Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = vertical channel NAND flash

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2732 KB  
Article
Innovative Programming Approaches to Address Z-Interference in High-Density 3D NAND Flash Memory
by Yu Jin Choi, Seul Ki Hong and Jong Kyung Park
Electronics 2024, 13(16), 3123; https://doi.org/10.3390/electronics13163123 - 7 Aug 2024
Viewed by 3158
Abstract
Increasing the bit density in 3D NAND flash memory involves reducing the pitch of ON (Oxide-Nitride) molds in the Z-direction. However, this reduction drastically increases Z-interference, adversely affecting cell distribution and accelerating degradation of reliability limits. Previous studies have shown that programming from [...] Read more.
Increasing the bit density in 3D NAND flash memory involves reducing the pitch of ON (Oxide-Nitride) molds in the Z-direction. However, this reduction drastically increases Z-interference, adversely affecting cell distribution and accelerating degradation of reliability limits. Previous studies have shown that programming from the top word line (WL) to the bottom WL, instead of the traditional bottom-to-top approach, alleviates Z-interference. Nevertheless, detailed analysis of how Z-interference varies at each WL depending on the programming sequence remains insufficient. This paper investigates the causes of Z-interference variations at Top, Middle, and Bottom WLs through TCAD analysis. It was found that as more electrons are programmed into WLs within the string, Z-interference variations increase due to increased resistance in the poly-Si channel. These variations are exacerbated by tapered vertical channel profiles resulting from high aspect ratio etching. To address these issues, a method is proposed to adjust bitline biases during verification operations of each WL. This method has been validated to enhance the performance and reliability of 3D NAND flash memory. Full article
(This article belongs to the Special Issue Advanced Non-Volatile Memory Devices and Systems)
Show Figures

Figure 1

18 pages, 6588 KB  
Article
Smart Electrical Screening Methodology for Channel Hole Defects of 3D Vertical NAND (VNAND) Flash Memory
by Beomjun Kim, Gyeongseob Seo and Myungsuk Kim
Eng 2024, 5(1), 495-512; https://doi.org/10.3390/eng5010027 - 19 Mar 2024
Cited by 6 | Viewed by 4879
Abstract
In order to successfully achieve mass production in NAND flash memory, a novel test procedure has been proposed to electrically detect and screen the channel hole defects, such as Not-Open, Bowing, and Bending, which are unique in high-density 3D NAND flash memory. Since [...] Read more.
In order to successfully achieve mass production in NAND flash memory, a novel test procedure has been proposed to electrically detect and screen the channel hole defects, such as Not-Open, Bowing, and Bending, which are unique in high-density 3D NAND flash memory. Since channel hole defects lead to catastrophic failure (i.e., malfunction of basic NAND operations), detecting and screening defects in advance is one of the key challenges of guaranteeing the quality of flash products in the NAND manufacturing process. Based on analysis of the physical and electrical mechanisms of the channel hole defect, we have developed a two-step test procedure that consists of pattern-based and stress-based screen methodologies. By optimizing test patterns depending on the type of defect, the pattern-based screen is effective for detecting the type of Hard channel hole defects. The stress-based screen is carefully implemented to detect hidden Soft channel hole defects without degrading the reliability of NAND flash memory. In addition, we have attempted to further optimize the current version of our technique to minimize test time overhead, thus enabling 72.2% improvement in total test time. Experimental results using real 160 3D NAND flash chips show that our technique can efficiently detect and screen out various types of channel hole defects with minimum test time and negligible degradation in the flash reliability. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

11 pages, 3409 KB  
Article
Optimizing Confined Nitride Trap Layers for Improved Z-Interference in 3D NAND Flash Memory
by Yeeun Kim, Seul Ki Hong and Jong Kyung Park
Electronics 2024, 13(6), 1020; https://doi.org/10.3390/electronics13061020 - 8 Mar 2024
Cited by 3 | Viewed by 4010
Abstract
This paper presents an innovative approach to alleviate Z-interference in 3D NAND flash memory by proposing an optimized confined nitride trap layer structure. Z-interference poses a significant challenge in 3D NAND flash memory, especially with the reduction in cell spacing to accommodate an [...] Read more.
This paper presents an innovative approach to alleviate Z-interference in 3D NAND flash memory by proposing an optimized confined nitride trap layer structure. Z-interference poses a significant challenge in 3D NAND flash memory, especially with the reduction in cell spacing to accommodate an increased number of vertically stacked 3D NAND flash memories. While the confined nitride trap layer device designed for complete isolation of the trapping layer in three dimensions effectively reduces Z-interference, the results showed substantial variations based on the confined structure. To clarify this issue, we compared three distinct confined nitride trap layer structures and investigated their impact on Z-interference. Our findings indicate that the rectangle structure exhibited the most significant mitigation, implying that differences in the electric field applied to the poly silicon channel, which is influenced by the structure, and the increase in effective channel length are effective strategies for alleviating Z-interference. The proposed structure undergoes a comprehensive examination through technology computer-aided design (TCAD) simulations. Additionally, we introduce a practical process flow designed to minimize Z-interference. Full article
(This article belongs to the Special Issue Feature Papers in Semiconductor Devices)
Show Figures

