Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = velocity of detonation measurement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7375 KiB  
Article
Effect of Silicone Rubbers on the Properties of RDX-Based PBXs and Their Application in the Explosive Hardening of Steel
by Konrad Szydło, Agnieszka Stolarczyk, Tomasz Jarosz, Barbara Lisiecka, Sylwia Waśkiewicz, Krzysztof Lukaszkowicz, Klaudiusz Gołombek, Jakub Polis and Mateusz Polis
Materials 2025, 18(10), 2311; https://doi.org/10.3390/ma18102311 - 15 May 2025
Viewed by 431
Abstract
Modern energetic materials (EMs) have many different civil applications. One of their most promising applications in civil engineering is explosive hardening, which facilitates the fast and cost-effective improvement of mechanical properties in the treated material. In this work, we present the results of [...] Read more.
Modern energetic materials (EMs) have many different civil applications. One of their most promising applications in civil engineering is explosive hardening, which facilitates the fast and cost-effective improvement of mechanical properties in the treated material. In this work, we present the results of our investigation on the explosive hardening of S235JR Steel with PBX formulations containing silicone binders and 1,3,5-trinitro-1,3,5-triazinane (RDX). In terms of safety, the impact (5–15 J) and friction (240–360 N) sensitivity of the tested plastic-bonded explosives (PBXs) was verified, simultaneously with DSC tests, energy of activation calculations, and critical diameter measurement. The developed material, prepared with techniques similar to the anticipated working conditions, is characterized by a high detonation velocity (up to 7300 m/s), low sensitivity for mechanical factors (10 J, 288 N), and a small critical diameter (3.3 mm). The developed PBX based on a silicone binder demonstrated grain fragmentation, recrystallization, and an increase in the surface hardness of S235JR steel, which was confirmed with SEM, EBSD, microstructure analysis, and microhardness studies. Full article
Show Figures

Figure 1

15 pages, 6112 KiB  
Article
Study on the Mechanism of the Micro-Charge-Detonation-Driven Flyer
by Shuang Li, Jie Ren, Chang Leng, Zhenhao Shi, Yan Ma, Mingyu Li and Qingxuan Zeng
Micromachines 2025, 16(4), 441; https://doi.org/10.3390/mi16040441 - 9 Apr 2025
Viewed by 362
Abstract
To investigate the energy transfer mechanisms during the micro-explosive initiator-driven flyer process and to guide the performance evaluation of micro-sized charges and the structural design of micro-initiators, a combined approach of numerical simulations and experimental tests was employed to study the detonation process [...] Read more.
To investigate the energy transfer mechanisms during the micro-explosive initiator-driven flyer process and to guide the performance evaluation of micro-sized charges and the structural design of micro-initiators, a combined approach of numerical simulations and experimental tests was employed to study the detonation process of copper-based azide micro-charges driving a flyer. The output pressure and detonation velocity of the copper-based azide micro-charge were measured using the manganese–copper piezoresistive method and electrical probe technique, and the corresponding JWL equation of the state parameters was subsequently fitted. A simulation model for the micro-charge-driven flyer was established and validated using Photonic Doppler Velocimetry (PDV), and the influence of charge conditions, structural parameters, and other factors on the flyer velocity and morphology was investigated. The results indicate that the flyer velocity decreases as its thickness increases, whereas the specific kinetic energy of the flyer initially increases and then decreases with increasing thickness. The optimal flyer thickness was found to be in the range of 30 to 70 μm. The flyer velocity increases with the density and height of the micro-charge; however, when the micro-charge density exceeds a certain threshold, the flyer velocity decreases. The flyer velocity exhibits an exponential decline as the diameter of the acceleration chamber increases, whereas it shows a slight increase with the increase in the length of the acceleration chamber. The diameter of the acceleration chamber should not exceed the charge diameter and must be no smaller than the critical diameter required for detonation initiation of the underlying charge. The use of a multi-layer accelerating chamber structure leads to a slight reduction in flyer velocity and further increases in the transmission hole diameter while having no significant impact on the flyer velocity. Full article
(This article belongs to the Special Issue Micro/Nanostructures in Sensors and Actuators, 2nd Edition)
Show Figures

