Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (48)

Search Parameters:
Keywords = vehicular platoon

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1264 KiB  
Article
Intelligent Resource Allocation for Task-Sensitive Autonomous Vehicular Systems
by Hao Du, Yijin Chen and Xinyu Zou
Electronics 2025, 14(11), 2213; https://doi.org/10.3390/electronics14112213 - 29 May 2025
Viewed by 278
Abstract
This paper addresses the resource allocation challenges in autonomous vehicle (AV) networks for delay-sensitive perception tasks. Current vehicular networks face sub-optimal resource distribution and excessive communication overhead, hindering the performance of AVs. We propose an integrated approach that combines a platoon-based system model [...] Read more.
This paper addresses the resource allocation challenges in autonomous vehicle (AV) networks for delay-sensitive perception tasks. Current vehicular networks face sub-optimal resource distribution and excessive communication overhead, hindering the performance of AVs. We propose an integrated approach that combines a platoon-based system model with optimization techniques using Deep Q-Networks (DQN) and Particle Swarm Optimization (PSO). The platoon-based model enables AVs to share resources effectively, while the DQN and PSO models optimize task offloading and reduce overhead. Simulation results across various traffic scenarios demonstrate that the PSO algorithm outperforms traditional methods in task completion rates, overhead minimization, and platoon formation. This approach offers a significant advancement in enhancing AV network performance and ensuring timely task execution. Full article
(This article belongs to the Special Issue Empowering IoT with AI: AIoT for Smart and Autonomous Systems)
Show Figures

Figure 1

21 pages, 1182 KiB  
Review
Advancements and Challenges of Visible Light Communication in Intelligent Transportation Systems: A Comprehensive Review
by Prokash Sikder, M. T. Rahman and A. S. M. Bakibillah
Photonics 2025, 12(3), 225; https://doi.org/10.3390/photonics12030225 - 28 Feb 2025
Cited by 2 | Viewed by 2869
Abstract
Visible Light Communication (VLC) has the potential to advance Intelligent Transportation Systems (ITS). This study explores the current advancements of VLC in ITS applications that may enhance traffic flow, road safety, and vehicular communication performance. The potential, benefits, and current research trends of [...] Read more.
Visible Light Communication (VLC) has the potential to advance Intelligent Transportation Systems (ITS). This study explores the current advancements of VLC in ITS applications that may enhance traffic flow, road safety, and vehicular communication performance. The potential, benefits, and current research trends of VLC in ITS applications are discussed first. Then, the state-of-the-art VLC technologies including overall concept, IEEE communication protocols, hybrid VLC systems, and software-defined adaptive MIMO VLC systems, are discussed. We investigated different potential applications of VLC in ITS, such as signalized intersection and ramp metering control, collision warning and avoidance, vehicle localization and detection, and vehicle platooning using vehicle–vehicle (V2V), infrastructure–vehicle (I2V), and vehicle–everything (V2X) communications. Besides, VLC faces several challenges in ITS applications, and these concerns, e.g., environmental issues, communication range issues, standards and infrastructure integration issues, light conditions and integration issues are discussed. Finally, this paper discusses various advanced techniques to enhance VLC performance in ITS applications, such as machine learning-based channel estimation, adaptive beamforming, robust modulation schemes, and hybrid VLC integration. With this review, the authors aim to inform academics, engineers, and policymakers about the status and challenges of VLC in ITS. It is expected that, by applying VLC in ITS, mobility will be safer, more efficient, and sustainable. Full article
(This article belongs to the Special Issue Advancements in Optical Wireless Communication (OWC))
Show Figures