Figure 1

8 pages, 2808 KB  
Communication
A Novel Channel Preparation Scheme to Optimize Program Disturbance in Three-Dimensional NAND Flash Memory
by Kaikai You, Lei Jin, Jianquan Jia and Zongliang Huo
Micromachines 2024, 15(2), 223; https://doi.org/10.3390/mi15020223 - 31 Jan 2024
Viewed by 2384
Abstract
The program disturbance characteristics of three-dimensional (3D) vertical NAND flash cell array architecture pose a critical reliability challenge due to the lower unselected word line (WL) pass bias (Vpass) window. In other words, the key contradiction of program disturbance is that the operational [...] Read more.
The program disturbance characteristics of three-dimensional (3D) vertical NAND flash cell array architecture pose a critical reliability challenge due to the lower unselected word line (WL) pass bias (Vpass) window. In other words, the key contradiction of program disturbance is that the operational Vpass during the program’s performance cannot be too high or too low. For instance, the 3D NAND program’s operation string needs a lower Vpass bias to suppress unselected WL Vpass bias-induced Fowler–Nordheim tunneling (FN tunneling), but for the inhibited string, the unselected WL needs a higher Vpass bias to suppress selected WL program bias (Vpgm)-induced FN tunneling. In this paper, a systematical insight into the relationship between the channel potential and channel electron density is given. Based on this intensive investigation, we studied a novel channel preparation scheme using “Gate-induced drain leakage (GIDL) pre-charge”. Our methodology does not require the introduction of any new structures in 3D NAND, or changes in the operational Vpass bias. Instead, the potential on the unselected channel is enhanced by exploiting the holes generated by the GIDL operation effectively, leading to significantly suppressed program disturbance and a larger pass disturb window. To validate the effectiveness of the “GIDL pre-charge” method, TCAD simulation and real silicon data are used. Full article
Show Figures

Figure 1

17 pages, 510 KB  
Article
Channel Modeling and Quantization Design for 3D NAND Flash Memory
by Cheng Wang, Zhen Mei, Jun Li, Feng Shu, Xuan He and Lingjun Kong
Entropy 2023, 25(7), 965; https://doi.org/10.3390/e25070965 - 21 Jun 2023
Cited by 5 | Viewed by 3805
Abstract
As the technology scales down, two-dimensional (2D) NAND flash memory has reached its bottleneck. Three-dimensional (3D) NAND flash memory was proposed to further increase the storage capacity by vertically stacking multiple layers. However, the new architecture of 3D flash memory leads to new [...] Read more.
As the technology scales down, two-dimensional (2D) NAND flash memory has reached its bottleneck. Three-dimensional (3D) NAND flash memory was proposed to further increase the storage capacity by vertically stacking multiple layers. However, the new architecture of 3D flash memory leads to new sources of errors, which severely affects the reliability of the system. In this paper, for the first time, we derive the channel probability density function of 3D NAND flash memory by taking major sources of errors. Based on the derived channel probability density function, the mutual information (MI) for 3D flash memory with multiple layers is derived and used as a metric to design the quantization. Specifically, we propose a dynamic programming algorithm to jointly optimize read-voltage thresholds for all layers by maximizing the MI (MMI). To further reduce the complexity, we develop an MI derivative (MID)-based method to obtain read-voltage thresholds for hard-decision decoding (HDD) of error correction codes (ECCs). Simulation results show that the performance with jointly optimized read-voltage thresholds can closely approach that with read-voltage thresholds optimized for each layer, with much less read latency. Moreover, the MID-based MMI quantizer almost achieves the optimal performance for HDD of ECCs. Full article
(This article belongs to the Special Issue Coding and Entropy)
Show Figures