Figure 1

16 pages, 3976 KiB  
Article
Influence of Augmentation Compositions and Confinement Layers on Flyer Velocity in Laser Impact Welding
by Mohammed Abdelmaola, Brian Thurston, Boyd Panton, Anupam Vivek and Glenn Daehn
Metals 2025, 15(2), 190; https://doi.org/10.3390/met15020190 - 12 Feb 2025
Viewed by 857
Abstract
Small-scale impact welding may have several advantages over rivets: the strength can be higher, it can be applied right at the edges in lap joints, and it can be lighter and more easily installed if simple systems can be developed. Laser Impact Welding [...] Read more.
Small-scale impact welding may have several advantages over rivets: the strength can be higher, it can be applied right at the edges in lap joints, and it can be lighter and more easily installed if simple systems can be developed. Laser Impact Welding (LIW) is compact and simple, adapting the technologies of laser shock peening. It is limited in terms of the energy that can be delivered to the joint. Augmented Laser Impact Welding (ALIW) complements optical energy with a small volume of an exothermic detonable compound and has been shown to be an effective welding approach. The scope of this study is extended to build upon previous work by investigating varied augmentation chemistries and confinement layers, specifically borosilicate glass, sapphire, and water. The evaluation of these compositions involved the use of two aluminum alloys: Al 2024 and Al 6061. Photonic Doppler Velocimetry (PDV) was utilized to measure the flyer velocity and assess the detonation energy. The findings indicated that adding micro-air bubbles (GPN-3 scenario) to the original GPN-1 enhanced the flyer velocity by improving the sensitivity, which promoted gas release during detonation. Hence, employing 1 mm thick Al 2024 as a flyer with GPN-3 enhances the flyer velocity by 36.4% in comparison to GPN-1, thereby improving the feasibility of using 1 mm thick material as a flyer and ensuring a successful welded joint with the thickest flyer ever welded with laser impact welding. When comparing the confinement layers, sapphire provided slightly lower flyer velocities compared to borosilicate glass. However, due to its higher resistance to damage and fracture, sapphire is likely more suitable for industrial applications from an economic perspective. Furthermore, the lap shear tests and microstructural evaluations confirmed that GPN-3 provided higher detonation energy, as emphasized by the tendency of the interfacial waves to have a higher amplitude than the less pronounced waves of the original GPN-1. Consequently, this approach demonstrates the key characteristics of a practical process, being simple, cost-effective, and efficient. Full article
(This article belongs to the Special Issue Advanced Metal Welding and Joining Technologies—2nd Edition)
Show Figures

Figure 1

21 pages, 8600 KiB  
Article
Influence of Detonation Spraying Parameters on the Microstructure and Mechanical Properties of Hydroxyapatite Coatings
by Zhuldyz Sagdoldina, Marcin Kot, Daryn Baizhan, Dastan Buitkenov and Laila Sulyubayeva
Materials 2024, 17(21), 5390; https://doi.org/10.3390/ma17215390 - 4 Nov 2024
Cited by 1 | Viewed by 1182
Abstract
The process of osteointegration depends significantly on the surface roughness, structure, chemical composition, and mechanical characteristics of the coating. In this regard, an important direction in the development of medical materials is the development of new techniques of surface modification and the creation [...] Read more.
The process of osteointegration depends significantly on the surface roughness, structure, chemical composition, and mechanical characteristics of the coating. In this regard, an important direction in the development of medical materials is the development of new techniques of surface modification and the creation of bioactive ceramic coatings. Calcium-phosphate materials based on hydroxyapatite have been proposed as bioactive ceramic coatings on titanium implants for the effective acceleration of bone tissue healing. To obtain bioactive ceramic coatings, pulse power sources are best suited, namely detonation spraying, in which the energy of the explosion of gas mixtures is used as a source of pulse action. The pulse mode of operation in the detonation spraying method is preferable for the formation of bioactive ceramic coatings. It provides a high velocity of hydroxyapatite particles, which promotes their effective fixation on the titanium substrate, while minimizing the heating of the material. This approach preserves the substrate structure and improves the coating adhesion. Four different types of coatings with varying O2/C2H2 molar ratios, ranging from 2.6 to 3.7, were obtained using detonation spraying. Powders and obtained coatings of hydroxyapatite were studied by Raman spectroscopy and XRD structural analysis. The results of XRD phase analysis showed the partial conversion of the hydroxyapatite phase to the α-tricalcium phosphate (α-TCP) phase during the detonation spraying process. The results obtained by Raman spectroscopy indicate that hydroxyapatite is the main phase in coatings. All hydroxyapatite-based coatings exhibited hydrophobic properties, which was confirmed by contact-angle values above 90° in wettability tests, characteristic of hydrophobic surfaces. The adhesive strength of the coatings was measured by the scratch test method. Tribological tests were conducted using the ball-on-disk method under both dry conditions and in Ringer’s solution. This approach enabled the evaluation of wear resistance and friction coefficient of the coatings in different environments, simulating both lubrication-free conditions and those resembling physiological environments. Full article
(This article belongs to the Special Issue Advances in Tribological and Other Functional Properties of Materials)
Show Figures

