Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = vinyl sulfoxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10821 KiB  
Article
Poly(Vinyl Alcohol) Drug and PVA–Drug–Surfactant Complex Organogel with Dimethyl Sulfoxide as a Drug Delivery System
by Sabina Otarbayeva and Dmitriy Berillo
Gels 2024, 10(11), 753; https://doi.org/10.3390/gels10110753 - 20 Nov 2024
Cited by 4 | Viewed by 2329
Abstract
The relevance of active research lies in the need to develop new technologies to improve drug delivery methods for the effective treatment of wound healing. Additionally, the potential application of organogels in other areas of biomedicine, such as creating medical patches with controlled [...] Read more.
The relevance of active research lies in the need to develop new technologies to improve drug delivery methods for the effective treatment of wound healing. Additionally, the potential application of organogels in other areas of biomedicine, such as creating medical patches with controlled drug delivery, indicates a wide range of possibilities for using this technology. This study focuses on developing controlled drug delivery systems using organogels as carriers for ceftriaxone and ofloxacin. By selecting optimal formulations, organogels were created to immobilize the drugs, facilitating their effective and sustained release. The swelling behavior of the hydrogels was studied, showing a swelling coefficient between 16 and 32%, indicating their ability to absorb liquid relative to their weight. Drug release studies demonstrated that ceftriaxone was released 1.8 times slower than ofloxacin, ensuring a more controlled delivery. Microbiological tests confirmed that the organogels containing ofloxacin exhibited antimicrobial activity against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. However, it was a challenge to estimate activity for the model antibiotic ceftriaxone due to bacterial resistance to it. Organogel poly(vinyl alcohol) (PVA)-DMSO–alginate modifications with surfactant cetylpyridinium bromide led to the formation of a polyelectrolyte complex on the interphase, allowing further enhanced the prolonged release of the drugs. The research identified that the optimal compositions for sustained drug release were organogels with compositions PVA (10%)-PVP (1%) DMSO (50%) and PVA (10%)-DMSO (50%) formulations, illustrating the transparent nature of these organogels making them suitable for ophthalmological application. Various organogels compositions (PVA-DMSO, PVA-poly(vinylpyrrolidone)-DMSO, PVA-DMSO–alginate, PVA-DMSO-PLGA, PVA-DMSO–drug–surfactant) loaded with ceftriaxone, ofloxacin, and surfactant were prepared and characterized, highlighting their potential use in antibiotic patches for wound healing. These organogels illustrate promising results for localized treatment of infections in wounds, cuts, burns, and other skin lesions. Full article
Show Figures

Graphical abstract

15 pages, 2730 KiB  
Article
Regioselective Synthesis of Novel Functionalized Dihydro-1,4-thiaselenin-2-ylsufanyl Derivatives under Phase Transfer Catalysis
by Andrey S. Filippov, Svetlana V. Amosova, Alexander I. Albanov and Vladimir A. Potapov
Catalysts 2022, 12(8), 889; https://doi.org/10.3390/catal12080889 - 12 Aug 2022
Cited by 3 | Viewed by 1683
Abstract
The regioselective one-pot synthesis of novel functionalized 2,3-dihydro-1,4-thiaselenin-2-ylsufanyl derivatives in high yields based on 2-bromomethyl-1,3-thiaselenole and activated alkenes was developed under phase transfer catalysis conditions. The reactions proceed under mild conditions at room temperature in a regioselective manner with the addition of sodium [...] Read more.
The regioselective one-pot synthesis of novel functionalized 2,3-dihydro-1,4-thiaselenin-2-ylsufanyl derivatives in high yields based on 2-bromomethyl-1,3-thiaselenole and activated alkenes was developed under phase transfer catalysis conditions. The reactions proceed under mild conditions at room temperature in a regioselective manner with the addition of sodium dihydro-1,4-thiaselenin-2-ylthiolate exclusively at the terminal carbon atom of the double bond of vinyl methyl ketone, alkylacrylates, acrylamide, acrylonitrile, divinyl sulfone, and divinyl sulfoxide. The sodium dihydro-1,4-thiaselenin-2-ylthiolate was generated from 2-[amino(imino)methyl]sulfanyl-2,3-dihydro-1,4-thiaselenine hydrobromide. The latter compound was obtained by the reaction of 2-bromomethyl-1,3-thiaselenole with thiourea, which was accompanied by a rearrangement with ring expansion to the six-membered heterocycle. The obtained 2,3-dihydro-1,4-thiaselenin-2-ylsufanyl derivatives are a novel family of compounds with putative biological activity. The addition products of sodium dihydro-1,4-thiaselenin-2-ylthiolate at one double bond of divinyl sulfone and divinyl sulfoxide, containing vinylsulfonyl and vinylsulfinyl groups, are capable of further addition reactions. A possibility to obtain corresponding alcohol derivatives was shown in the reaction with vinyl methyl ketone. Full article
Show Figures