Figure 1

13 pages, 20953 KB  
Article
Investigation of Program Efficiency Overshoot in 3D Vertical Channel NAND Flash with Randomly Distributed Traps
by Chanyang Park, Jun-Sik Yoon, Kihoon Nam, Hyundong Jang, Minsang Park and Rock-Hyun Baek
Nanomaterials 2023, 13(9), 1451; https://doi.org/10.3390/nano13091451 - 24 Apr 2023
Cited by 1 | Viewed by 3428
Abstract
The incremental step pulse programming slope (ISPP) with random variation was investigated by measuring numerous three−dimensional (3D) NAND flash memory cells with a vertical nanowire channel. We stored multiple bits in a cell with the ISPP scheme and read each cell pulse by [...] Read more.
The incremental step pulse programming slope (ISPP) with random variation was investigated by measuring numerous three−dimensional (3D) NAND flash memory cells with a vertical nanowire channel. We stored multiple bits in a cell with the ISPP scheme and read each cell pulse by pulse. The excessive tunneling from the channel to the storage layer determines the program efficiency overshoot. Then, a broadening of the threshold voltage distribution was observed due to the abnormal program cells. To analyze the randomly varying abnormal program behavior itself, we distinguished between the read variation and over−programming in measurements. Using a 3D Monte−Carlo simulation, which is a probabilistic approach to solve randomness, we clarified the physical origins of over−programming that strongly influence the abnormal program cells in program step voltage, and randomly distributed the trap site in the nitride of a nanoscale 3D NAND string. These causes have concurrent effects, but we divided and analyzed them quantitatively. Our results reveal the origins of the variation and the overshoot in the ISPP, widening the threshold voltage distribution with traps randomly located at the nanoscale. The findings can enhance understanding of random over−programming and help mitigate the most problematic programming obstacles for multiple−bit techniques. Full article
(This article belongs to the Special Issue Semiconductor Nanomaterials for Memory Devices)
Show Figures

Figure 1

8 pages, 2292 KB  
Article
Activation Enhancement and Grain Size Improvement for Poly-Si Channel Vertical Transistor by Laser Thermal Annealing in 3D NAND Flash
by Tao Yang, Zhiliang Xia, Dongyu Fan, Dongxue Zhao, Wei Xie, Yuancheng Yang, Lei Liu, Wenxi Zhou and Zongliang Huo
Micromachines 2023, 14(1), 230; https://doi.org/10.3390/mi14010230 - 16 Jan 2023
Cited by 3 | Viewed by 5213
Abstract
The bit density is generally increased by stacking more layers in 3D NAND Flash. Lowering dopant activation of select transistors results from complex integrated processes. To improve channel dopant activation, the test structure of vertical channel transistors was used to investigate the influence [...] Read more.
The bit density is generally increased by stacking more layers in 3D NAND Flash. Lowering dopant activation of select transistors results from complex integrated processes. To improve channel dopant activation, the test structure of vertical channel transistors was used to investigate the influence of laser thermal annealing on dopant activation. The activation of channel doping by different thermal annealing methods was compared. The laser thermal annealing enhanced the channel activation rate by at least 23% more than limited temperature rapid thermal annealing. We then comprehensively explore the laser thermal annealing energy density on the influence of Poly-Si grain size and device performance. A clear correlation between grain size mean and grain size sigma, large grain size mean and sigma with large laser thermal annealing energy density. Large laser thermal annealing energy density leads to tightening threshold voltage and subthreshold swing distribution since Poly-Si grain size regrows for better grain size distribution with local grains optimization. As an enabler for next-generation technologies, laser thermal annealing will be highly applied in 3D NAND Flash for better device performance with stacking more layers, and opening new opportunities of novel 3D architectures in the semiconductor industry. Full article
(This article belongs to the Special Issue Advances in Emerging Nonvolatile Memory, Volume II)
Show Figures

