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Abstract: Elucidation of the propagation velocity of a laser-supported detonation (LSD) wave and its
propagation mechanism is necessary for various engineering applications. This study was conducted
to observe an oblique laser-supported detonation wave off the laser axis. The relation between the
local laser intensity and detonation-wave propagation velocity was investigated. For this purpose,
the time-space distribution of the laser intensity was measured precisely. The change of the LSD
wavefront shape was visualized using an ultrahigh-speed camera. The relation between the local
laser intensity and the propagation velocity of the oblique LSD wave measured off the laser axis was
found to be identical to the relation between the local laser intensity and the detonation propagation
velocity at the laser axis.

Keywords: atmospheric discharge; laser propulsion; laser supported detonation; oblique detonation

1. Introduction

Laser-induced discharge and its accompanying blast wave has been an interesting
subject for aeronautical and astronautical engineering applications [1–4]. When an inci-
dent laser intensity exceeds a certain threshold, such as 1012–1013 W/m2, an ionization
front propagates with an attached shock wave in a direction opposite to the laser beam
irradiation [1]. This phenomenon is known as laser-supported detonation (LSD). However,
when the laser intensity is not sufficiently high to induce the LSD wave, a shock wave
precedes an ionization wave and propagates separately. This phenomenon is designated
laser-supported combustion (LSC). In the LSD regime, because the laser energy is converted
efficiently to blast-wave energy, several studies have been conducted to ascertain its energy
conversion efficiency [5–7], termination threshold [7–10], and plasma property with plasma
diagnostics [11,12].

The relation between the LSD propagation velocity and laser intensity is an important
topic for ascertaining the propagation structure of LSD [13,14]. Several propagation models
have been proposed. Raizer deduced the analytical propagation velocity using hydrody-
namic equation, which is an analog to Chapman–Jouguet (C–J) detonation. The velocity is
proportional to the cubic root of the laser intensity, irrespective of the gaseous species [15].
Additionally, Raizer discussed another model by which ultraviolet radiation from bulk
plasma generates seed electrons ahead of the ionization front via the photoionization effect.
The precursor, consisting of photoelectrons, plays a role of initiating laser absorption [15].

To validate the propagation model and to elucidate the LSD mechanism, compari-
son with experimental data is necessary. As presented in Figure 1, however, depending
on the study, the relations between propagation velocity and laser intensity mutually
differ [7,10,16–19]. The difference in propagation velocity trends is regarded as attributable
to the two-dimensional effects of focusing optics, such as the beam quality factor, beam
waist, and f -number. These parameters determine the plasma size and affect the lateral
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enthalpy dissipation, which in turn affects the propagation velocity and termination con-
dition [15]. This two-dimensional effect has been observed by experimentation in several
studies. Mori et al. investigated f -number effects on the termination condition and ex-
pressed the laser intensity of the termination as a function of the f -number [6]. Ushio et al.
observed line-focused LSD with and without confinement to compare the effects of lateral
expansion. Results showed that the propagation velocity with confinement was higher
than that without confinement [7]. To eliminate two-dimensional effects, Matsui et al. used
focusing optics with sufficiently large beam diameters and f -numbers. With focusing optics,
the velocity is determined uniquely by the laser intensity [20]. Shimano et al. reported
gas-species effects on the propagation velocity with sufficiently large beam diameters. The
velocities in argon, helium, and air have mutually differing tendencies in terms of laser
intensity [21].
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Figure 1. Earlier studies of relations between laser intensity and propagation velocity [7,10,16–19].
All experiments were conducted in air. Because of different focusing optics, the velocity is not
determined uniquely by laser intensity.