Figure 1

22 pages, 2874 KiB  
Article
Priority-Driven Resource Allocation with Reuse for Platooning in 5G Vehicular Network
by Tae-Woo Kim, Sanghoon Lee, Dong-Hyung Lee and Kyung-Joon Park
Sustainability 2025, 17(4), 1747; https://doi.org/10.3390/su17041747 - 19 Feb 2025
Viewed by 874
Abstract
Recently, Vehicle-to-Everything (V2X) communication has emerged as a critical technology for enhancing the safety and traffic management of autonomous vehicles. Developing a resource allocation algorithm that enables autonomous vehicles to perceive and react to their surroundings in real time through fast and reliable [...] Read more.
Recently, Vehicle-to-Everything (V2X) communication has emerged as a critical technology for enhancing the safety and traffic management of autonomous vehicles. Developing a resource allocation algorithm that enables autonomous vehicles to perceive and react to their surroundings in real time through fast and reliable communication is of paramount importance. This paper proposes a novel resource allocation algorithm that minimizes the degradation of communication performance for non-platoon vehicles while ensuring low-latency, high-reliability communication within vehicle platoons. The proposed algorithm prioritizes platoon vehicles and enhances resource efficiency by simultaneously applying interference-based and distance-based resource reuse techniques. Performance evaluations conducted using the Simu5G simulator demonstrate that the proposed algorithm consistently maintains the average resource allocation rate and delay for both platoon and non-platoon vehicles, even as the number of platoons increases. Specifically, in a congested environment with 60 general vehicles and five platoons, the proposed algorithm achieves an average resource allocation rate of over 90%, significantly outperforming existing algorithms such as Max-C/I, which achieves only 58%, and the priority-based algorithm with 54%, ensuring reliable communication for all vehicles. Full article
(This article belongs to the Special Issue Sustainable Urban Mobility: Road Safety and Traffic Engineering)
Show Figures

Figure 1

15 pages, 745 KiB  
Article
Enhancing Heterogeneous Communication for Foggy Highways Using Vehicular Platoons and SDN
by Hafiza Zunera Abdul Sattar, Huma Ghafoor and Insoo Koo
Sensors 2025, 25(3), 696; https://doi.org/10.3390/s25030696 - 24 Jan 2025
Viewed by 1382
Abstract
Establishing a safe and stable routing path for a source–destination pair is necessary regardless of the weather conditions. The reason for this is that vehicles can improve safety on the road by exchanging messages and updating each other on the current conditions of [...] Read more.
Establishing a safe and stable routing path for a source–destination pair is necessary regardless of the weather conditions. The reason for this is that vehicles can improve safety on the road by exchanging messages and updating each other on the current conditions of both roads and vehicles. This paper intends to solve the problem of when foggy roads make it difficult for drivers to travel, especially when people encounter emergency situations and have no other option but to drive in foggy weather. Although the literature offers few solutions to the problem, no one has considered integrating software-defined networking into vehicular networks for foggy roads to create an optimal routing path. Moreover, it is of significance to mention that vehicles in adverse weather conditions travel following each other and maintaining a constant safety distance, which leads to the formation of a platoon. Considering this, we propose a heterogeneous communication protocol in a software-defined vehicular network to establish an optimal routing path using platoons on foggy highways. Different cases were tested to show how platoons behave in high connectivity and sparsity, achieving a maximum delivery ratio of 99%, a delay of 2 ms, an overhead of 55%, and an acceptable number of hops compared to reference schemes. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

16 pages, 3377 KiB  
Article
Data-Driven Prescribed Performance Platooning Control Under Aperiodic Denial-of- Service Attacks
by Peng Zhang, Zhenling Wang and Weiwei Che
Mathematics 2024, 12(21), 3313; https://doi.org/10.3390/math12213313 - 22 Oct 2024
Cited by 1 | Viewed by 1065
Abstract
This article studies a data-driven prescribed performance platooning control method for nonlinear connected automated vehicle systems (CAVs) under aperiodic denial-of-service (DoS) attacks. Firstly, the dynamic linearization technique is employed to transform the nonlinear CAV system into an equivalent linearized data model. Secondly, to [...] Read more.
This article studies a data-driven prescribed performance platooning control method for nonlinear connected automated vehicle systems (CAVs) under aperiodic denial-of-service (DoS) attacks. Firstly, the dynamic linearization technique is employed to transform the nonlinear CAV system into an equivalent linearized data model. Secondly, to improve the system’s transient performance, a prescribed performance transformation (PPT) scheme is proposed to transform the constrained output into the unconstrained one. In addition, an attack compensation mechanism is designed to reduce the adverse impact. Combining the PPT scheme and the attack compensation mechanism, the data-driven adaptive platooning control scheme is proposed to achieve the vehicular tracking control task. Lastly, the merits of the developed control method are illustrated by an actual simulation. Full article
Show Figures

