Filippini and Irene Righetto
Viruses 2024, 16(9), 1425; https://doi.org/10.3390/v16091425 - 6 Sep 2024
Cited by 2 | Viewed by 2716
Abstract
Computer-aided analysis of proteins or nucleic acids seems like a matter of course nowadays; however, the history of Bioinformatics and Computational Biology is quite recent. The advent of high-throughput sequencing has led to the production of “big data”, which has also affected the [...] Read more.
Computer-aided analysis of proteins or nucleic acids seems like a matter of course nowadays; however, the history of Bioinformatics and Computational Biology is quite recent. The advent of high-throughput sequencing has led to the production of “big data”, which has also affected the field of virology. The collaboration between the communities of bioinformaticians and virologists already started a few decades ago and it was strongly enhanced by the recent SARS-CoV-2 pandemics. In this article, which is the first in a series on how bioinformatics can enhance virus research, we show that highly useful information is retrievable from selected general and dedicated databases. Indeed, an enormous amount of information—both in terms of nucleotide/protein sequences and their annotation—is deposited in the general databases of international organisations participating in the International Nucleotide Sequence Database Collaboration (INSDC). However, more and more virus-specific databases have been established and are progressively enriched with the contents and features reported in this article. Since viruses are intracellular obligate parasites, a special focus is given to host-pathogen protein-protein interaction databases. Finally, we illustrate several phylogenetic and phylodynamic tools, combining information on algorithms and features with practical information on how to use them and case studies that validate their usefulness. Databases and tools for functional inference will be covered in the next article of this series: Bioinformatics goes viral: II. Sequence-based and structure-based functional analyses for boosting virus research. Full article
(This article belongs to the Section General Virology)
Show Figures

Figure 1

14 pages, 3502 KiB  
Article
Phylodynamic and Epistatic Analysis of Coxsackievirus A24 and Its Variant
by Chia-Chi Cheng, Pei-Huan Chu, Hui-Wen Huang, Guan-Ming Ke, Liang-Yin Ke and Pei-Yu Chu
Viruses 2024, 16(8), 1267; https://doi.org/10.3390/v16081267 - 8 Aug 2024
Viewed by 1756
Abstract
Coxsackievirus A24 (CV-A24) is a human enterovirus that causes acute flaccid paralysis. However, a Coxsackievirus A24 variant (CV-A24v) is the most common cause of eye infections. The causes of these variable pathogenicity and tissue tropism remain unclear. To elucidate the phylodynamics of CV-A24 [...] Read more.
Coxsackievirus A24 (CV-A24) is a human enterovirus that causes acute flaccid paralysis. However, a Coxsackievirus A24 variant (CV-A24v) is the most common cause of eye infections. The causes of these variable pathogenicity and tissue tropism remain unclear. To elucidate the phylodynamics of CV-A24 and CV-A24v, we analyzed a dataset of 66 strains using Bayesian phylodynamic approach, along with detailed sequence variation and epistatic analyses. Six CV-A24 strains available in GenBank and 60 CV-A24v strains, including 11 Taiwanese strains, were included in this study. The results revealed striking differences between CV-A24 and CV-A24v exhibiting long terminal branches in the phylogenetic tree, respectively. CV-A24v presented distinct ladder-like clustering, indicating immune escape mechanisms. Notably, 10 genetic recombination events in the 3D regions were identified. Furthermore, 11 missense mutation signatures were detected to differentiate CV-A24 and CV-A24v; among these mutations, the F810Y substitution may significantly affect the secondary structure of the GH loop of VP1 and subsequently affect the epitopes of the capsid proteins. In conclusion, this study provides critical insights into the evolutionary dynamics and epidemiological characteristics of CV-A24 and CV-A24v, and highlights the differences in viral evolution and tissue tropism. Full article
(This article belongs to the Special Issue An Update on Enterovirus Research)
Show Figures