Figure 1

11 pages, 2792 KB  
Article
Floating Filler (FF) in an Indium Gallium Zinc Oxide (IGZO) Channel Improves the Erase Performance of Vertical Channel NAND Flash with a Cell-on-Peri (COP) Structure
by Seonjun Choi, Changhwan Choi, Jae Kyeong Jeong, Myounggon Kang and Yun-heub Song
Electronics 2021, 10(13), 1561; https://doi.org/10.3390/electronics10131561 - 28 Jun 2021
Cited by 5 | Viewed by 5813
Abstract
In this study, we developed a V-NAND with an improved IGZO-P type (IP) floating filler (FF) structure based on an IGZO channel verified in previous studies and demonstrated that it has a very fast erase speed through device simulation. The proposed FF structure [...] Read more.
In this study, we developed a V-NAND with an improved IGZO-P type (IP) floating filler (FF) structure based on an IGZO channel verified in previous studies and demonstrated that it has a very fast erase speed through device simulation. The proposed FF structure can supply holes generated through the Gate-Induced Drain Leakage (GIDL) phenomenon in the upper polysilicon string select line (SSL) channel to the IGZO channel through a P-type filler, and the structure proposed by this operation shows a very fast erase speed of 4 μs. A fast erase speed was achieved because the filler adjacent to the IGZO channel, like IP structures in previous studies, functioned as a path through which electrons emitted from the charge storage layer moved easily, rather than simply supplying holes. This assumption was confirmed by assessing the change in electron density of the channel during the erase operation. Next, we investigated the optimum conditions for leakage current reduction through various condition changes of the lower ground select line (GSL) gate in the proposed structure. We confirmed that the leakage current of the proposed structure can be minimized by changing the number of lower GSL gates, changing the length of the GSL channel, and/or changing the work function of the GSL gate material. We obtained a leakage current of 10−17 A when the GSL channel was 480 nm long with six GSL gates, each with a length of 40 nm. The work function of the gates was 4.96 eV. Full article
(This article belongs to the Special Issue New CMOS Devices and Their Applications II)
Show Figures

Figure 1

12 pages, 3741 KB  
Article
A Novel Structure and Operation Scheme of Vertical Channel NAND Flash with Ferroelectric Memory for Multi String Operations
by Seonjun Choi, Changhwan Choi, Jae Kyeong Jeong, Myounggon Kang and Yun-heub Song
Electronics 2021, 10(1), 32; https://doi.org/10.3390/electronics10010032 - 28 Dec 2020
Cited by 5 | Viewed by 5960
Abstract
In this study, the operation method of the proposed ferroelectric memory structure as a method to overcome the limitations of the existing Charge Trap Flash (CTF) memory Vertical NAND (V-NAND) structure was presented and verified through device simulation. The proposed structure and operation [...] Read more.
In this study, the operation method of the proposed ferroelectric memory structure as a method to overcome the limitations of the existing Charge Trap Flash (CTF) memory Vertical NAND (V-NAND) structure was presented and verified through device simulation. The proposed structure and operation method applied the BiCS (Bit Cost Scalable) structure GIDL (Gate Induce Drain Leakage) deletion method to confirm that selective program operation is possible in the ferroelectric memory V-NAND (Vertical Channel NAND) structure. In particular, we confirmed that the proposed method can easily suppress the program operation by adjusting the hole density of the channel even in the “Y-mode” operation. The channel hole density adjustment that makes this possible can be easily controlled by the voltage difference between the bit line (BL) and drain select line (DSL) contacts. The proposed structure was verified through a device simulation, and as a result of the verification, it was confirmed that the channel hole can be selectively charged in the program operation. Through this, when the cell to be programmed shows the program operation of 2.3 V, the other cells do not. It was confirmed that it could be suppressed to 0.4 V. Full article
(This article belongs to the Special Issue New CMOS Devices and Their Applications)
Show Figures

Figure 1

11 pages, 1604 KB  
Article
Analytical Current-Voltage Model for Gate-All-Around Transistor with Poly-Crystalline Silicon Channel
by Yoongeun Seon, Jongmin Kim, Soowon Kim and Jongwook Jeon
Electronics 2019, 8(9), 988; https://doi.org/10.3390/electronics8090988 - 4 Sep 2019
Cited by 4 | Viewed by 4562
Abstract
Poly-crystalline silicon channel transistors have been used as a display TFT for a long time and have recently been used in a 3D vertical NAND Flash which is a transistor with 2D plane NAND upright. In addition, multi-gate transistors such as FinFETs and [...] Read more.
Poly-crystalline silicon channel transistors have been used as a display TFT for a long time and have recently been used in a 3D vertical NAND Flash which is a transistor with 2D plane NAND upright. In addition, multi-gate transistors such as FinFETs and a gate-all-around (GAA) structure has been used to suppress the short-channel effects for logic/analog and memory applications. Compact models for poly-crystalline silicon (poly-silicon) channel planar TFTs and single crystalline silicon channel GAA MOSFETs have been developed separately, however, there are few models consider these two physics at the same time. In this work, we derived new analytical current-voltage model for GAA transistor with poly-silicon channel by considering the cylindrical coordinates and the grain boundary effect. Based on the derived formula, the compact I-V model for various operating regions and threshold voltage was proposed for the first time. The proposed model was compared with the measured data and good agreements were observed. Full article
(This article belongs to the Special Issue New CMOS Devices and Their Applications)
Show Figures

Figure 1

Back to TopTop