Figure 1

15 pages, 2372 KiB  
Article
Nonsingular Terminal Sliding Mode Control for Vehicular Platoon Systems with Measurement Delays and Noise
by Mengjie Li, Shaobao Li, Xiaoyuan Luo and Zhizhong Bai
Computation 2024, 12(10), 210; https://doi.org/10.3390/computation12100210 - 20 Oct 2024
Cited by 1 | Viewed by 964
Abstract
Platooning of vehicular systems has been considered an effective solution for alleviating traffic congestion and reducing energy consumption. Because of limitations in onboard sensors, the measurement system inevitably suffers from measurement delays and noise, yet it receives insufficient attention. In this article, to [...] Read more.
Platooning of vehicular systems has been considered an effective solution for alleviating traffic congestion and reducing energy consumption. Because of limitations in onboard sensors, the measurement system inevitably suffers from measurement delays and noise, yet it receives insufficient attention. In this article, to deal with the measurement delays and noise while improving convergence performance, the platoon control problem of vehicular systems is studied under the nonsingular terminal sliding mode control (NTSMC) framework. A sliding mode observer (SMO) is proposed to estimate the states affected by measurement delays and noise. A distributed NTSMC scheme is developed for the platooning of the vehicular systems and ensures the convergence of the sliding mode surface affected by measurement delays and noise. One salient feature of the proposed SMO is that it can handle time-varying measurement delays rather than constant ones. Moreover, the control law is free of initial spacing error conditions under the employed coupled spacing policy. Numerical simulations are finally provided to demonstrate the effectiveness and efficiency of the proposed algorithm. Full article
Show Figures

Figure 1

26 pages, 3821 KiB  
Article
A Cascaded Multi-Agent Reinforcement Learning-Based Resource Allocation for Cellular-V2X Vehicular Platooning Networks
by Iswarya Narayanasamy and Venkateswari Rajamanickam
Sensors 2024, 24(17), 5658; https://doi.org/10.3390/s24175658 - 30 Aug 2024
Cited by 4 | Viewed by 1941
Abstract
The platooning of cars and trucks is a pertinent approach for autonomous driving due to the effective utilization of roadways. The decreased gas consumption levels are an added merit owing to sustainability. Conventional platooning depended on Dedicated Short-Range Communication (DSRC)-based vehicle-to-vehicle communications. The [...] Read more.
The platooning of cars and trucks is a pertinent approach for autonomous driving due to the effective utilization of roadways. The decreased gas consumption levels are an added merit owing to sustainability. Conventional platooning depended on Dedicated Short-Range Communication (DSRC)-based vehicle-to-vehicle communications. The computations were executed by the platoon members with their constrained capabilities. The advent of 5G has favored Intelligent Transportation Systems (ITS) to adopt Multi-access Edge Computing (MEC) in platooning paradigms by offloading the computational tasks to the edge server. In this research, vital parameters in vehicular platooning systems, viz. latency-sensitive radio resource management schemes, and Age of Information (AoI) are investigated. In addition, the delivery rates of Cooperative Awareness Messages (CAM) that ensure expeditious reception of safety-critical messages at the roadside units (RSU) are also examined. However, for latency-sensitive applications like vehicular networks, it is essential to address multiple and correlated objectives. To solve such objectives effectively and simultaneously, the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) framework necessitates a better and more sophisticated model to enhance its ability. In this paper, a novel Cascaded MADDPG framework, CMADDPG, is proposed to train cascaded target critics, which aims at achieving expected rewards through the collaborative conduct of agents. The estimation bias phenomenon, which hinders a system’s overall performance, is vividly circumvented in this cascaded algorithm. Eventually, experimental analysis also demonstrates the potential of the proposed algorithm by evaluating the convergence factor, which stabilizes quickly with minimum distortions, and reliable CAM message dissemination with 99% probability. The average AoI quantity is maintained within the 5–10 ms range, guaranteeing better QoS. This technique has proven its robustness in decentralized resource allocation against channel uncertainties caused by higher mobility in the environment. Most importantly, the performance of the proposed algorithm remains unaffected by increasing platoon size and leading channel uncertainties. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