Figure 1

28 pages, 17742 KiB  
Article
Vibration Safety Threshold and Control Technology for Blasting to Prevent Seawater Intrusion in Coastal Tunnel Sections Near Faults
by Xiaodong Wu, Xiaomeng Miao, Min Gong, Junpeng Su, Yaqi Zhu and Xiaolei Chen
J. Mar. Sci. Eng. 2024, 12(9), 1646; https://doi.org/10.3390/jmse12091646 - 14 Sep 2024
Cited by 3 | Viewed by 1150
Abstract
Coastal underground engineering projects are prone to seawater intrusion during blasting operations, posing significant risks to the safety of construction personnel and the structural integrity of the projects. To ensure the safety of blasting operations in areas at risk of seawater intrusion, this [...] Read more.
Coastal underground engineering projects are prone to seawater intrusion during blasting operations, posing significant risks to the safety of construction personnel and the structural integrity of the projects. To ensure the safety of blasting operations in areas at risk of seawater intrusion, this study focuses on a section of a coastal tunnel that is at risk of such intrusion. Using fracture mechanics theory and silo theory analysis methods, the minimum safe distance between the workface and the fault to prevent seawater intrusion is determined. Numerical simulations are employed to analyze the dynamic response of the surrounding rock and the attenuation of vibrations as blasting excavation progresses near the fault-controlled zone. This study also explores the impact of dynamic excavation on fault stability. By employing a regression analysis, this study establishes quantitative relationships between the amount of explosive used and the peak particle velocity (PPV) at different distances, as well as between the range of rock damage and PPV at various distances. This analysis allows for the determination of a safe PPV threshold to prevent seawater intrusion in the fault-controlled area. The accuracy of the computational model is validated using field-measured data. Finally, an optimized blasting design and strategy based on electronic detonator initiation are proposed for the control area, ensuring construction safety. This study provides theoretical and technical references for achieving safe and efficient blasting excavation in coastal underground engineering projects. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