Figure 1

7 pages, 629 KiB  
Article
Reduction of Sulfoxides in Multigram Scale, an Alternative to the Use of Chlorinated Solvents
by Laura Adarve-Cardona and Diego Gamba-Sánchez
Processes 2022, 10(6), 1115; https://doi.org/10.3390/pr10061115 - 2 Jun 2022
Cited by 4 | Viewed by 2521
Abstract
In this manuscript, we describe the use of ethyl vinyl ether/oxalyl chloride as the reducing mixture for sulfoxides. The reaction is based on the high electrophilic character of chlorosulfonium salts, formed in situ by the reaction of oxalyl chloride and the sulfoxide. Thereafter, [...] Read more.
In this manuscript, we describe the use of ethyl vinyl ether/oxalyl chloride as the reducing mixture for sulfoxides. The reaction is based on the high electrophilic character of chlorosulfonium salts, formed in situ by the reaction of oxalyl chloride and the sulfoxide. Thereafter, the nucleophilic vinyl ether acts as a chlorine scavenger, affording the corresponding sulfide. The method is applicable on a big scale and may be applied to highly functionalized sulfoxides. Chromatographic purification is only needed in exceptional cases of unstable substrates, and the final sulfide or the corresponding salt is usually obtained after simple evaporation of volatiles. The sole contaminants of this method are carbon dioxide, carbon monoxide and small (five-carbon maximum) aldol products, which are formed during the reaction process. Full article
Show Figures

Graphical abstract

12 pages, 38952 KiB  
Article
Polypropylene Hollow-Fiber Membrane Made Using the Dissolution-Induced Pores Method
by Zhongyong Qiu and Chunju He
Membranes 2022, 12(4), 384; https://doi.org/10.3390/membranes12040384 - 31 Mar 2022
Cited by 4 | Viewed by 4885
Abstract
The efficient preparation of hydrophilic polypropylene membranes has always been a problem. Here, a twin-screw extruder was used to melt-blend ethylene-vinyl alcohol copolymer and polypropylene; then, hollow fibers were extrusion-molded with a spinneret and taken by a winder; after this, dimethyl sulfoxide was [...] Read more.
The efficient preparation of hydrophilic polypropylene membranes has always been a problem. Here, a twin-screw extruder was used to melt-blend ethylene-vinyl alcohol copolymer and polypropylene; then, hollow fibers were extrusion-molded with a spinneret and taken by a winder; after this, dimethyl sulfoxide was used to dissolve the ethylene-vinyl alcohol copolymer of the fiber to obtain a polypropylene hollow-fiber membrane. This procedure was used to study the effects of different contents and segment structure of ethylene-vinyl alcohol copolymer on the structure and filtration performance of the membranes; furthermore, the embedded factor and blocked factor were used to evaluate the ethylene-vinyl alcohol copolymer embedded in the matrix without dissolving and or being completely blocked in the matrix, respectively. The results show that the increase in ethylene-vinyl alcohol copolymer could reduce the embedded factor and increase the blocked factor. The increase in the polyethylene segments of ethylene-vinyl alcohol copolymer could increase both the embedded factor and blocked factor. The water permeation of the membrane reached 1300 Lm−2·h−1·bar−1 with a 100% rejection of ink (141 nm) and the elongation at break reached 188%, while the strength reached 22 MPa. The dissolution-induced pores method provides a completely viable alternative route for the preparation of polypropylene membranes. Full article
(This article belongs to the Topic Advanced Self-Cleaning Surfaces)
Show Figures