17 pages, 1699 KiB  
Article
Adaptive Fixed-Time Safety Concurrent Control of Vehicular Platoons with Time-Varying Actuator Faults under Distance Constraints
by Wei Liu, Zhongyang Wei, Yuchen Liu and Zhenyu Gao
Mathematics 2024, 12(16), 2560; https://doi.org/10.3390/math12162560 - 19 Aug 2024
Cited by 2 | Viewed by 1052
Abstract
This paper investigates the fault-tolerant control problem for vehicular platoons with time-varying actuator fault directions and distance constraints. A bias constraint function is introduced to convert the asymmetric constraints into symmetric ones, based on which a unified barrier Lyapunov function (BLF) method is [...] Read more.
This paper investigates the fault-tolerant control problem for vehicular platoons with time-varying actuator fault directions and distance constraints. A bias constraint function is introduced to convert the asymmetric constraints into symmetric ones, based on which a unified barrier Lyapunov function (BLF) method is proposed to ensure distance constraints. Further, an adaptive fixed-time fault-tolerant controller in the context of a sliding mode control technique is proposed, wherein a new Nussbaum function is adopted to address the effects of unknown time-varying actuator fault directions. It is proved that both individual vehicle stability and string stability can all be guaranteed, and the effectiveness of the proposed algorithm is verified through numerical simulations. Full article
(This article belongs to the Section C2: Dynamical Systems)
Show Figures

Figure 1

24 pages, 1200 KiB  
Article
Adaptive Truck Platooning with Drones: A Decentralized Approach for Highway Monitoring
by J. de Curtò, I. de Zarzà, Juan Carlos Cano, Pietro Manzoni and Carlos T. Calafate
Electronics 2023, 12(24), 4913; https://doi.org/10.3390/electronics12244913 - 6 Dec 2023
Cited by 5 | Viewed by 1854
Abstract
The increasing demand for efficient and safe transportation systems has led to the development of autonomous vehicles and vehicle platooning. Truck platooning, in particular, offers numerous benefits, such as reduced fuel consumption, enhanced traffic flow, and increased safety. In this paper, we present [...] Read more.
The increasing demand for efficient and safe transportation systems has led to the development of autonomous vehicles and vehicle platooning. Truck platooning, in particular, offers numerous benefits, such as reduced fuel consumption, enhanced traffic flow, and increased safety. In this paper, we present a drone-based decentralized framework for truck platooning in highway monitoring scenarios. Our approach employs multiple drones, which communicate with the trucks and make real-time decisions on whether to form a platoon or not, leveraging Model Predictive Control (MPC) and Unscented Kalman Filter (UKF) for drone formation control. The proposed framework integrates a simple truck model in the existing drone-based simulation, addressing the truck dynamics and constraints for practical applicability. Simulation results demonstrate the effectiveness of our approach in maintaining the desired platoon formations while ensuring collision avoidance and adhering to the vehicle constraints. This innovative drone-based truck platooning system has the potential to significantly improve highway monitoring efficiency, traffic management, and safety. Our drone-based truck platooning system is primarily designed for implementation in highway monitoring and management scenarios, where its enhanced communication and real-time decision-making capabilities can significantly contribute to traffic efficiency and safety. Future work may focus on field trials to validate the system in real-world conditions and further refine the algorithms based on practical feedback and evolving vehicular technologies. Full article
(This article belongs to the Special Issue Intelligent Technologies for Vehicular Networks)
Show Figures