As described above, the propagation velocity dependence on laser intensity is nec-
essary for validation using the calculation model. However, some studies have relied on
evaluation using the average laser intensity, whereas others have relied on evaluation using
the peak laser intensity. Figure 2 portrays a typical image of the ionization front of the LSD
wave. The wavefront forms a bow shape, which suggests that the spatial distribution of
laser intensity affects the formation of the structure. An earlier study by the authors [20]
evaluated the propagation velocity with a large beam diameter and f -number with the
averaged laser intensity. For this study, we investigated the dependence of local prop-
agation velocity on local laser intensity by considering the laser intensity profile. Also,
we evaluated the local propagation velocity as the velocity in the direction normal to the
wavefront, similarly to analysis of oblique detonation of chemical explosives. Oblique
detonation is observed around a hypersonic projectile in a detonative gas [22,23]. The
propagation velocity of oblique detonation is found using the C–J velocity. The wavefront
angle is expressed as the ratio of the C–J velocity to the projectile velocity. After calculating
the wavefront angle as taken by a high-speed camera with high resolution, we used the
laser intensity profile to elucidate the relation between the local propagation velocity of
oblique laser-supported detonation and the local laser intensity.
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Figure 2. Typical image of a bow-shaped ionization front. The oblique propagation velocity is
calculated from V and the angle of the ionization wave front.

2. Measurement of the Laser Intensity Distribution

A laser-induced discharge is produced using a Transversely Excited Atmospheric
(TEA) CO2 laser with typical maximum pulse energy and wavelength of 10 J/pulse and
10.6 µm, respectively. The laser energy deviation was ±5% before and after the experiment.
The laser power profile is measured with a photon-drag detector (B749, Hamamatsu
photonics). The FWHM of the spike of the profile was 0.12 + 0.02 µs. The historical profile
of power and cumulative energy is depicted in Figure 3. The laser beam cross-section
before focusing was a 30 mm × 30 mm rectangular shape, with spatial intensity profiles of
Gaussian in the horizontal direction and top-hat in the vertical direction. The direction for
which the laser intensity profile of Gaussian is defined as r1, as depicted in Figure 3; that of
top-hat is r2. Also, WG0 and WT0, respectively, stand for beam radii at the beam waist of
Gaussian and the top-hat distribution. They are defined, respectively, as half-lengths of the
region that includes 86% of the total beam power in each plane. The laser intensity has a
non-axisymmetric distribution. This characteristic leads to the difference between the spot
sizes at the beam waist of both directions. The equivalent beam diameter D is defined as
shown below.

D = 2

√
4WG0WT0

π
(1)
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Figure 3. Historical profile of laser power and cumulative energy of the CO2 laser, with the burn
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As portrayed in Figure 4, the laser beam is focused onto an aluminum plate to initiate
breakdown by ZnSe lenses (f = 127 mm and 317.5 mm) or parabolic mirrors (f = 400 mm and
500 mm) for which the beam diameters at focus are, respectively, 1.2 mm (WG0 = 0.4 mm,
WT0 = 0.6 mm), 2.9 mm (WG0 = 1.1 mm, WT0 = 1.6 mm) and 4.1 mm (WG0 = 1.7 mm,
WT0 = 2.0 mm). Table 1 shows the focal length, F-number, beam radii at the beam waist,
and the equivalent beam diameter of each focusing optics. Figure 5 shows the measured
and fitted intensity profiles with D = 4.1 mm in the r1 and r2 directions for which the
profiles are Gaussian and top-hat. The beam quality factors are found by measuring the
intensity profile near the beam waist by ISO 11146 [24]. The beam quality factors are 15 and
21, respectively, in the r1 and r2 directions. Relation between beam radius in r2 direction
and distance from beam waist of each focusing optics is shown in Figure 6.
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Figure 4. Schematics showing the experiment setup. (a) Focusing optics of D = 4.1 mm, which consist
of two mirrors with focal lengths of 500 mm in r1 and 400 mm in r2 direction. (b) Focusing optics of
D = 2.9 mm and D = 1.2 mm, with respective focal lengths of 317.5 mm and 127 mm.
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Table 1. Properties of focusing optics and beam diameter.