21 pages, 8600 KiB  
Review
Progress of Experimental Studies on Oblique Detonation Waves Induced by Hyper-Velocity Projectiles
by Jiahao Shang, Guotun Hu, Qiu Wang, Gaoxiang Xiang and Wei Zhao
Aerospace 2024, 11(9), 715; https://doi.org/10.3390/aerospace11090715 - 2 Sep 2024
Cited by 2 | Viewed by 2406
Abstract
Oblique detonation waves (ODWs) are hypersonic combustion phenomena induced by oblique shock waves. When applied to air-breathing engines, ODWs offer high thermal cycle efficiency, adaptability to a wide range of flight Mach numbers, and the advantage of a short combustion chamber, making them [...] Read more.
Oblique detonation waves (ODWs) are hypersonic combustion phenomena induced by oblique shock waves. When applied to air-breathing engines, ODWs offer high thermal cycle efficiency, adaptability to a wide range of flight Mach numbers, and the advantage of a short combustion chamber, making them highly promising for hypersonic propulsion applications. Despite numerous numerical studies on the heat release and multi-wave flow mechanisms of ODWs, practical applications of oblique detonation engines (ODEs) remain limited due to several technical challenges. These challenges include generating the required high-velocity test environments, achieving effective fuel and oxidant mixing, and measuring the flow field structure in hyper-velocity and high-temperature flows. These limitations hinder the development of ODEs, underscoring the importance of experimental research, particularly for understanding the initiation and propagation mechanisms of ODWs. One of the primary experimental techniques involves inducing oblique detonation using high-velocity models. This method is extensively used to study the initiation process, shock structure, initiation criteria, and ODW propagation. It is advantageous because the state of the experimental mixture is controllable, and the model state can be precisely measured. This paper reviews studies on oblique detonation induced by hyper-velocity projectiles, presenting advances in experimental methods, detonation wave structures, unsteady processes, and initiation characteristics. Additionally, we discuss the deficiencies in existing studies, noting that the current measurement methods fall short of the requirements for observing the ODW initiation process, propagation process, and fine structure. The application of advanced combustion diagnostic techniques and the exploration of the relationship between initiation processes and criteria are crucial for advancing our understanding of ODW initiation and stabilization mechanisms. Finally, we summarize the current state of experimental facilities and measurement techniques, providing suggestions for future research on the measurement of shock waves and chemical reaction zones. Full article
(This article belongs to the Special Issue Advances in Detonative Propulsion)
Show Figures

Figure 1

16 pages, 7306 KiB  
Article
Investigation of Spray Characteristics for Detonability: A Study on Liquid Fuel Injector and Nozzle Design
by Myeung Hwan Choi, Yoojin Oh and Sungwoo Park
Aerospace 2024, 11(6), 421; https://doi.org/10.3390/aerospace11060421 - 23 May 2024
Cited by 2 | Viewed by 1682
Abstract
Detonation engines are gaining prominence as next-generation propulsion systems that can significantly enhance the efficiency of existing engines. This study focuses on developing an injector utilizing liquid fuel and a gas oxidizer for application in detonation engines. In order to better understand the [...] Read more.
Detonation engines are gaining prominence as next-generation propulsion systems that can significantly enhance the efficiency of existing engines. This study focuses on developing an injector utilizing liquid fuel and a gas oxidizer for application in detonation engines. In order to better understand the spray characteristics suitable for the pulse detonation engine (PDE) system, an injector was fabricated by varying the Venturi nozzle exit diameter ratio and the geometric features of the fuel injection hole. Analysis of high-speed camera images revealed that the Venturi nozzle exit diameter ratio plays a crucial role in determining the characteristics of air-assist or air-blast atomization. Under the conditions of an exit diameter ratio of Re/Ri = 1.0, the formation of a liquid film at the exit was observed, and it was identified that the film’s length is influenced by the geometric characteristics of the fuel injection hole. The effect of the fuel injection hole and Venturi nozzle exit diameter ratio on SMD was analyzed by using droplet diameter measurement. The derived empirical correlation indicates that the atomization mechanism varies depending on the Venturi nozzle exit diameter ratio, and it also affects the distribution of SMD. The characteristics of the proposed injector, its influence on SMD, and its velocity, provide essential groundwork and data for the design of detonation engines employing liquid fuel. Full article
(This article belongs to the Special Issue Supersonic Combustion in Scramjet Engine)
Show Figures