Figure 1

20 pages, 5539 KiB  
Article
Endovascular Treatment of Chronic Subdural Hematomas through Embolization: A Pilot Study with a Non-Adhesive Liquid Embolic Agent of Minimal Viscosity (Squid)
by Andrey Petrov, Arkady Ivanov, Larisa Rozhchenko, Anna Petrova, Pervinder Bhogal, Alexandru Cimpoca and Hans Henkes
J. Clin. Med. 2021, 10(19), 4436; https://doi.org/10.3390/jcm10194436 - 27 Sep 2021
Cited by 17 | Viewed by 5187
Abstract
Objective: Endovascular embolization using non-adhesive agents (e.g., ethylene vinyl alcohol copolymer with suspended micronized tantalum dissolved in dimethyl sulfoxide; Squid, Balt Extrusion) is an established treatment of brain arteriovenous malformations, dural arteriovenous fistulas, and hypervascular neoplasms. Middle meningeal artery (MMA) embolization is a [...] Read more.
Objective: Endovascular embolization using non-adhesive agents (e.g., ethylene vinyl alcohol copolymer with suspended micronized tantalum dissolved in dimethyl sulfoxide; Squid, Balt Extrusion) is an established treatment of brain arteriovenous malformations, dural arteriovenous fistulas, and hypervascular neoplasms. Middle meningeal artery (MMA) embolization is a relatively new concept for treating chronic subdural hematomas (CSDH). This study aimed to evaluate the safety and effectiveness of the use of Squid in the endovascular treatment of CSDH. Methods: Embolization was offered to patients with CSDH with minimal or moderate neurological deficits and patients who had previously undergone open surgery to evacuate their CSDH without a significant effect. Distal catheterization of the MMA was followed by embolization of the hematoma capsule with Squid 12 or Squid 18. Safety endpoints were ischemic or hemorrhagic stroke and any other adverse event of the endovascular procedure. Efficacy endpoints were the feasibility of the intended procedure and a ≥ 50% reduction of the maximum depth of the CSDH confirmed by follow-up computed tomography (CT) after >3 months. Results: Between November 2019 and July 2021, 10 patients (3 female and 7 male, age range 42–89 years) were enrolled. Five patients had bilateral hematomas, and five patients had previously been operated on with no significant effect and recurrent hematoma formation. The attempted embolization was technically possible in all patients. No technical or clinical complication was encountered. During a post-procedural follow-up (median 90 days), 10 patients improved clinically. A complete resolution of the CSDH was observed in 10 patients. The clinical condition of all enrolled patients during the so-far last contact was rated mRS 0 or 1. Conclusion: A distal catheterization of the MMA for the endovascular embolization of CSDH with Squid allowed for the devascularization of the MMA and the dependent vessels of the hematoma capsule. This procedure resulted in a partial or complete resolution of the CSDH. Procedural complications were not encountered. Full article
(This article belongs to the Special Issue Stroke Management - Diagnostic and Therapy)
Show Figures