Property r1 r2 r1 r2 r1 r2

f [mm] 500 400 317.5 127
F 16.7 13.3 10.6 4.2

WG0 [mm] 1.7 1.1 0.4
WT0 [mm] 2.0 1.6 0.6

D [mm] 4.1 2.9 1.2
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3. Propagation Velocity of Laser-Supported Detonation along the Laser Axis

The ionization wave image was taken using a high-speed ICCD camera (512 × 512 pixel
resolution, 10 ns minimum exposure time, Ultra8; DRS Hadland Ltd., Hertfordshire, UK),
which can take eight images sequentially in each laser shot. To measure the propagation
velocity in the direction normal to the wavefront, we used another high-speed camera (pixel
resolution: 2560 × 2160, 3 ns minimum exposure time, iStar sCMOS; Andor Technology,
Belfast, UK) because the wavefront shape must be captured with as high a resolution as
possible. The exposure time was set to 10 ns in Ultra 8 and to 5 ns in iStar sCMOS. The
shutter timing and laser pulse signal are synchronized using a pulse delay generator (DG
535; Stanford Research Systems Inc., Sunnyvale, CA, USA). The laser-induced plasma
is projected to the camera via two lenses. Spatial resolution is 0.009 mm/pixel. All
experiments were conducted in air at 1 atm pressure. Figure 7 presents the relation between
the propagation velocity of an ionization front V and laser intensity Speak at the laser axis
with various beam diameters. The propagation velocity was calculated from eight images
per laser shot, and the plot was drawn by performing the experiment five times. Error bars
indicate the standard error of the five data. With D ≥ 2.9 mm, the propagation velocity
shows a unique tendency in terms of laser intensity, which is the same as earlier results.
The beam diameter was measured more accurately than in previous studies conducted
by the authors [21]. Also, the laser intensity is evaluated as the local laser intensity at the
laser axis, with D = 1.2 mm. However, the propagation velocity trend differs from that of
D ≥ 2.9 mm. Therefore, with D = 1.2 mm, the result suggests that two-dimensional energy
dissipation affects the propagation velocity. The measured value is fitted using a power
function. The results are V = 2.2 × 10−1 S0.46 and V = 3.9 × 10−2S0.65, respectively, with
D ≥ 2.9 mm and D = 1.2 mm. Although this experiment is conducted in air as described
above, evaluation using the Mach number is important for comparison with other gas
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species. Therefore, we normalized the propagation velocity by the speed of sound a as
shown below.

V =
V
a

(2)

Aerospace 2024, 11, x FOR PEER REVIEW 7 of 13 
 

 

 

Figure 7. Dependence of propagation of an ionization front with various beam diameters on laser 

intensity at the laser axis. All experiments were conducted in air at a pressure of 1 atm. Trends 

against laser intensity differ between D ≥ 2.9 mm and D = 1.2 mm. Fitted lines with power function 

are shown as line 1 and line 2. 

The speed of sound and atmospheric density are 347 m/s and 1.18 kg/m3, respec-

tively, in the atmospheric conditions of 1 atm and 300 K. The functions for line 1 and line 

2 are normalized and expressed using Equations (2) and (5) as shown below. 

�̅� = 1.6 × 10−1𝑆̅0.46 (6) 

�̅� = 1.4 × 10−2𝑆̅0.65 (7) 

These fitted lines are depicted as line 1 and line 2 in Figure 7. The obtained relations 

are used in the next chapter for analysis of oblique detonation. 

4. Propagation Velocity of Oblique Laser-Supported Detonation 

Figure 8 presents photographs of propagating ionization fronts in the r1 direction 

with 2.9 mm beam diameter and the historical profiles of the laser intensity distribution 

and wavefront shapes. The wavefront shape presented in Figure 8b with solid lines is 

deduced by detecting the wavefront shape from images taken by iStar sCMOS presented 

in Figure 8a. The wave head positions are aligned at z = 0 mm in Figure 8b. To calculate 

the local propagation velocity in a direction normal to wavefront Vcosθ, the velocity in 

the direction of the laser axis is given as Equations (6) and (7). The wavefront angle is 

deduced by differentiating a polynomial fitted curve obtained from the wavefront shape 

presented in Figure 8b. Because the time variation of the wavefront shape is negligible 