Figure 1

29 pages, 23773 KiB  
Article
Optimization of Blasting Parameters Considering Both Vibration Reduction and Profile Control: A Case Study in a Mountain Hard Rock Tunnel
by Junjie Zhou, Shan Gao, Pingkuang Luo, Jiale Fan and Congcong Zhao
Buildings 2024, 14(5), 1421; https://doi.org/10.3390/buildings14051421 - 15 May 2024
Cited by 11 | Viewed by 2474 | Correction
Abstract
The number of excavated tunnels is increasing day by day, and the corresponding engineering scale is also getting increasing. Safe, efficient, and economically beneficial tunnel construction methods are indispensable in the process of crossing mountains and steep ridges in the southwest region. However, [...] Read more.
The number of excavated tunnels is increasing day by day, and the corresponding engineering scale is also getting increasing. Safe, efficient, and economically beneficial tunnel construction methods are indispensable in the process of crossing mountains and steep ridges in the southwest region. However, behind the improvement of transportation infrastructure in Southwest China is the support provided by the rapid development of blasting industry engineering technology in China. In the process of tunnel construction using the drilling and blasting method, in addition to blasting vibration disasters the phenomenon of overbreak and underbreak caused by blasting construction is a prominent problem. This phenomenon not only affects the safety and stability of the tunnel excavation but also seriously increases the construction cost. Based on a short mountain hard rock tunnel project in southwest China, this paper studies the effect of blasting construction on the blasting vibration of adjacent structures and the influence of tunnel contour forming quality. Through the monitoring and analysis of in situ blasting vibration, the Sadowski formula is used to study the attenuation law of blasting vibration velocity in different tunnel sites, which provides a theoretical basis for tunnel blasting vibration control. This article compares the use of overbreak and underbreak value with the traditional method to determine the degree of overbreak and underbreak. It introduces the analysis of contour section fractal dimension value and uses fractal theory in the Python image processing module to accurately and quantitatively describe the problems of tunnel overbreak and underbreak. The feasibility and accuracy of this method have been verified, by combining the total station and 3D laser scanner results of overbreak and underbreak measurements of the Brenner Base Tunnel and a short hard rock tunnel in a mountainous area of southwestern China. The blasting scheme was optimized from the aspects of cut hole form, detonator interval time, and peripheral hole charge structure, and the rationality of the optimized scheme was verified according to the on-site blasting experiments. It has a profound influence on strengthening the protection of adjacent tunnel structures and improving the economic benefit of mountain highway projects. Full article
(This article belongs to the Special Issue Advances and Applications in Geotechnical and Structural Engineering)
Show Figures

Figure 1

12 pages, 5328 KiB  
Communication
Observation of Oblique Laser-Supported Detonation Wave Propagating in Atmospheric Air
by Kohei Matsui, Kimiya Komurasaki, Keisuke Kanda and Hiroyuki Koizumi
Aerospace 2024, 11(4), 327; https://doi.org/10.3390/aerospace11040327 - 22 Apr 2024
Cited by 2 | Viewed by 1887
Abstract
Elucidation of the propagation velocity of a laser-supported detonation (LSD) wave and its propagation mechanism is necessary for various engineering applications. This study was conducted to observe an oblique laser-supported detonation wave off the laser axis. The relation between the local laser intensity [...] Read more.
Elucidation of the propagation velocity of a laser-supported detonation (LSD) wave and its propagation mechanism is necessary for various engineering applications. This study was conducted to observe an oblique laser-supported detonation wave off the laser axis. The relation between the local laser intensity and detonation-wave propagation velocity was investigated. For this purpose, the time-space distribution of the laser intensity was measured precisely. The change of the LSD wavefront shape was visualized using an ultrahigh-speed camera. The relation between the local laser intensity and the propagation velocity of the oblique LSD wave measured off the laser axis was found to be identical to the relation between the local laser intensity and the detonation propagation velocity at the laser axis. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology)
Show Figures