Figure 1

24 pages, 2175 KiB  
Article
Interrogating Genomes and Geography to Unravel Multiyear Vesicular Stomatitis Epizootics
by John M. Humphreys, Phillip T. Shults, Lauro Velazquez-Salinas, Miranda R. Bertram, Angela M. Pelzel-McCluskey, Steven J. Pauszek, Debra P. C. Peters and Luis L. Rodriguez
Viruses 2024, 16(7), 1118; https://doi.org/10.3390/v16071118 - 11 Jul 2024
Cited by 1 | Viewed by 2143
Abstract
We conducted an integrative analysis to elucidate the spatial epidemiological patterns of the Vesicular Stomatitis New Jersey virus (VSNJV) during the 2014–15 epizootic cycle in the United States (US). Using georeferenced VSNJV genomics data, confirmed vesicular stomatitis (VS) disease cases from surveillance, and [...] Read more.
We conducted an integrative analysis to elucidate the spatial epidemiological patterns of the Vesicular Stomatitis New Jersey virus (VSNJV) during the 2014–15 epizootic cycle in the United States (US). Using georeferenced VSNJV genomics data, confirmed vesicular stomatitis (VS) disease cases from surveillance, and a suite of environmental factors, our study assessed environmental and phylogenetic similarity to compare VS cases reported in 2014 and 2015. Despite uncertainties from incomplete virus sampling and cross-scale spatial processes, patterns suggested multiple independent re-invasion events concurrent with potential viral overwintering between sequential seasons. Our findings pointed to a geographically defined southern virus pool at the US–Mexico interface as the source of VSNJV invasions and overwintering sites. Phylodynamic analysis demonstrated an increase in virus diversity before a rise in case numbers and a pronounced reduction in virus diversity during the winter season, indicative of a genetic bottleneck and a significant narrowing of virus variation between the summer outbreak seasons. Environment–vector interactions underscored the central role of meta-population dynamics in driving disease spread. These insights emphasize the necessity for location- and time-specific management practices, including rapid response, movement restrictions, vector control, and other targeted interventions. Full article
(This article belongs to the Special Issue Vesicular Stomatitis Virus (VSV))
Show Figures

Figure 1

19 pages, 7359 KiB  
Article
Evolutionary and Phylogenetic Dynamics of SARS-CoV-2 Variants: A Genetic Comparative Study of Taiyuan and Wuhan Cities of China
by Behzad Hussain and Changxin Wu
Viruses 2024, 16(6), 907; https://doi.org/10.3390/v16060907 - 3 Jun 2024
Cited by 3 | Viewed by 1718
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense, single-stranded RNA genome-containing virus which has infected millions of people all over the world. The virus has been mutating rapidly enough, resulting in the emergence of new variants and sub-variants which have reportedly [...] Read more.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a positive-sense, single-stranded RNA genome-containing virus which has infected millions of people all over the world. The virus has been mutating rapidly enough, resulting in the emergence of new variants and sub-variants which have reportedly been spread from Wuhan city in China, the epicenter of the virus, to the rest of China and all over the world. The occurrence of mutations in the viral genome, especially in the viral spike protein region, has resulted in the evolution of multiple variants and sub-variants which gives the virus the benefit of host immune evasion and thus renders modern-day vaccines and therapeutics ineffective. Therefore, there is a continuous need to study the genetic characteristics and evolutionary dynamics of the SARS-CoV-2 variants. Hence, in this study, a total of 832 complete genomes of SARS-CoV-2 variants from the cities of Taiyuan and Wuhan in China was genetically characterized and their phylogenetic and evolutionary dynamics studied using phylogenetics, genetic similarity, and phylogenetic network analyses. This study shows that the four most prevalent lineages in Taiyuan and Wuhan are as follows: the Omicron lineages EG.5.1.1, followed by HK.3, FY.3, and XBB.1.16 (Pangolin classification), and clades 23F (EG.5.1), followed by 23H (HK.3), 22F (XBB), and 23D (XBB.1.9) (Nextclade classification), and lineage B followed by the Omicron FY.3, lineage A, and Omicron FL.2.3 (Pangolin classification), and the clades 19A, followed by 22F (XBB), 23F (EG.5.1), and 23H (HK.3) (Nextclade classification), respectively. Furthermore, our genetic similarity analysis show that the SARS-CoV-2 clade 19A-B.4 from Wuhan (name starting with 412981) has the least genetic similarity of about 95.5% in the spike region of the genome as compared to the query sequence of Omicron XBB.2.3.2 from Taiyuan (name starting with 18495234), followed by the Omicron FR.1.4 from Taiyuan (name starting with 18495199) with ~97.2% similarity and Omicron DY.3 (name starting with 17485740) with ~97.9% similarity. The rest of the variants showed ≥98% similarity with the query sequence of Omicron XBB.2.3.2 from Taiyuan (name starting with 18495234). In addition, our recombination analysis results show that the SARS-CoV-2 variants have three statistically significant recombinant events which could have possibly resulted in the emergence of Omicron XBB.1.16 (recombination event 3), FY.3 (recombination event 5), and FL.2.4 (recombination event 7), suggesting some very important information regarding viral evolution. Also, our phylogenetic tree and network analyses show that there are a total of 14 clusters and more than 10,000 mutations which may have probably resulted in the emergence of cluster-I, followed by 47 mutations resulting in the emergence of cluster-II and so on. The clustering of the viral variants of both cities reveals significant information regarding the phylodynamics of the virus among them. The results of our temporal phylogenetic analysis suggest that the variants of Taiyuan have likely emerged as independent variants separate from the variants of Wuhan. This study, to the best of our knowledge, is the first ever genetic comparative study between Taiyuan and Wuhan cities in China. This study will help us better understand the virus and cope with the emergence and spread of new variants at a local as well as an international level, and keep the public health authorities informed for them to make better decisions in designing new viral vaccines and therapeutics. It will also help the outbreak investigators to better examine any future outbreak. Full article
(This article belongs to the Section Coronaviruses)
Show Figures

