Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = ventral intermediate nucleus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 868 KiB  
Review
The Effects of Deep Brain Stimulation on Balance in Parkinson’s Disease as Measured Using Posturography—A Narrative Review
by Bradley Lonergan, Barry M. Seemungal, Matteo Ciocca and Yen F. Tai
Brain Sci. 2025, 15(5), 535; https://doi.org/10.3390/brainsci15050535 - 21 May 2025
Cited by 1 | Viewed by 996
Abstract
Background: Postural imbalance with falls affects 80% of patients with Parkinson’s disease (PD) at 10 years. Standard PD therapies (e.g., levodopa and/or deep brain stimulation—DBS) are poor at improving postural imbalance. Additionally, the mechanistic complexity of interpreting postural control is a major barrier [...] Read more.
Background: Postural imbalance with falls affects 80% of patients with Parkinson’s disease (PD) at 10 years. Standard PD therapies (e.g., levodopa and/or deep brain stimulation—DBS) are poor at improving postural imbalance. Additionally, the mechanistic complexity of interpreting postural control is a major barrier to improving our understanding of treatment effects. In this paper, we review the effects of DBS on balance as measured using posturography. We also critically appraise the quantitative measures and analyses used in these studies. Methods: A literature search was performed independently by 2 researchers using the PUBMED database. Thirty-eight studies are included in this review, with DBS at the subthalamic nucleus (STN-) (n = 25), globus pallidus internus (GPi-) (n = 6), ventral intermediate nucleus (VIM)/thalamus (n = 2), and pedunculopontine nucleus (PPN) (n = 5). Results: STN- and GPi-DBS reduce static sway in PD and mitigate the increased sway from levodopa. STN-DBS impairs automatic responses to perturbations, whilst GPi-DBS has a more neutral effect. STN-DBS may promote protective strategies following external perturbations but does not improve adaptation. The evidence regarding the effects on gait initiation is less clear. Insufficient evidence exists to make conclusions regarding VIM- and PPN-DBS. Conclusions: STN- and GPi-DBS have differing effects on posturography, which suggests site-specific and possibly non-dopaminergic mechanisms. Posturography tests should be utilised to answer specific questions regarding the mechanisms of and effects on postural control following DBS. We recommend standardising posturography measures and test conditions by expert consensus and greater long-term data collection, utilising ongoing DBS registries. Full article
Show Figures

Figure 1

10 pages, 989 KiB  
Article
Could the Anatomic Variants of the Superior Thalamic Vein (STV) Be Considered a Possible Landmark for Target Identification in Magnetic-Resonance-Guided Focused Ultrasound Procedures? A Pilot Study Using Susceptibility Weighted Imaging Sequences
by Simona Cammaroto, Giuseppe Acri, Valentina Hartwig, Rosa Morabito, Annalisa Militi, Chiara Smorto, Augusto Ielo, Lilla Bonanno, Carmelo Anfuso and Angelo Quartarone
Diagnostics 2024, 14(13), 1409; https://doi.org/10.3390/diagnostics14131409 - 2 Jul 2024
Cited by 1 | Viewed by 1502
Abstract
During magnetic-resonance-guided focused ultrasound ablation of the ventral intermediate thalamic nucleus (VIM) for essential tremor (ET) and Parkinson’s disease (PD), targeting is generally performed using a standard atlas-based stereotactic approach. The purpose of our work is to evaluate the anatomic variations in the [...] Read more.
During magnetic-resonance-guided focused ultrasound ablation of the ventral intermediate thalamic nucleus (VIM) for essential tremor (ET) and Parkinson’s disease (PD), targeting is generally performed using a standard atlas-based stereotactic approach. The purpose of our work is to evaluate the anatomic variations in the venous vasculature of the thalamus in patients treated with MRgFUS, as a possible landmark for targeting. We retrospectively evaluated the relationship between the obtained thalamotomy lesion and the ipsilateral superior thalamic vein (STV). A total of 36 patients (25 ET and 11 PD) who underwent MRgFUS treatment were evaluated, and the STV was studied with susceptibility weighted imaging (SWI) sequences. Based on the axial SWI images, the distance between the STV and the center of the lesion at the presumed site of the VIM was measured in follow-up MRI images one month after treatment. Statistical analysis shows that there is a correlation between the STV and the presumed site of the VIM. The STV visible in SWI could be used as an additional, real-time, and patient-specific anatomical landmark for VIM identification during MR examination and just before and during FUS treatment. Full article
(This article belongs to the Special Issue Diagnostic and Clinical Application of Magnetic Resonance Imaging)
Show Figures