Figure 1

13 pages, 25089 KiB  
Article
Theoretical and Experimental Studies of the Shock-Compressed Gas Parameters in the Welding Gap
by Andrey Malakhov, Igor Denisov, Nemat Niyozbekov, Ivan Saikov, Denis Shakhray, Vasily Sosikov and Andrey Emelyanov
Materials 2024, 17(1), 265; https://doi.org/10.3390/ma17010265 - 4 Jan 2024
Cited by 7 | Viewed by 1687
Abstract
This work is devoted to the study of the processes that take place in the welding gap during explosive welding (EW). In the welding gap, when plates collide, a shock-compressed gas (SCG) region is formed, which moves at supersonic speed and has a [...] Read more.
This work is devoted to the study of the processes that take place in the welding gap during explosive welding (EW). In the welding gap, when plates collide, a shock-compressed gas (SCG) region is formed, which moves at supersonic speed and has a high temperature that can affect the quality of the weld joint. Therefore, this work focuses on a detailed study of the parameters of the SCG. A complex method of determining the SCG parameters included: determination of the detonation velocity using electrical contact probes, ceramic probes, and an oscilloscope; calculation of the SCG parameters; high-speed photography of the SCG region; measurement of the SCG temperature using optical pyrometry. As a result, it was found that the head front of the SCG region moved ahead of the collision point at a velocity of 3000 ± 100 m/s, while the collision point moved with a velocity of 2500 m/s. The calculation of the SCG temperature showed that the gas was heated up to 2832 K by the shock compression, while the measured temperature was in the range of 4100–4400 K. This is presumably due to the fact that small metal particles that broke off from the welded surfaces transferred their heat to the SCG region. Thus, the results of this study can be used to optimize the EW parameters and improve the weld joint quality. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

14 pages, 5437 KiB  
Article
A Study on the Roof-Cutting and Pressure Releasing Technology of Roof Blasting
by Xiaowu Huang, Jian Guo, Yusong Miao, Xianqi Xie, Yujin Li, Hailiang Wang and Feifei Huang
Appl. Sci. 2023, 13(17), 9968; https://doi.org/10.3390/app13179968 - 4 Sep 2023
Cited by 6 | Viewed by 1299
Abstract
The surrounding rock during a coal mine excavation is prone to significant engineering disasters such as considerable deformation and rock bursts. Pressure release can improve the stress field of a deep rock mass and prevent the occurrence of dangers such as roadway collapse [...] Read more.
The surrounding rock during a coal mine excavation is prone to significant engineering disasters such as considerable deformation and rock bursts. Pressure release can improve the stress field of a deep rock mass and prevent the occurrence of dangers such as roadway collapse and coal and gas outbursts. This paper uses the ANSYS 19.0/LS-DYNA finite element software to simulate the crush area and fracture zone of a detonation charge with different diameters under in situ stress. The stability of the surrounding rock was analyzed based on the impact stress and velocity, and was verified by field tests. The research results show that the blasting load primarily affects the damaged area near the borehole, while the in situ stress affects far-field crack propagation. The crack propagates in the direction of high surrounding rock pressure. When the uncoupling index is 1.5, the impact pressure of a 60 mm diameter cartridge is eight times that of a 20 mm diameter cartridge. The impact speed can reach two times that of the 20 mm diameter cartridge. The high-energy event at the roof is transferred to the front of the working face, the distribution is no longer concentrated, and a better pressure-relief blasting effect is achieved. The research results can help guide the prevention and control measures of rock bursts and other mining disasters. Full article
Show Figures

Figure 1

15 pages, 3006 KiB  
Article
Experimental Study on Motion Law of the Fragment at Hypersonic Speed
by Jie Hu, Hua Chen, Yonggang Yu, Xiaochun Xue, Zhiwei Feng and Xiaojun Chen
Processes 2023, 11(4), 1078; https://doi.org/10.3390/pr11041078 - 3 Apr 2023
Cited by 3 | Viewed by 1944
Abstract
As a damage element, high-speed fragments have a significant effect on the ammunition safety. The impact from the fragments are also one of the basic problems of ammunition safety tests. To clarify the reaction characteristics of combustion, explosion, detonation, and so on, when [...] Read more.
As a damage element, high-speed fragments have a significant effect on the ammunition safety. The impact from the fragments are also one of the basic problems of ammunition safety tests. To clarify the reaction characteristics of combustion, explosion, detonation, and so on, when hypersonic fragments hit insensitive munitions, it is necessary to carry out corresponding research on the deceleration law of hypersonic fragment in the air. In this paper, a 30 mm caliber gun with large chamber, small caliber, and large aspect ratio is proposed to drive high-speed fragments. According to STANAG 4496 standard, a near-cylinder steel fragment with Brinell hardness HB ≤ 270 and mass of 18.6 g was designed. The test system was composed of zone interception velocity measurement, chamber pressure sensor, trajectory tracking system, high-speed camera, and other equipment were also established to obtain the pressure variations in the chamber, the velocity of the fragment, and its flight orientation. From the video taken by the high-speed camera and trajectory tracking system, the fragment and the projectile sabot achieve effective separation after the fragment travels out of the muzzle. As time goes on, the distance between the fragment and the projectile sabot gradually increases. The fragment is always in the front of the sabot and steadily flies to the target. The muzzle velocity of the fragment is controlled by adjusting the propellant charge, and the flight velocity in the air is measured by the zone interception velocity measuring device in the range of 5 Ma to 7 Ma. The theoretical models of fragment deceleration and the models of flight orientation are also established according to the experimental data. On this basis, F test and least square nonlinear regression fitting were used to analyze experimental data. Finally, the deceleration coefficient of quasi-cylindrical fragments between 5 Ma and 7 Ma stipulated in STANAG 4496 standard is 0.009312, and the average drag coefficient in air is 1.109. Full article
Show Figures