Figure 1

11 pages, 6391 KiB  
Communication
Continuous Bioinspired Oxidation of Sulfides
by Francesca Mangiavacchi, Letizia Crociani, Luca Sancineto, Francesca Marini and Claudio Santi
Molecules 2020, 25(11), 2711; https://doi.org/10.3390/molecules25112711 - 11 Jun 2020
Cited by 19 | Viewed by 4797
Abstract
A simple, efficient, and selective oxidation under flow conditions of sulfides into their corresponding sulfoxides and sulfones is reported herein, using as a catalyst perselenic acid generated in situ by the oxidation of selenium (IV) oxide in a diluted aqueous solution of hydrogen [...] Read more.
A simple, efficient, and selective oxidation under flow conditions of sulfides into their corresponding sulfoxides and sulfones is reported herein, using as a catalyst perselenic acid generated in situ by the oxidation of selenium (IV) oxide in a diluted aqueous solution of hydrogen peroxide as the final oxidant. The scope of the proposed methodology was investigated using aryl alkyl sulfides, aryl vinyl sulfides, and dialkyl sulfides as substrates, evidencing, in general, a good applicability. The scaled-up synthesis of (methylsulfonyl)benzene was also demonstrated, leading to its gram-scale preparation. Full article
(This article belongs to the Special Issue Chalcogenides: New Developments and Cutting-Edge Applications)
Show Figures

Graphical abstract

11 pages, 3230 KiB  
Communication
New Polymers for Needleless Electrospinning from Low-Toxic Solvents
by Martin Wortmann, Natalie Frese, Lilia Sabantina, Richard Petkau, Franziska Kinzel, Armin Gölzhäuser, Elmar Moritzer, Bruno Hüsgen and Andrea Ehrmann
Nanomaterials 2019, 9(1), 52; https://doi.org/10.3390/nano9010052 - 2 Jan 2019
Cited by 42 | Viewed by 6948
Abstract
Electrospinning is a new technology whose scope is gradually being developed. For this reason, the number of known polymer–solvent combinations for electrospinning is still very low despite the enormous variety of substances that are potentially available. In particular, electrospinning from low-toxic solvents, such [...] Read more.
Electrospinning is a new technology whose scope is gradually being developed. For this reason, the number of known polymer–solvent combinations for electrospinning is still very low despite the enormous variety of substances that are potentially available. In particular, electrospinning from low-toxic solvents, such as the use of dimethyl sulfoxide (DMSO) in medical technology, is rare in the relevant scientific literature. Therefore, we present in this work a series of new polymers that are applicable for electrospinning from DMSO. From a wide range of synthetic polymers tested, poly(vinyl alcohol) (PVOH), poly(2ethyl2oxazolene) (PEOZ), and poly(vinylpyrrolidone) (PVP) as water-soluble polymers and poly(styrene-co-acrylonitrile) (SAN), poly(vinyl alcohol-co-ethylene) (EVOH), and acrylonitrile butadiene styrene (ABS) as water-insoluble polymers were found to be suitable for the production of nanofibers. Furthermore, the influence of acetone as a volatile solvent additive in DMSO on the fiber morphology of these polymers was investigated. Analyses of the fiber morphology by helium ion microscopy (HIM) showed significantly different fiber diameters for different polymers and a reduction in beads and branches with increasing acetone content. Full article
Show Figures

Graphical abstract

18 pages, 4014 KiB  
Article
Cryostructuring of Polymeric Systems. 49. Unexpected “Kosmotropic-Like” Impact of Organic Chaotropes on Freeze–Thaw-Induced Gelation of PVA in DMSO
by Vladimir I. Lozinsky, Olga Yu. Kolosova, Dmitrii A. Michurov, Alexander S. Dubovik, Viktor G. Vasil’ev and Valerij Ya. Grinberg
Gels 2018, 4(4), 81; https://doi.org/10.3390/gels4040081 - 8 Oct 2018
Cited by 13 | Viewed by 7354
Abstract
Urea (URE) and guanidine hydrochloride (GHC) possessing strong chaotropic properties in aqueous media were added to DMSO solutions of poly(vinyl alcohol) (PVA) to be gelled via freeze–thaw processing. Unexpectedly, it turned out that in the case of the PVA cryotropic gel formation in [...] Read more.
Urea (URE) and guanidine hydrochloride (GHC) possessing strong chaotropic properties in aqueous media were added to DMSO solutions of poly(vinyl alcohol) (PVA) to be gelled via freeze–thaw processing. Unexpectedly, it turned out that in the case of the PVA cryotropic gel formation in DMSO medium, the URE and GHC additives caused the opposite effects to those observed in water, i.e., the formation of the PVA cryogels (PVACGs) was strengthened rather than inhibited. Our studies of this phenomenon showed that such “kosmotropic-like” effects were more pronounced for the PVACGs that were formed in DMSO in the presence of URE additives, with the effects being concentration-dependent. The additives also caused significant changes in the macroporous morphology of the cryogels; the commonly observed trend was a decrease in the structural regularity of the additive-containing samples compared to the additive-free gel sample. The viscosity measurements revealed consistent changes in the intrinsic viscosity, Huggins constant, and the excess activation heat of the viscosity caused by the additives. The results obtained evidently point to the urea-induced decrease in the solvation ability of DMSO with respect to PVA. As a result, this effect can be the key factor that is responsible for strengthening the structure formation upon the freeze–thaw gelation of this polymer in DMSO additionally containing additives such as urea, which is capable of competing with PVA for the solvent. Full article
(This article belongs to the Special Issue Cryogelation and Cryogels)
Show Figures