Figure 1

45 pages, 6018 KiB  
Review
A Comprehensive Survey Exploring the Multifaceted Interplay between Mobile Edge Computing and Vehicular Networks
by Ali Pashazadeh, Giovanni Nardini and Giovanni Stea
Future Internet 2023, 15(12), 391; https://doi.org/10.3390/fi15120391 - 30 Nov 2023
Cited by 3 | Viewed by 7508
Abstract
In recent years, the need for computation-intensive applications in mobile networks requiring more storage, powerful processors, and real-time responses has risen substantially. Vehicular networks play an important role in this ecosystem, as they must support multiple services, such as traffic monitoring or sharing [...] Read more.
In recent years, the need for computation-intensive applications in mobile networks requiring more storage, powerful processors, and real-time responses has risen substantially. Vehicular networks play an important role in this ecosystem, as they must support multiple services, such as traffic monitoring or sharing of data involving different aspects of the vehicular traffic. Moreover, new resource-hungry applications have been envisaged, such as autonomous driving or in-cruise entertainment, hence making the demand for computation and storage resources one of the most important challenges in vehicular networks. In this context, Mobile Edge Computing (MEC) has become the key technology to handle these problems by providing cloud-like capabilities at the edge of mobile networks to support delay-sensitive and computation-intensive tasks. In the meantime, researchers have envisaged use of onboard vehicle resources to extend the computing capabilities of MEC systems. This paper presents a comprehensive review of the most recent works related to MEC-assisted vehicular networks, as well as vehicle-assisted MEC systems. We illustrate the MEC system architecture and discuss its deployment in vehicular environments, as well as the key technologies to realize this integration. After that, we review the recent literature by identifying three different areas, i.e.: (i) MEC providing additional resources to vehicles (e.g., for task offloading); (ii) MEC enabling innovative vehicular applications (e.g., platooning), and (iii) vehicular networks providing additional resources to MEC systems. Finally, we discuss open challenges and future research directions, addressing the possible interplays between MEC systems and vehicular networks. Full article
Show Figures

Figure 1

18 pages, 3606 KiB  
Article
Stability Analysis of the Vehicular Platoon with Sensing Delay and Communication Delay: CTCR Paradigm via Dixon Resultant
by Xu Zhu, Yongming Shen, Zehua Zhang and Maode Yan
Appl. Sci. 2023, 13(21), 11807; https://doi.org/10.3390/app132111807 - 28 Oct 2023
Cited by 1 | Viewed by 1779
Abstract
For the vehicular platoon consisting of connected automotive vehicles, time delays degrade both the internal stability and string stability. In this study, the internal stability and string stability of the vehicular platoon suffering from sensing delay and communication delay are investigated. In the [...] Read more.
For the vehicular platoon consisting of connected automotive vehicles, time delays degrade both the internal stability and string stability. In this study, the internal stability and string stability of the vehicular platoon suffering from sensing delay and communication delay are investigated. In the internal stability analysis, the necessary and sufficient internal stability condition is obtained and the exact time delay margins (ETDMs) are derived via the cluster treatment of characteristic root (CTCR) paradigm. A Dixon resultant matrix–based method is proposed to determine the kernel and offspring hypersurfaces of the CTCR paradigm, and then the computational burden of deriving the ETDMs is reduced significantly. In the string stability analysis, we first propose the string stability conditions for the situation no matter how large the frequency of the leader vehicle’s maneuver is. Furthermore, the more practical string stability conditions are studied by considering only the region of low frequency, where most of the energy of the spacing errors exists. Then, a lower bound of the time headway is deduced to enhance road capacity, so the potential of the vehicular platoon is fully motivated. Numerical simulations are provided to illustrate the effectiveness of the theoretical claims. Full article
(This article belongs to the Special Issue Autonomous Driving and Intelligent Transportation)
Show Figures