Figure 1

13 pages, 2309 KiB  
Article
Reconstruction of Avian Reovirus History and Dispersal Patterns: A Phylodynamic Study
by Giovanni Franzo, Claudia Maria Tucciarone, Giulia Faustini, Francesca Poletto, Riccardo Baston, Mattia Cecchinato and Matteo Legnardi
Viruses 2024, 16(5), 796; https://doi.org/10.3390/v16050796 - 16 May 2024
Cited by 5 | Viewed by 2170
Abstract
Avian reovirus (ARV) infection can cause significant losses to the poultry industry. Disease control has traditionally been attempted mainly through vaccination. However, the increase in clinical outbreaks in the last decades demonstrated the poor effectiveness of current vaccination approaches. The present study reconstructs [...] Read more.
Avian reovirus (ARV) infection can cause significant losses to the poultry industry. Disease control has traditionally been attempted mainly through vaccination. However, the increase in clinical outbreaks in the last decades demonstrated the poor effectiveness of current vaccination approaches. The present study reconstructs the evolution and molecular epidemiology of different ARV genotypes using a phylodynamic approach, benefiting from a collection of more than one thousand sigma C (σC) sequences sampled over time at a worldwide level. ARVs’ origin was estimated to occur several centuries ago, largely predating the first clinical reports. The origins of all genotypes were inferred at least one century ago, and their emergence and rise reflect the intensification of the poultry industry. The introduction of vaccinations had only limited and transitory effects on viral circulation and further expansion was observed, particularly after the 1990s, likely because of the limited immunity and the suboptimal and patchy vaccination application. In parallel, strong selective pressures acted with different strengths and directionalities among genotypes, leading to the emergence of new variants. While preventing the spread of new variants with different phenotypic features would be pivotal, a phylogeographic analysis revealed an intricate network of viral migrations occurring even over long distances and reflecting well-established socio-economic relationships. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

13 pages, 3070 KiB  
Article
Conflicting Evidence between Clinical Perception and Molecular Epidemiology: The Case of Fowl Adenovirus D
by Giovanni Franzo, Giulia Faustini, Claudia Maria Tucciarone, Daniela Pasotto, Matteo Legnardi and Mattia Cecchinato
Animals 2023, 13(24), 3851; https://doi.org/10.3390/ani13243851 - 14 Dec 2023
Cited by 1 | Viewed by 1533
Abstract
Fowl adenoviruses (FAdVs, species FAdV-A/-E) are responsible for several clinical syndromes reported with increasing frequency in poultry farms in the last decades. In the present study, a phylodynamic analysis was performed on a group of FAdV-D Hexon sequences with adequate available metadata. The [...] Read more.
Fowl adenoviruses (FAdVs, species FAdV-A/-E) are responsible for several clinical syndromes reported with increasing frequency in poultry farms in the last decades. In the present study, a phylodynamic analysis was performed on a group of FAdV-D Hexon sequences with adequate available metadata. The obtained results demonstrated the long-term circulation of this species, at least several decades before the first identification of the disease. After a period of progressive increase, the viral population showed a high-level circulation from approximately the 1960s to the beginning of the new millennium, mirroring the expansion of intensive poultry production and animal trade. At the same time, strain migration occurred mainly from Europe to other continents, although other among-continent connections were estimated. Thereafter, the viral population declined progressively, likely due to the improved control measures, potentially including the development and application of FAdV vaccines. An increase in the viral evolutionary rate featured this phase. A role of vaccine-induced immunity in shaping viral evolution could thus be hypothesized. Accordingly, several sites of the Hexon, especially those targeted by the host response were proven under a significant pervasive or episodic diversifying selection. The present study results demonstrate the role of intensive poultry production and market globalization in the rise of FAdV. The applied control strategies, on the other hand, were effective in limiting viral circulation and shaping its evolution. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