Figure 1

14 pages, 1859 KiB  
Article
The Influence of Polymers on the Supersaturation Potential of Poor and Good Glass Formers
by Lasse I. Blaabjerg, Holger Grohganz, Eleanor Lindenberg, Korbinian Löbmann, Anette Müllertz and Thomas Rades
Pharmaceutics 2018, 10(4), 164; https://doi.org/10.3390/pharmaceutics10040164 - 21 Sep 2018
Cited by 34 | Viewed by 4199
Abstract
The increasing number of poorly water-soluble drug candidates in pharmaceutical development is a major challenge. Enabling techniques such as amorphization of the crystalline drug can result in supersaturation with respect to the thermodynamically most stable form of the drug, thereby possibly increasing its [...] Read more.
The increasing number of poorly water-soluble drug candidates in pharmaceutical development is a major challenge. Enabling techniques such as amorphization of the crystalline drug can result in supersaturation with respect to the thermodynamically most stable form of the drug, thereby possibly increasing its bioavailability after oral administration. The ease with which such crystalline drugs can be amorphized is known as their glass forming ability (GFA) and is commonly described by the critical cooling rate. In this study, the supersaturation potential, i.e., the maximum apparent degree of supersaturation, of poor and good glass formers is investigated in the absence or presence of either hypromellose acetate succinate L-grade (HPMCAS-L) or vinylpyrrolidine-vinyl acetate copolymer (PVPVA64) in fasted state simulated intestinal fluid (FaSSIF). The GFA of cinnarizine, itraconazole, ketoconazole, naproxen, phenytoin, and probenecid was determined by melt quenching the crystalline drugs to determine their respective critical cooling rate. The inherent supersaturation potential of the drugs in FaSSIF was determined by a solvent shift method where the respective drugs were dissolved in dimethyl sulfoxide and then added to FaSSIF. This study showed that the poor glass formers naproxen, phenytoin, and probenecid could not supersaturate on their own, however for some drug:polymer combinations of naproxen and phenytoin, supersaturation of the drug was enabled by the polymer. In contrast, all of the good glass formers—cinnarizine, itraconazole, and ketoconazole—could supersaturate on their own. Furthermore, the maximum achievable concentration of the good glass formers was unaffected by the presence of a polymer. Full article
Show Figures