compared to the propagation velocity, the propagation velocity along the laser axis for 

each r is unique at a certain time. To elucidate the propagation velocity dependence on 

the laser intensity, we evaluated the local intensity as S(r)cosθ because the cross section 

of the laser beam projected onto the oblique wavefront is enlarged by 1/cosθ and because 

the local laser intensity is reduced by a factor of cosθ. From these profiles of the laser 

intensity distribution and the wavefront shapes, relations between local propagation ve-

locity in the direction normal to the wavefront and local laser beam intensity are deduced 

as shown in Figure 9. Figure 9a,b show propagation velocities in the r1 and r2 directions. 

Their respective laser intensity profiles are Gaussian and top-hat distribution, as shown 

in Figure 5. The propagation velocity is shown for cosθ from 0.6 to 1. To investigate the 

condition of LSD termination, we took schlieren images in which a shock front and an 

         =  . ×   −  ̅ .  

          =  .  ×   −  ̅ .  

Figure 7. Dependence of propagation of an ionization front with various beam diameters on laser
intensity at the laser axis. All experiments were conducted in air at a pressure of 1 atm. Trends against
laser intensity differ between D ≥ 2.9 mm and D = 1.2 mm. Fitted lines with power function are
shown as line 1 and line 2.

The laser intensity is normalized using the Chapman–Jouguet velocity [15].

V =

{
2
(

γ2
2 − 1

) S
ρ1

} 1
3

(3)

In that equation, γ2 and ρ1, respectively, represent the specific heat ratio behind
the wavefront and the atmospheric density. The Mach number is obtained by dividing
Equation (3) by the speed of sound.

V
a
=

{
2
(

γ2
2 − 1

) S
ρ1a3

} 1
3

(4)

Here, the Mach number is a function of laser intensity. We defined normalized laser
intensity S as

S =
S

ρ1a3 (5)

The speed of sound and atmospheric density are 347 m/s and 1.18 kg/m3, respectively,
in the atmospheric conditions of 1 atm and 300 K. The functions for line 1 and line 2 are
normalized and expressed using Equations (2) and (5) as shown below.

V = 1.6 × 10−1S0.46 (6)

V = 1.4 × 10−2S0.65 (7)

These fitted lines are depicted as line 1 and line 2 in Figure 7. The obtained relations
are used in the next chapter for analysis of oblique detonation.
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4. Propagation Velocity of Oblique Laser-Supported Detonation

Figure 8 presents photographs of propagating ionization fronts in the r1 direction
with 2.9 mm beam diameter and the historical profiles of the laser intensity distribution
and wavefront shapes. The wavefront shape presented in Figure 8b with solid lines is
deduced by detecting the wavefront shape from images taken by iStar sCMOS presented
in Figure 8a. The wave head positions are aligned at z = 0 mm in Figure 8b. To calculate
the local propagation velocity in a direction normal to wavefront Vcosθ, the velocity in the
direction of the laser axis is given as Equations (6) and (7). The wavefront angle is deduced
by differentiating a polynomial fitted curve obtained from the wavefront shape presented
in Figure 8b. Because the time variation of the wavefront shape is negligible compared to
the propagation velocity, the propagation velocity along the laser axis for each r is unique at
a certain time. To elucidate the propagation velocity dependence on the laser intensity, we
evaluated the local intensity as S(r)cosθ because the cross section of the laser beam projected
onto the oblique wavefront is enlarged by 1/cosθ and because the local laser intensity is
reduced by a factor of cosθ. From these profiles of the laser intensity distribution and the
wavefront shapes, relations between local propagation velocity in the direction normal to
the wavefront and local laser beam intensity are deduced as shown in Figure 9. Figure 9a,b
show propagation velocities in the r1 and r2 directions. Their respective laser intensity
profiles are Gaussian and top-hat distribution, as shown in Figure 5. The propagation
velocity is shown for cosθ from 0.6 to 1. To investigate the condition of LSD termination,
we took schlieren images in which a shock front and an ionization front are projected
simultaneously, as in Figure 10, which presents a typical Schlieren image of LSD with
D = 4.1 mm in the r1 direction. As r/W increases, the region in which a shock front is
separated from an ionization front, which is in the LSC state, is enlarged. By analyzing the
separation points, the state of LSD is shown as a filled plot. The state of LSC is shown as an
open plot. In Figure 9, the result shows unique trends of local laser intensity, irrespective of
the wavefront angle in both directions. Although the result of D = 1.2 mm shows the same
tendency as that of the velocity in the direction of the laser axis, the velocity of D ≥ 2.9 mm
is higher than that within a region below 500 GW/m2. In this region, the function of the
fitting curve is given as shown below.