27 pages, 6213 KiB  
Conference Report
The International Virus Bioinformatics Meeting 2023
by Franziska Hufsky, Ana B. Abecasis, Artem Babaian, Sebastian Beck, Liam Brierley, Simon Dellicour, Christian Eggeling, Santiago F. Elena, Udo Gieraths, Anh D. Ha, Will Harvey, Terry C. Jones, Kevin Lamkiewicz, Gabriel L. Lovate, Dominik Lücking, Martin Machyna, Luca Nishimura, Maximilian K. Nocke, Bernard Y. Renard, Shoichi Sakaguchi, Lygeri Sakellaridi, Jannes Spangenberg, Maria Tarradas-Alemany, Sandra Triebel, Yulia Vakulenko, Rajitha Yasas Wijesekara, Fernando González-Candelas, Sarah Krautwurst, Alba Pérez-Cataluña, Walter Randazzo, Gloria Sánchez and Manja Marzadd Show full author list remove Hide full author list
Viruses 2023, 15(10), 2031; https://doi.org/10.3390/v15102031 - 30 Sep 2023
Cited by 2 | Viewed by 3378
Abstract
The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24–26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research [...] Read more.
The 2023 International Virus Bioinformatics Meeting was held in Valencia, Spain, from 24–26 May 2023, attracting approximately 180 participants worldwide. The primary objective of the conference was to establish a dynamic scientific environment conducive to discussion, collaboration, and the generation of novel research ideas. As the first in-person event following the SARS-CoV-2 pandemic, the meeting facilitated highly interactive exchanges among attendees. It served as a pivotal gathering for gaining insights into the current status of virus bioinformatics research and engaging with leading researchers and emerging scientists. The event comprised eight invited talks, 19 contributed talks, and 74 poster presentations across eleven sessions spanning three days. Topics covered included machine learning, bacteriophages, virus discovery, virus classification, virus visualization, viral infection, viromics, molecular epidemiology, phylodynamic analysis, RNA viruses, viral sequence analysis, viral surveillance, and metagenomics. This report provides rewritten abstracts of the presentations, a summary of the key research findings, and highlights shared during the meeting. Full article
(This article belongs to the Special Issue Virus Bioinformatics 2023)
Show Figures

Figure 1

15 pages, 3357 KiB  
Article
Not Asian Anymore: Reconstruction of the History, Evolution, and Dispersal of the “Asian” Lineage of CPV-2c
by Giovanni Franzo, Francesco Mira, Giorgia Schirò and Marta Canuti
Viruses 2023, 15(9), 1962; https://doi.org/10.3390/v15091962 - 20 Sep 2023
Cited by 11 | Viewed by 2072
Abstract
Variability has been one of the hallmarks of canine parvovirus type 2 (CPV-2) since its discovery, and several lineages and antigenic variants have emerged. Among these, a group of viruses commonly called Asian CPV-2c has recently been reported with increasing frequency in different [...] Read more.
Variability has been one of the hallmarks of canine parvovirus type 2 (CPV-2) since its discovery, and several lineages and antigenic variants have emerged. Among these, a group of viruses commonly called Asian CPV-2c has recently been reported with increasing frequency in different regions. Currently, its global epidemiology and evolution are essentially unknown. The present work deals with this information gap by evaluating, via sequence, phylodynamic, and phylogeographic analyses, all the complete coding sequences of strains classified as Asian CPV-2c based on a combination of amino acid markers and phylogenetic analysis. After its estimated origin around 2008, this lineage circulated undetected in Asia until approximately 2012, when an expansion in viral population size and geographical distribution occurred, involving Africa, Europe, and North America. Asia was predicted to be the main nucleus of viral dispersal, leading to multiple introduction events in other continents/countries, where infection establishment, persistence, and rapid evolution occurred. Although the dog is the main host, other non-canine species were also involved, demonstrating the host plasticity of this lineage. Finally, although most of the strains showed an amino acid motif considered characteristic of this lineage, several exceptions were observed, potentially due to convergent evolution or reversion phenomena. Full article
(This article belongs to the Special Issue Advances in Parvovirus Research 2022)
Show Figures