Figure 1

15 pages, 10205 KiB  
Article
Degenerative Changes in the Claustrum and Endopiriform Nucleus after Early-Life Status Epilepticus in Rats
by Rastislav Druga, Pavel Mares, Martin Salaj and Hana Kubova
Int. J. Mol. Sci. 2024, 25(2), 1296; https://doi.org/10.3390/ijms25021296 - 20 Jan 2024
Cited by 2 | Viewed by 1899
Abstract
The aim of the present study was to analyze the location of degenerating neurons in the dorsal (insular) claustrum (DCL, VCL) and the dorsal, intermediate and ventral endopiriform nucleus (DEn, IEn, VEn) in rat pups following lithium–pilocarpine status epilepticus (SE) induced at postnatal [...] Read more.
The aim of the present study was to analyze the location of degenerating neurons in the dorsal (insular) claustrum (DCL, VCL) and the dorsal, intermediate and ventral endopiriform nucleus (DEn, IEn, VEn) in rat pups following lithium–pilocarpine status epilepticus (SE) induced at postnatal days [P]12, 15, 18, 21 and 25. The presence of Fluoro-Jade B-positive neurons was evaluated at 4, 12, 24, 48 h and 1 week later. A small number of degenerated neurons was observed in the CL, as well as in the DEn at P12 and P15. The number of degenerated neurons was increased in the CL as well as in the DEn at P18 and above and was highest at longer survival intervals. The CL at P15 and 18 contained a small or moderate number of degenerated neurons mainly close to the medial and dorsal margins also designated as DCl (“shell”) while isolated degenerated neurons were distributed in the VCl (“core”). In P21 and 25, a larger number of degenerated neurons occurred in both subdivisions of the dorsal claustrum. The majority of degenerated neurons in the endopiriform nucleus were found in the intermediate and caudal third of the DEn. A small number of degenerated neurons was dispersed in the whole extent of the DEn with prevalence to its medial margin. Our results indicate that degenerated neurons in the claustrum CL and endopiriform nucleus are distributed mainly in subdivisions originating from the ventral pallium; their distribution correlates with chemoarchitectonics of both nuclei and with their intrinsic and extrinsic connections. Full article
Show Figures