V = 3.3 × 10−1S0.30 (8)
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Figure 8. (a) Photograph of an ionization front propagating from t = 0.675 µs to 1.835 µs with
D = 2.9 mm in the r1 direction. Laser is irradiated from upper side of photographs. (b) Historical
change of wavefront shape analyzed from Figure 4a and estimated laser intensity profile with
D = 2.9 mm in the r1 direction. The elapsed time from starting points of laser irradiation is shown.
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Figure 10. Schlieren image of LSD of r1 direction with D = 4.1 mm. The shock front is separated from
the ionization front at large r/WG0.

This function, which is defined as line 3, is presented in Figure 11 along with the results
of the local propagation velocity presented in Figure 9a. The exponent of the function is
similar to that of C–J velocity, as shown Equation (3). The variation of the exponents in each
region suggests that the propagation structure transitions at a certain intensity, which is
also observed in argon [25]. Figure 12 presents the velocity in the direction of the laser axis
with three lines. The velocity of D ≥ 2.9 mm shows the same tendency as that of line three
within the error bars. This result indicates that propagation velocities of the LSD wave in
the direction of the laser axis and that of oblique laser-supported detonation off the laser
axis can be described as the same functions of S(r)cosθ. For future works, a physical reason
of the unique tendency of the velocity with D ≥ 2.9 mm and the velocity of the oblique
detonation should be clarified with a 2D numerical calculation that contains the complex
plasma dynamics.
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local laser intensity of each beam diameter in the r1 direction. In a region below 500 GW/m2 of
D ≥ 2.9 mm, the velocity is larger than that of the laser axis. It shows a tendency as Line 3.
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Figure 12. Relation between propagation velocity and laser intensity at the laser axis. Line 3 is
obtained from analysis of the local propagation velocity. It shows the same tendency as the velocity
in the direction of the laser axis.

5. Conclusions

The propagation velocity at the laser axis was measured using beam diameters of
4.1 mm, 2.9 mm, and 1.2 mm. That of D ≥ 2.9 mm showed a unique tendency for peak laser
intensity. By analyzing the wavefront shape, the relation between the local propagation
velocity in the direction normal to the wavefront and the local laser intensity S(r)cosθ
were deduced. The local propagation velocity showed a unique tendency on S(r)cosθ,
irrespective of the wavefront angle. Compared to the tendency obtained from the analysis
of local propagation velocity with the velocity at the laser axis, good agreement was found.
This result suggests the velocity of the oblique laser-supported detonation off the laser axis
can be described as the same function, with the propagation velocity of the LSD wave in
the direction of the laser axis.
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Nomenclature

a Speed of sound, m/s
D Equivalent beam diameter, mm
f Focal length, mm
F F-number
M2 Beam quality factor
S(r) Local laser intensity, W/m2

Speak Laser intensity on the beam axis, W/m2

S Normalized laser intensity
t Elapsed time after laser breakdown, s
r, z Cylindrical coordinates, m
r1 Direction of Gaussian intensity profile
r2 Direction of top-hat intensity profile
V Propagation velocity, m/s
V Normalized propagation velocity
WG0 Beam waist size of r1 direction, m
WT0 Beam waist size of r2 direction, m
θ Angle of a wavefront, rad
ρ1 Atmospheric gaseous density, kg/m3

γ2 Specific heat ratio behind shock wave
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