Graphical abstract

9 pages, 1569 KiB  
Article
Prevention of the Aggregation of Nanoparticles during the Synthesis of Nanogold-Containing Silica Aerogels
by István Lázár and Hanna Judit Szabó
Gels 2018, 4(2), 55; https://doi.org/10.3390/gels4020055 - 19 Jun 2018
Cited by 19 | Viewed by 5900
Abstract
Nanogold is widely used in many areas of physics and chemistry due to its environment-sensitive plasmon resonance absorption. The immobilization of gold nanoparticles in highly porous silica aerogel offers an attractive alternative to liquid gold solutions as they show a mechanically stable structure, [...] Read more.
Nanogold is widely used in many areas of physics and chemistry due to its environment-sensitive plasmon resonance absorption. The immobilization of gold nanoparticles in highly porous silica aerogel offers an attractive alternative to liquid gold solutions as they show a mechanically stable structure, are permeable to gases, and can even be used at elevated temperatures. We have found that the commercially available citrate-stabilized 10 nm gold nanoparticles may suffer from aggregation prior to or under the base-catalyzed gelation process of tetramethoxy silane. In the wet gels, Au particles increased in size, changed shape, and demonstrated the loss of plasmon resonance absorption, due to the formation of larger aggregates. We have studied a range of water-miscible organic solvents, stabilizing agents, and the gelation conditions to minimize changes from occurring in the aerogel setting and the supercritical drying process. It has been found that atmospheric carbon dioxide has a significant effect on aggregation, and it cannot be entirely excluded under normal synthetic conditions. Methanol resulted in an increase in the particle size only, while dimethyl sulfoxide, dimethylformamide, and urea changed the shape of nanoparticles to rod-like shapes, and diols led to an increase in both size and shape. However, using the polymeric stabilizer poly(vinyl pyrrolidone) efficiently prevented the aggregation of the particles, even in the presence of high concentrations of carbon dioxide, and allowed the production of nanoAu containing silica aerogels in a single step, without the modification of technology. Full article
(This article belongs to the Special Issue Aerogels 2018)
Show Figures

Graphical abstract

9 pages, 2032 KiB  
Article
Irreversible Swelling Behavior and Reversible Hysteresis in Chemically Crosslinked Poly(vinyl alcohol) Gels
by Keiichiro Kamemaru, Shintaro Usui, Yumiko Hirashima and Atsushi Suzuki
Gels 2018, 4(2), 45; https://doi.org/10.3390/gels4020045 - 21 May 2018
Cited by 10 | Viewed by 4644
Abstract
We report the swelling properties of chemically crosslinked poly(vinyl alcohol) (PVA) gels with high degrees of polymerization and hydrolysis. Physical crosslinking by microcrystallites was introduced in this chemical PVA gel by a simple dehydration process. The equilibrium swelling ratio was measured in several [...] Read more.
We report the swelling properties of chemically crosslinked poly(vinyl alcohol) (PVA) gels with high degrees of polymerization and hydrolysis. Physical crosslinking by microcrystallites was introduced in this chemical PVA gel by a simple dehydration process. The equilibrium swelling ratio was measured in several mixed solvents, which comprised two-components: a good solvent (water or dimethyl sulfoxide (DMSO)), and a poor organic solvent for PVA. In the case of aqueous/organic solvent mixtures subjected to a multiple-sample test, the swelling ratio decreased continuously when the concentration of the organic solvent increased, reaching a collapsed state in the respective pure organic solvents. In the case of DMSO, starting from a swollen state, the swelling ratio rapidly decreased by between 15 and 50 mol % when the concentration of the organic compound increased in a single-sample test. To understand the hysteresis phenomenon, the swelling ratio was measured in a DMSO/acetone mixed solvent, starting from a collapsed state in acetone. The reversibility of swelling in response to successive concentration cycles between DMSO and acetone was examined. As a result, an irreversible swelling behavior was observed in the first cycle, and the swelling ratio in acetone after the first cycle became larger than the initial ratio. Subsequently, the swelling ratio changed reversibly, with a large hysteresis near a specific molar ratio of DMSO/acetone of 60/40. The microstructures were confirmed by Fourier transform infrared spectroscopy during the cycles. The irreversible swelling behavior and hysteresis are discussed in terms of the destruction and re-formation of additional physical crosslinking in the chemical PVA gels. Full article
Show Figures