Figure 1

37 pages, 5183 KiB  
Article
Unraveling the Dynamics of Omicron (BA.1, BA.2, and BA.5) Waves and Emergence of the Deltacron Variant: Genomic Epidemiology of the SARS-CoV-2 Epidemic in Cyprus (Oct 2021–Oct 2022)
by Andreas C. Chrysostomou, Bram Vrancken, Christos Haralambous, Maria Alexandrou, Ioanna Gregoriou, Marios Ioannides, Costakis Ioannou, Olga Kalakouta, Christos Karagiannis, Markella Marcou, Christina Masia, Michail Mendris, Panagiotis Papastergiou, Philippos C. Patsalis, Despo Pieridou, Christos Shammas, Dora C. Stylianou, Barbara Zinieri, Philippe Lemey, The COMESSAR Network and Leondios G. Kostrikisadd Show full author list remove Hide full author list
Viruses 2023, 15(9), 1933; https://doi.org/10.3390/v15091933 - 15 Sep 2023
Cited by 8 | Viewed by 4059
Abstract
Commencing in December 2019 with the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), three years of the coronavirus disease 2019 (COVID-19) pandemic have transpired. The virus has consistently demonstrated a tendency for evolutionary adaptation, resulting in mutations that impact both immune [...] Read more.
Commencing in December 2019 with the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), three years of the coronavirus disease 2019 (COVID-19) pandemic have transpired. The virus has consistently demonstrated a tendency for evolutionary adaptation, resulting in mutations that impact both immune evasion and transmissibility. This ongoing process has led to successive waves of infections. This study offers a comprehensive assessment spanning genetic, phylogenetic, phylodynamic, and phylogeographic dimensions, focused on the trajectory of the SARS-CoV-2 epidemic in Cyprus. Based on a dataset comprising 4700 viral genomic sequences obtained from affected individuals between October 2021 and October 2022, our analysis is presented. Over this timeframe, a total of 167 distinct lineages and sublineages emerged, including variants such as Delta and Omicron (1, 2, and 5). Notably, during the fifth wave of infections, Omicron subvariants 1 and 2 gained prominence, followed by the ascendancy of Omicron 5 in the subsequent sixth wave. Additionally, during the fifth wave (December 2021–January 2022), a unique set of Delta sequences with genetic mutations associated with Omicron variant 1, dubbed “Deltacron”, was identified. The emergence of this phenomenon initially evoked skepticism, characterized by concerns primarily centered around contamination or coinfection as plausible etiological contributors. These hypotheses were predominantly disseminated through unsubstantiated assertions within the realms of social and mass media, lacking concurrent scientific evidence to validate their claims. Nevertheless, the exhaustive molecular analyses presented in this study have demonstrated that such occurrences would likely lead to a frameshift mutation—a genetic aberration conspicuously absent in our provided sequences. This substantiates the accuracy of our initial assertion while refuting contamination or coinfection as potential etiologies. Comparable observations on a global scale dispelled doubt, eventually leading to the recognition of Delta-Omicron variants by the scientific community and their subsequent monitoring by the World Health Organization (WHO). As our investigation delved deeper into the intricate dynamics of the SARS-CoV-2 epidemic in Cyprus, a discernible pattern emerged, highlighting the major role of international connections in shaping the virus’s local trajectory. Notably, the United States and the United Kingdom were the central conduits governing the entry and exit of the virus to and from Cyprus. Moreover, notable migratory routes included nations such as Greece, South Korea, France, Germany, Brazil, Spain, Australia, Denmark, Sweden, and Italy. These empirical findings underscore that the spread of SARS-CoV-2 within Cyprus was markedly influenced by the influx of new, highly transmissible variants, triggering successive waves of infection. This investigation elucidates the emergence of new waves of infection subsequent to the advent of highly contagious and transmissible viral variants, notably characterized by an abundance of mutations localized within the spike protein. Notably, this discovery decisively contradicts the hitherto hypothesis of seasonal fluctuations in the virus’s epidemiological dynamics. This study emphasizes the importance of meticulously examining molecular genetics alongside virus migration patterns within a specific region. Past experiences also emphasize the substantial evolutionary potential of viruses such as SARS-CoV-2, underscoring the need for sustained vigilance. However, as the pandemic’s dynamics continue to evolve, a balanced approach between caution and resilience becomes paramount. This ethos encourages an approach founded on informed prudence and self-preservation, guided by public health authorities, rather than enduring apprehension. Such an approach empowers societies to adapt and progress, fostering a poised confidence rooted in well-founded adaptation. Full article
(This article belongs to the Special Issue Molecular Epidemiology of SARS-CoV-2: 2nd Edition)
Show Figures

Figure 1

Back to TopTop