Figure 1

28 pages, 4493 KiB  
Article
Control Architecture for Connected Vehicle Platoons: From Sensor Data to Controller Design Using Vehicle-to-Everything Communication
by Razvan-Gabriel Lazar, Ovidiu Pauca, Anca Maxim and Constantin-Florin Caruntu
Sensors 2023, 23(17), 7576; https://doi.org/10.3390/s23177576 - 31 Aug 2023
Cited by 12 | Viewed by 3312
Abstract
A suitable control architecture for connected vehicle platoons may be seen as a promising solution for today’s traffic problems, by improving road safety and traffic flow, reducing emissions and fuel consumption, and increasing driver comfort. This paper provides a comprehensive overview concerning the [...] Read more.
A suitable control architecture for connected vehicle platoons may be seen as a promising solution for today’s traffic problems, by improving road safety and traffic flow, reducing emissions and fuel consumption, and increasing driver comfort. This paper provides a comprehensive overview concerning the defining levels of a general control architecture for connected vehicle platoons, intending to illustrate the options available in terms of sensor technologies, in-vehicle networks, vehicular communication, and control solutions. Moreover, starting from the proposed control architecture, a solution that implements a Cooperative Adaptive Cruise Control (CACC) functionality for a vehicle platoon is designed. Also, two control algorithms based on the distributed model-based predictive control (DMPC) strategy and the feedback gain matrix method for the control level of the CACC functionality are proposed. The designed architecture was tested in a simulation scenario, and the obtained results show the control performances achieved using the proposed solutions suitable for the longitudinal dynamics of vehicle platoons. Full article
(This article belongs to the Special Issue Vehicular Sensing for Improved Urban Mobility)
Show Figures

Figure 1

21 pages, 2125 KiB  
Article
Cooperative Cruise Control for Intelligent Connected Vehicles: A Bargaining Game Approach
by Miguel F. Arevalo-Castiblanco, Jaime Pachon, Duvan Tellez-Castro and Eduardo Mojica-Nava
Sustainability 2023, 15(15), 11898; https://doi.org/10.3390/su151511898 - 2 Aug 2023
Cited by 4 | Viewed by 1763
Abstract
Intelligent transportation systems (ITSs) are at the forefront of advancements in transportation, offering enhanced efficiency, safety, and environmental friendliness. To enable ITSs, autonomous systems play a pivotal role, contributing to the development of autonomous driving, data-driven modeling, and multiagent control strategies to establish [...] Read more.
Intelligent transportation systems (ITSs) are at the forefront of advancements in transportation, offering enhanced efficiency, safety, and environmental friendliness. To enable ITSs, autonomous systems play a pivotal role, contributing to the development of autonomous driving, data-driven modeling, and multiagent control strategies to establish sustainable and coordinated traffic management. The integration of networked and automated vehicles has garnered significant attention as a potential solution for alleviating traffic congestion and improving fuel economy, achieved through global route optimization and cooperative driving. This study focuses on a predictive control perspective to address the cooperative cruise control problem. Online decision making is employed during the driving process, utilizing information gathered from the network. By employing bargaining games to establish an operating agreement among vehicles, we formalize a synchronization approach based on predictive control theory. Ultimately, these findings are put to the test in an emulation environment within a hardware-in-the-loop system. The results revealed that the proposed cruise control successfully achieved convergence toward the desired reference signal. These results demonstrate the effectiveness of our approach in achieving synchronized platoon behavior and correct bargaining outcomes. These findings underscore the effectiveness and potential of DMPC with bargaining games in coordinating and optimizing vehicular networks. This paves the way for future research and development in this promising area. Full article
(This article belongs to the Special Issue Autonomous Systems and Intelligent Transportation Systems)
Show Figures