Figure 1

25 pages, 9353 KiB  
Article
Dynamic Response and Failure Mechanism of Deep-Buried Tunnel with Small Net Distance under Blasting Load
by Jianjun Shi, Wenxiang Xu, Hao Zhang, Xinyan Ma and Huaming An
Buildings 2023, 13(3), 711; https://doi.org/10.3390/buildings13030711 - 8 Mar 2023
Cited by 7 | Viewed by 2006
Abstract
Under blasting load, a series of safety problems, such as lining cracking and surrounding rock instability, are prone to occur in deep-buried tunnels with a small net distance. It is significant to understand the dynamic response and failure mechanism of tunnels under blasting. [...] Read more.
Under blasting load, a series of safety problems, such as lining cracking and surrounding rock instability, are prone to occur in deep-buried tunnels with a small net distance. It is significant to understand the dynamic response and failure mechanism of tunnels under blasting. The blasting attenuation formula is optimized through theoretical analysis and field experiments. The measuring point vibration is monitored in real time and the tunnel blasting model is established by ANSYS/LS-DYNA software. The model was set as having no reflective boundary and an uncoupled charge structure was used. The attenuation law of blasting seismic waves is studied from the adjacent tunnel lining and the direction of the tunnel cross-section and length. The inner and outer sides of the tunnel lining are investigated, respectively. The displacement and acceleration of lining measuring point are also analyzed. The dynamic response of the tunnel lining under blasting excavation is analyzed from multiple angles. The results show that the arch foot on the inner side of the lining (the side in contact with the tunnel headroom) is the first to generate vibration. On the outside of the lining (the side in contact with the rock),the peak vibration velocity is reached after blasting load unloading. There is little difference in the vibration velocity at different positions of the transverse section, but great difference in the vibration velocity of the longitudinal section. The influence of the horizontal displacement was greater than that of the vertical displacement. The vibration acceleration of the measuring point at the arch foot of the section is the largest and the detonation is also the largest. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