Figure 1

13 pages, 8311 KiB  
Article
Technical Issues of Vim–PSA Double-Target DBS for Essential Tremor
by Xusheng Hou, Yixiang Mo, Zhiyuan Zhu, Huan Zhang, Xinzi Liu, Zhihao Zou, Xiaozheng He, Shan Xue, Jiangtao Li, Mengqian Li and Shizhong Zhang
Brain Sci. 2023, 13(4), 566; https://doi.org/10.3390/brainsci13040566 - 28 Mar 2023
Cited by 4 | Viewed by 3937
Abstract
Background: Deep brain stimulation (DBS) is an effective surgical treatment for essential tremor (ET), with the ventral intermediate nucleus (Vim) and posterior subthalamic area (PSA) as the most common targets. The stimulation efficacy of ET with Vim–PSA double-target DBS has been reported. Herein, [...] Read more.
Background: Deep brain stimulation (DBS) is an effective surgical treatment for essential tremor (ET), with the ventral intermediate nucleus (Vim) and posterior subthalamic area (PSA) as the most common targets. The stimulation efficacy of ET with Vim–PSA double-target DBS has been reported. Herein, we aim to propose surgical techniques for Vim–PSA double-target DBS surgery. Methods: This study enrolled six patients with ET who underwent Vim–PSA double-target electrode implantation from October 2019 to May 2022. The targets were located and adjusted using coordinates and multimodality MRI images. A burr hole was accurately drilled in line with the electrode trajectory under the guidance of a stereotactic frame. Novel approaches were adopted during the electrode implantation process for pneumocephalus reduction, including “arachnoid piamater welding” and “water sealing”. Electrophysiological recording was used to identify the implantation sites of the electrodes. A 3D reconstruction model of electrodes and nuclei was established to facilitate programming. Results: The combination of coordinates and multimodality MRI images for target location and adjustment enabled the alignment of Vim and PSA. Postoperative CT scanning showed that the electrode was precisely implanted. Stereotactic guidance facilitated accurate burr hole drilling. “Arachnoid piamater welding” and “water sealing” were efficient in reducing pneumocephalus. Intraoperative electrophysiological verified the efficacy of Vim–PSA double-target DBS surgery. Conclusions: The methods for target location and adjustment, accurate drilling of the burr hole, reduction in pneumocephalus, and intraoperative electrophysiological verification are key issues in DBS surgery targeting both the Vim and PSA. This study may provide technical support for Vim–PSA DBS, especially for surgeons with less experience in functional neurosurgery. Full article
Show Figures

Figure 1

13 pages, 2161 KiB  
Article
Comparison of Motor Scores between OFF and ON States in Tremor-Dominant Parkinson’s Disease after MRgFUS Treatment
by Chunyu Yin, Rui Zong, Ge Song, Jiayou Zhou, Longsheng Pan and Xuemei Li
J. Clin. Med. 2022, 11(15), 4502; https://doi.org/10.3390/jcm11154502 - 2 Aug 2022
Cited by 8 | Viewed by 2103
Abstract
Objective: To compare the motor function improvements in ON and OFF states in tremor-dominant Parkinson’s disease (TDPD) patients within one year of follow-up after ablation of the unilateral ventral intermediate nucleus of the thalamus (Vim) by magnetic resonance imaging-guided focused ultrasound surgery (MRgFUS). [...] Read more.
Objective: To compare the motor function improvements in ON and OFF states in tremor-dominant Parkinson’s disease (TDPD) patients within one year of follow-up after ablation of the unilateral ventral intermediate nucleus of the thalamus (Vim) by magnetic resonance imaging-guided focused ultrasound surgery (MRgFUS). Methods: A total of nine consecutive patients confirmed with TDPD who underwent unilateral Vim ablation by MRgFUS between April 2019 and September 2019 were included. The Movement Disorder Society Unified Parkinson’s Disease Rating Scale part III (MDS-UPDRSIII) and Clinical Rating Scale for Tremor (CRST) were performed in the ON and OFF stages to distinguish the surgical effects from drug therapy effects. The adverse events and adjustment of drug doses were also recorded. Results: The preoperative MDS-UPDRSIII score in OFF and ON states was 55.0 (48.0, 65.5) and 26.0 (17.0, 27.0), while the CRST score was 46.0 (39.5, 53.5) and 20.0 (13.0, 23.5), respectively; the Levodopa equivalent dose was 600 (456, 600) mg/d. At 1 year after operation, the total MDS-UPDRSIII score and CRST score were 40.0 (30.0, 60.5) and 16.0 (10.0, 29.5) in the OFF state, and 21.0 (17.5, 27.0) and 2.0 (1.5, 7.0) in the ON state, respectively. Compared with the preoperative levels, follow-up at the two-time points (three months and one year after operation) showed the total MDS-UPDRSIII score, as well as MDS-UPDRSIII tremor, bradykinesia, and rigidity scores of contralateral limbs all significantly improved in OFF state. However, in the ON state, only the total MDS-UPDRSIII score and tremor score of contralateral limbs significantly improved. The total CRST score and the CRST (A + B) score of contralateral limbs significantly improved at three months and one year after the operation compared with before the operation in both ON and OFF states. The Levodopa equivalent dose at one and three months were not significantly different from the preoperative dose (p > 0.05). No serious adverse responses were observed. Conclusion: Treating TDPD with unilateral Vim ablation by MRgFUS could improve the symptoms of limb tremor and the other core symptoms, such as bradykinesia and rigidity, as well as some non-motor symptoms and the symptoms of ipsilateral limbs. Full article
(This article belongs to the Section Clinical Neurology)
Show Figures