Graphical abstract

18 pages, 2432 KiB  
Article
Enantiopure Trisubstituted Tetrahydrofurans with Appendage Diversity: Vinyl Sulfone- and Vinyl Sulfoxide-Modified Furans Derived from Carbohydrates as Synthons for Diversity Oriented Synthesis
by Debanjana Dey and Tanmaya Pathak
Molecules 2016, 21(6), 690; https://doi.org/10.3390/molecules21060690 - 26 May 2016
Cited by 4 | Viewed by 5946
Abstract
Enantiomerically pure 2-substituted-2,5-dihydro-3-(aryl) sulfonyl/sulfinyl furans have been prepared from the easily accessible carbohydrate derivatives. The orientation of the substituents attached at the C-2 position of furans is sufficient to control the diastereoselectivity of the addition of various nucleophiles to the vinyl sulfone/sulfoxide-modified tetrahydrofurans, [...] Read more.
Enantiomerically pure 2-substituted-2,5-dihydro-3-(aryl) sulfonyl/sulfinyl furans have been prepared from the easily accessible carbohydrate derivatives. The orientation of the substituents attached at the C-2 position of furans is sufficient to control the diastereoselectivity of the addition of various nucleophiles to the vinyl sulfone/sulfoxide-modified tetrahydrofurans, irrespective of the size of the group. The orientation of the substituents at the C-2 center also suppresses the influence of sulfoxides on the diastereoselectivity of the addition of various nucleophiles. The strategy leads to the creation of appendage diversity, affording a plethora of enantiomerically pure trisubstituted furanics for the first time. Full article
(This article belongs to the Special Issue Diversity Oriented Synthesis 2016)
Show Figures

Graphical abstract

16 pages, 1338 KiB  
Article
Synthesis of Novel π-Conjugated Rod-Rod-Rod Triblock Copolymers Containing Poly(3-hexylthiophene) and Polyacetylene Segments by Combination of Quasi-Living GRIM and Living Anionic Polymerization
by Tomoya Higashihara, Cheng-Liang Liu, Wen-Chang Chen and Mitsuru Ueda
Polymers 2011, 3(1), 236-251; https://doi.org/10.3390/polym3010236 - 10 Jan 2011
Cited by 15 | Viewed by 10349
Abstract
The first successful synthesis of a new rod-rod-rod triblock copolymer, polyacetylene(PA)-b-poly(3-hexylthiophene)(P3HT)-b-PA could be synthesized by a combination of quasi-living Grignard metathesis (GRIM) and living anionic polymerization. We first confirmed that poly(4-tolyl vinyl sulfoxide) (PTVS), which is a soluble precursor [...] Read more.
The first successful synthesis of a new rod-rod-rod triblock copolymer, polyacetylene(PA)-b-poly(3-hexylthiophene)(P3HT)-b-PA could be synthesized by a combination of quasi-living Grignard metathesis (GRIM) and living anionic polymerization. We first confirmed that poly(4-tolyl vinyl sulfoxide) (PTVS), which is a soluble precursor for PA, could be synthesized by living anionic polymerization in THF at −78 °C, initiated with 3-methyl-1,1-diphenylpentyllithium as the initiator in the presence of in situ-generated lithium enolate. The molecular weights (MWs) and polydispersities (PDIs) were well controlled (MW = 5,200–27,000, PDI = 1.10–1.22), respectively. A coil-rod-coil triblock copolymer, PTVS-b-P3HT-b-PTVS, (6,000-12,500-6,000) could also be synthesized, initiated with a P3HT-based difunctional macroinitiator in the presence of lithium enolate. GPC-RALLS and 1H NMR analyses confirmed a high degree of structural homogeneity of PTVS-b-P3HT-b-PTVS. A thermal transformation reaction of the polymer was carried out in the film state at 170 °C for 2 h to afford PA-b-P3HT-b-PA quantitatively, as monitored by TGA and FT-IR analyses. The optical and electronic properties as well as the morphological behavior of the block copolymers were investigated by UV-vis spectroscopy, conductivity measurement, and AFM observation. Full article
(This article belongs to the Special Issue Conductive Polymers)
Show Figures

Back to TopTop