27 pages, 20396 KiB  
Article
On the Self-Similarity in an Annular Isolator under Rotating Feedback Pressure Perturbations
by Zhongqi Luo, Hexia Huang, Huijun Tan, Gang Liang, Jinghao Lv, Yuwen Wu and Liugang Li
Aerospace 2023, 10(2), 188; https://doi.org/10.3390/aerospace10020188 - 16 Feb 2023
Cited by 1 | Viewed by 1958
Abstract
In this paper, the transient flow simulation in an annular isolator under rotating feedback pressure perturbations simplified from the rotating denotation wave (RDW) is performed. The instantaneous flow characteristics and the self-similarity of the isolator flow-field are investigated in detail. It is found [...] Read more.
In this paper, the transient flow simulation in an annular isolator under rotating feedback pressure perturbations simplified from the rotating denotation wave (RDW) is performed. The instantaneous flow characteristics and the self-similarity of the isolator flow-field are investigated in detail. It is found that a helical moving shock wave (MSW) and a quasi-toroidal terminal shock wave (TSW) are induced in the isolator. Hence, the flow-fields on the meridian planes could be classified into three zones, i.e., the undisturbed zone, the terminal shock wave/moving shock wave/boundary layer interaction (TSW/MSW/BLI) zone and the moving shock wave/boundary layer interaction (MSW/BLI) zone. The TSW/MSW/BLI zone is characterized by the coupling of the TSW/BLI and the MSW/BLI due to their small axial distance, which intensifies the adverse pressure gradient on the meridian planes, thus rolling up large separation bubbles developing along the MSW driven by the circular pressure gradient. In the MSW/BLI zone, the shock induces the boundary layer to separate, forming a helical vortex located at the foot of the MSW. During the upstream propagation process, the pattern of the MSWs transforms from a moving normal shock wave to a moving oblique shock wave with decreased strength. Moreover, after the collision with the MSWs, P, Temp and S of the flow elevate with the prompt decrease of va, while vθ increases to a higher level. Despite the deflection effect of the MSWs on the streamlines, the flow direction of the air still maintains an almost axial position at the exit, except in the adjacent region of the MSW. Likewise, three types of zones can be determined in the flow pattern at the exit: the rotating detonation wave/boundary layer interaction (RDW/BLI) zone, the expansion zone, and the vortices discharge zone. Comparing the transient flow patterns at different moments in one cycle and between adjacent cycles, an interesting discovery is that the self-similarity property is observed in the flow-field of the annular isolator under rotating feedback pressure perturbations. The global flow structure of the isolator at different moments shows good agreement despite its rotation with the RDW, and the surface pressure profiles of the corresponding meridian planes all match perfectly. Such a characteristic indicates that the rotation angular velocity of the TSW and the MSW are equal and hold invariant, and the isolator flow could be regarded as a quasi-steady flow. On this basis, the theoretical model of the inclination angles of the MSW by the coordinate transformation and velocity decomposition is developed and validated. The relative errors of the inclination angles between the predicted and measured results are below 3%, which offers a rapid method to predict the shape of the MSW, along with a perspective to better understand the physical meaning of the shape of the MSW. Full article
(This article belongs to the Special Issue Thermal Fluid Dynamics and Control in Aerospace)
Show Figures

Figure 1

14 pages, 5870 KiB  
Article
Hugoniot Relation for a Bow-Shaped Detonation Wave Generated in RP Laser Propulsion
by Kenya Sugamura, Kyohei Kato, Kimiya Komurasaki, Hokuto Sekine, Yuma Itakura and Hiroyuki Koizumi
Aerospace 2023, 10(2), 102; https://doi.org/10.3390/aerospace10020102 - 19 Jan 2023
Cited by 4 | Viewed by 2172
Abstract
Repetitive-pulsed (RP) laser propulsion is expected to replace chemical propulsion systems because it can reduce launch costs. A laser-supported detonation wave (LSD) plays an important role in the thrust-generation process of RP laser propulsion. The LSD propagation mechanism has been studied. Nevertheless, the [...] Read more.
Repetitive-pulsed (RP) laser propulsion is expected to replace chemical propulsion systems because it can reduce launch costs. A laser-supported detonation wave (LSD) plays an important role in the thrust-generation process of RP laser propulsion. The LSD propagation mechanism has been studied. Nevertheless, the LSD propagation velocity measured in an earlier study was lower than the Chapman–Jouguet (CJ) velocity, which meant that Hugoniot analysis produced no solution. The findings suggest that the radial flow from the central axis of LSD exerts some effects, but it has not been evaluated quantitatively. Two-dimensional axisymmetric computational fluid dynamics (CFD) analysis using the measured propagation velocity was performed for this study to evaluate effects of the radial flow of a bow-shaped LSD. Results show that the ratios of the radial flow of mass, momentum, and enthalpy from the central axis can be calculated, respectively, as 0.82, 0.13, and 0.17. Additionally, the measured propagation velocity of a bow-shaped LSD was shown to be higher than the CJ velocity calculated using the two-dimensional axisymmetric CFD reproducing the experiment conditions. Full article
(This article belongs to the Special Issue Laser Propulsion Science and Technology)
Show Figures

Figure 1

Back to TopTop