Figure 1

20 pages, 898 KiB  
Review
Deep Brain Stimulation for Tremor: Update on Long-Term Outcomes, Target Considerations and Future Directions
by Naomi I. Kremer, Rik W. J. Pauwels, Nicolò G. Pozzi, Florian Lange, Jonas Roothans, Jens Volkmann and Martin M. Reich
J. Clin. Med. 2021, 10(16), 3468; https://doi.org/10.3390/jcm10163468 - 5 Aug 2021
Cited by 29 | Viewed by 7369
Abstract
Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus is one of the main advanced neurosurgical treatments for drug-resistant tremor. However, not every patient may be eligible for this procedure. Nowadays, various other functional neurosurgical procedures are available. In particular cases, radiofrequency [...] Read more.
Deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus is one of the main advanced neurosurgical treatments for drug-resistant tremor. However, not every patient may be eligible for this procedure. Nowadays, various other functional neurosurgical procedures are available. In particular cases, radiofrequency thalamotomy, focused ultrasound and radiosurgery are proven alternatives to DBS. Besides, other DBS targets, such as the posterior subthalamic area (PSA) or the dentato-rubro-thalamic tract (DRT), may be appraised as well. In this review, the clinical characteristics and pathophysiology of tremor syndromes, as well as long-term outcomes of DBS in different targets, will be summarized. The effectiveness and safety of lesioning procedures will be discussed, and an evidence-based clinical treatment approach for patients with drug-resistant tremor will be presented. Lastly, the future directions in the treatment of severe tremor syndromes will be elaborated. Full article
(This article belongs to the Special Issue Intracranial Neuromodulation: Opportunities and Challenges)
Show Figures

Figure 1

17 pages, 1695 KiB  
Review
Deep-Brain Stimulation for Essential Tremor and Other Tremor Syndromes: A Narrative Review of Current Targets and Clinical Outcomes
by Christian Iorio-Morin, Anton Fomenko and Suneil K. Kalia
Brain Sci. 2020, 10(12), 925; https://doi.org/10.3390/brainsci10120925 - 1 Dec 2020
Cited by 48 | Viewed by 11227
Abstract
Tremor is a prevalent symptom associated with multiple conditions, including essential tremor (ET), Parkinson’s disease (PD), multiple sclerosis (MS), stroke and trauma. The surgical management of tremor evolved from stereotactic lesions to deep-brain stimulation (DBS), which allowed safe and reversible interference with specific [...] Read more.
Tremor is a prevalent symptom associated with multiple conditions, including essential tremor (ET), Parkinson’s disease (PD), multiple sclerosis (MS), stroke and trauma. The surgical management of tremor evolved from stereotactic lesions to deep-brain stimulation (DBS), which allowed safe and reversible interference with specific neural networks. This paper reviews the current literature on DBS for tremor, starting with a detailed discussion of current tremor targets (ventral intermediate nucleus of the thalamus (Vim), prelemniscal radiations (Raprl), caudal zona incerta (Zi), thalamus (Vo) and subthalamic nucleus (STN)) and continuing with a discussion of results obtained when performing DBS in the various aforementioned tremor syndromes. Future directions for DBS research are then briefly discussed. Full article
(This article belongs to the Special Issue State-of-the-Art in Deep Brain Stimulation)
Show Figures