Figure 1

17 pages, 617 KiB  
Article
On the Impact of Multiple Access Interference in LTE-V2X and NR-V2X Sidelink Communications
by Abdul Rehman, Roberto Valentini, Elena Cinque, Piergiuseppe Di Marco and Fortunato Santucci
Sensors 2023, 23(10), 4901; https://doi.org/10.3390/s23104901 - 19 May 2023
Cited by 6 | Viewed by 3462
Abstract
Developing radio access technologies that enable reliable and low-latency vehicular communications have become of the utmost importance with the rise of interest in autonomous vehicles. The Third Generation Partnership Project (3GPP) has developed Vehicle to Everything (V2X) specifications based on the 5G New [...] Read more.
Developing radio access technologies that enable reliable and low-latency vehicular communications have become of the utmost importance with the rise of interest in autonomous vehicles. The Third Generation Partnership Project (3GPP) has developed Vehicle to Everything (V2X) specifications based on the 5G New Radio Air Interface (NR-V2X) to support connected and automated driving use cases, with strict requirements to fulfill the constantly evolving vehicular applications, communication, and service demands of connected vehicles, such as ultra-low latency and ultra-high reliability. This paper presents an analytical model for evaluating the performance of NR-V2X communications, with particular reference to the sensing-based semi-persistent scheduling operation defined in the NR-V2X Mode 2, in comparison with legacy sidelink V2X over LTE, specified as LTE-V2X Mode 4. We consider a vehicle platooning scenario and evaluate the impact of multiple access interference on the packet success probability, by varying the available resources, the number of interfering vehicles, and their relative positions. The average packet success probability is determined analytically for LTE-V2X and NR-V2X, taking into account the different physical layer specifications, and the Moment Matching Approximation (MMA) is used to approximate the statistics of the signal-to-interference-plus-noise ratio (SINR) under the assumption of a Nakagami-lognormal composite channel model. The analytical approximation is validated against extensive Matlab simulations that a show good accuracy. The results confirm a boost in performance with NR-V2X against LTE-V2X, particularly for high inter-vehicle distance and a large number of vehicles, providing a concise yet accurate modeling rationale for planning and adaptation of the configuration and parameter setup of vehicle platoons, without having to resort to extensive computer simulation or experimental measurements. Full article
(This article belongs to the Special Issue Sensors for Autonomous Vehicles and Intelligent Transport)
Show Figures

Figure 1

15 pages, 502 KiB  
Article
Design and Implementation of an Energy-Efficient Vehicle Platoon Control Algorithm Using Prescribed Performance and Extremum Seeking Control
by Andreas Katsanikakis and Charalampos P. Bechlioulis
Appl. Sci. 2023, 13(9), 5650; https://doi.org/10.3390/app13095650 - 4 May 2023
Cited by 4 | Viewed by 2469
Abstract
Platooning has emerged as a promising approach to enhancing the fuel efficiency of vehicles, but determining the inter-vehicular distance that achieves the minimum consumption remains a challenge. In this article, an algorithm is proposed that employs extremum seeking control integrated with the prescribed [...] Read more.
Platooning has emerged as a promising approach to enhancing the fuel efficiency of vehicles, but determining the inter-vehicular distance that achieves the minimum consumption remains a challenge. In this article, an algorithm is proposed that employs extremum seeking control integrated with the prescribed performance control technique to find the optimal inter-vehicular distance. The algorithm utilizes the predecessor-following architecture to track the desired distance while minimizing the estimated aerodynamic drag coefficient to seek the optimal value. To estimate the coefficient, an observer is designed. Simulation results are presented to demonstrate the effectiveness of the approach. The proposed algorithm exhibits a significant improvement over existing methods that do not incorporate prescribed performance. Consequently, our scheme provides a valuable contribution to the field of platooning and paves the way for future research directions. Full article
Show Figures

Figure 1

Back to TopTop