Figure 1

10 pages, 1489 KiB  
Case Report
Evaluation of Automatic Segmentation of Thalamic Nuclei through Clinical Effects Using Directional Deep Brain Stimulation Leads: A Technical Note
by Marie T. Krüger, Rebecca Kurtev-Rittstieg, Georg Kägi, Yashar Naseri, Stefan Hägele-Link and Florian Brugger
Brain Sci. 2020, 10(9), 642; https://doi.org/10.3390/brainsci10090642 - 17 Sep 2020
Cited by 11 | Viewed by 7035
Abstract
Automatic anatomical segmentation of patients’ anatomical structures and modeling of the volume of tissue activated (VTA) can potentially facilitate trajectory planning and post-operative programming in deep brain stimulation (DBS). We demonstrate an approach to evaluate the accuracy of such software for the ventral [...] Read more.
Automatic anatomical segmentation of patients’ anatomical structures and modeling of the volume of tissue activated (VTA) can potentially facilitate trajectory planning and post-operative programming in deep brain stimulation (DBS). We demonstrate an approach to evaluate the accuracy of such software for the ventral intermediate nucleus (VIM) using directional leads. In an essential tremor patient with asymmetrical brain anatomy, lead placement was adjusted according to the suggested segmentation made by the software (Brainlab). Postoperatively, we used directionality to assess lead placement using side effect testing (internal capsule and sensory thalamus). Clinical effects were then compared to the patient-specific visualization and VTA simulation in the GUIDE™ XT software (Boston Scientific). The patient’s asymmetrical anatomy was correctly recognized by the software and matched the clinical results. VTA models matched best for dysarthria (6 out of 6 cases) and sensory hand side effects (5/6), but least for facial side effects (1/6). Best concordance was observed for the modeled current anterior and back spread of the VTA, worst for the current side spread. Automatic anatomical segmentation and VTA models can be valuable tools for DBS planning and programming. Directional DBS leads allow detailed postoperative assessment of the concordance of such image-based simulation and visualization with clinical effects. Full article
(This article belongs to the Special Issue Deep Brain Stimulation in Essential Tremor)
Show Figures

Figure 1

16 pages, 3336 KiB  
Article
Neurophysiological Characterization of Thalamic Nuclei in Epileptic Anaesthetized Patients
by Lorena Vega-Zelaya, Cristina V. Torres, Marta Navas and Jesús Pastor
Brain Sci. 2019, 9(11), 312; https://doi.org/10.3390/brainsci9110312 - 7 Nov 2019
Cited by 8 | Viewed by 3144
Abstract
Deep brain stimulation (DBS) requires precise localization, which is especially difficult at the thalamus, and even more difficult in anesthetized patients. We aimed to characterize the neurophysiological properties of the ventral intermediate (V.im), ventral caudal (V.c), and centromedian parvo (Ce.pc) and the magnocellular [...] Read more.
Deep brain stimulation (DBS) requires precise localization, which is especially difficult at the thalamus, and even more difficult in anesthetized patients. We aimed to characterize the neurophysiological properties of the ventral intermediate (V.im), ventral caudal (V.c), and centromedian parvo (Ce.pc) and the magnocellular (Ce.mc) thalamic nuclei. We obtained microelectrode recordings from five patients with refractory epilepsy under general anesthesia. Somatosensory evoked potentials recorded by microelectrodes were used to identify the V.c nucleus. Trajectories were reconstructed off-line to identify the nucleus recorded, and the amplitude of the action potential (AP) and the tonic (i.e., mean frequency, density, probability of interspike interval) and phasic (i.e., burst index, pause index, and pause ratio) properties of the pattern discharges were analyzed. The Mahalanobis metric was used to evaluate the similarity of the patterns. The mean AP amplitude was higher for the V.im nucleus (172.7 ± 7.6 µV) than for the other nuclei, and the mean frequency was lower for the Ce.pc nucleus (7.2 ± 0.8 Hz) and higher for the V.c nucleus (11.9 ± 0.8 Hz) than for the other nuclei. The phasic properties showed a bursting pattern for the V.c nucleus and a tonic pattern for the centromedian and V.im nuclei. The Mahalanobis distance was the shortest for the V.im/V.c and Ce.mp/Ce.pc pairs. Therefore, the different properties of the thalamic nuclei, even for patients under general anesthesia, can be used to positively define the recorded structure, improving the exactness of electrode placement in DBS. Full article
(This article belongs to the Special Issue Neurophysiological Techniques for Epilepsy)
Show Figures

Figure 1

7 pages, 181 KiB  
Article
Vocal Tremor: Novel Therapeutic Target for Deep Brain Stimulation
by Vinod K. Ravikumar, Allen L. Ho, Jonathon J. Parker, Elizabeth Erickson-DiRenzo and Casey H. Halpern
Brain Sci. 2016, 6(4), 48; https://doi.org/10.3390/brainsci6040048 - 10 Oct 2016
Cited by 12 | Viewed by 5284
Abstract
Tremulous voice is characteristically associated with essential tremor, and is referred to as essential vocal tremor (EVT). Current estimates suggest that up to 40% of individuals diagnosed with essential tremor also present with EVT, which is associated with an impaired quality of life. [...] Read more.
Tremulous voice is characteristically associated with essential tremor, and is referred to as essential vocal tremor (EVT). Current estimates suggest that up to 40% of individuals diagnosed with essential tremor also present with EVT, which is associated with an impaired quality of life. Traditional EVT treatments have demonstrated limited success in long-term management of symptoms. However, voice tremor has been noted to decrease in patients receiving deep brain stimulation (DBS) with the targeting of thalamic nuclei. In this study, we describe our multidisciplinary procedure for awake, frameless DBS with optimal stimulation targets as well as acoustic analysis and laryngoscopic assessment to quantify tremor reduction. Finally, we investigate the most recent clinical evidence regarding the procedure. Full article
(This article belongs to the Special Issue Deep Brain Stimulation (DBS) Applications)
16 pages, 7053 KiB  
Article
Investigation into Deep Brain Stimulation Lead Designs: A Patient-Specific Simulation Study
by Fabiola Alonso, Malcolm A. Latorre, Nathanael Göransson, Peter Zsigmond and Karin Wårdell
Brain Sci. 2016, 6(3), 39; https://doi.org/10.3390/brainsci6030039 - 7 Sep 2016
Cited by 39 | Viewed by 11431
Abstract
New deep brain stimulation (DBS) electrode designs offer operation in voltage and current mode and capability to steer the electric field (EF). The aim of the study was to compare the EF distributions of four DBS leads at equivalent amplitudes (3 V and [...] Read more.
New deep brain stimulation (DBS) electrode designs offer operation in voltage and current mode and capability to steer the electric field (EF). The aim of the study was to compare the EF distributions of four DBS leads at equivalent amplitudes (3 V and 3.4 mA). Finite element method (FEM) simulations (n = 38) around cylindrical contacts (leads 3389, 6148) or equivalent contact configurations (leads 6180, SureStim1) were performed using homogeneous and patient-specific (heterogeneous) brain tissue models. Steering effects of 6180 and SureStim1 were compared with symmetric stimulation fields. To make relative comparisons between simulations, an EF isolevel of 0.2 V/mm was chosen based on neuron model simulations (n = 832) applied before EF visualization and comparisons. The simulations show that the EF distribution is largely influenced by the heterogeneity of the tissue, and the operating mode. Equivalent contact configurations result in similar EF distributions. In steering configurations, larger EF volumes were achieved in current mode using equivalent amplitudes. The methodology was demonstrated in a patient-specific simulation around the zona incerta and a “virtual” ventral intermediate nucleus target. In conclusion, lead design differences are enhanced when using patient-specific tissue models and current stimulation mode. Full article
(This article belongs to the Special Issue Deep Brain Stimulation (DBS) Applications)
Show Figures

Graphical abstract

Back to TopTop