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Abstract: Intelligent transportation systems (ITSs) are at the forefront of advancements in transporta-
tion, offering enhanced efficiency, safety, and environmental friendliness. To enable ITSs, autonomous
systems play a pivotal role, contributing to the development of autonomous driving, data-driven
modeling, and multiagent control strategies to establish sustainable and coordinated traffic manage-
ment. The integration of networked and automated vehicles has garnered significant attention as a
potential solution for alleviating traffic congestion and improving fuel economy, achieved through
global route optimization and cooperative driving. This study focuses on a predictive control perspec-
tive to address the cooperative cruise control problem. Online decision making is employed during
the driving process, utilizing information gathered from the network. By employing bargaining
games to establish an operating agreement among vehicles, we formalize a synchronization approach
based on predictive control theory. Ultimately, these findings are put to the test in an emulation envi-
ronment within a hardware-in-the-loop system. The results revealed that the proposed cruise control
successfully achieved convergence toward the desired reference signal. These results demonstrate
the effectiveness of our approach in achieving synchronized platoon behavior and correct bargaining
outcomes. These findings underscore the effectiveness and potential of DMPC with bargaining games
in coordinating and optimizing vehicular networks. This paves the way for future research and
development in this promising area.

Keywords: emulation systems; cooperative cruise control; bargaining games; predictive control

1. Introduction

In recent decades, concerns regarding vehicle transportation continue to escalate, and
issues such as accidents, traffic congestion, and air pollution have surged, particularly con-
cerning environmental impacts [1–3]. In response to these pressing issues, the emergence
of cooperative networks among vehicles has gained significant traction. The concept of
cooperative networks fosters synchronized and efficient traffic management, further mini-
mizing environmental impacts [4]. These innovative solutions hold tremendous promise
for mitigating the adverse effects of the expanding vehicular industry and steering trans-
portation towards a more sustainable and environmentally conscious future [5]. In this
way, Intelligent Transportation Systems (ITSs) have emerged as the leading transportation
technology to advance toward more efficient, safer, and greener future transportation [6].

Autonomous systems have been recognized as a cornerstone for enabling ITSs through
technological advances such as autonomous driving, data-driven modeling, and multiagent
control strategies to achieve sustainable, coordinated traffic management. Connected and
Automated Vehicles (CAVs) have received great attention as a potential way to improve
traffic congestion and fuel economy through global route optimization and cooperative
driving [7]. It has been suggested that theoretical control methods should be developed in
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the future deployment of autonomous systems in ITSs, in particular, the control of multiple
distributed heterogeneous vehicles. For this reason, using cooperative control strategies
may help as an ITS strategy [8].

Several cooperative control approaches have recently been proposed for networked
vehicles [9]. The first works focused on cruise control without employing inter-vehicle
communications, then the rise of wireless communications allowed a network of vehicles
to be seen as a cooperative networked control system [3]. In the context of cooperative con-
trol, the Cooperative Adaptive Cruise Control (CCAC) concept has been developed using
synchronization laws based on a reference acceleration profile [10]. The CCAC technique is
based on string stability, where vehicles maintain a predefined distance at a constant speed,
but it might not result in an optimal response [11]. Likewise, in ref. [12], a recent survey
of some experimental results on cooperative control in an intelligent connected vehicle
environment is presented, where the importance of cooperative control for urban mobil-
ity is emphasized. Active control methods of intelligent connected vehicles and indirect
control of regular vehicles through intelligent vehicles are studied for multi-intersection
coordinated heterogeneous vehicle traffic flow. On the other hand, in automatic driving
systems, where cooperative perception is essential for enhanced safety and decision making,
integrating cooperative cruise control with cooperative perception can lead to more intelli-
gent and efficient autonomous driving systems. Notably, prior research on hybrid object
detection and tracking for cooperative perception using 3D LiDAR [13] has demonstrated
the benefits of cooperative perception through LiDAR-based object detection and tracking.
Conversely, hardware-in-the-loop (HIL) emulation, involving embedded systems for dy-
namic environment simulation, enables the validation of real-time methods when models
are unavailable, making it suitable for scenarios like autonomous vehicle networks [14].
HIL has been widely used in electrical and communication systems for validating future in-
stallations [15,16]. However, only a few works have explored the application of bargaining
games in cooperative control for distributed systems, particularly in vehicle platoons and
multi-agent systems, without considering predictive control techniques or game theory
in vehicles [17].

Within the active control strategies to be used with ITSs, Model Predictive Control
(MPC) methodologies can find the optimal values in terms of energy or performance [18].
For MPC algorithms in cooperative scenarios, distributed predictive control strategies
for agent synchronization have been developed using inter-agent communication and
constructing cost functions involving network information [19,20]. On the other hand,
an MPC involving different agents where decisions depend on others can be considered
as a network game [21]. In the same way, if these agents manage a common goal, the
problem can be described as a bargaining game, with a target that modifies their actions
based on a disagreement between them [22–24]. Theoretically, the point of disagreement
is defined as the minimum satisfaction expected for the negotiation. In practical imple-
mentation, cooperative cruise strategies can present several drawbacks, and only a few
authors have validated these developments in highway vehicle platoons [25]. The main
practical tests of these approaches are usually validated in dynamic emulation models or
robot networks [26,27].

In this work, we aim to address the challenges in coordinating and synchronizing
a platoon of vehicles using cooperative cruise control techniques. By applying game
theory concepts and optimization algorithms, we seek to achieve better traffic management,
reduced fuel consumption, and improved vehicular performance in real-world scenarios.
Throughout the article, we have discussed in detail the methods used to formulate and
solve the cooperative bargaining game, the dynamics of the platoon vehicles, and the
control actions implemented to regulate the speed and maintain inter-vehicle distances.
The main contribution of this paper is threefold. First, the appropriation of a networked
vehicle control problem is developed from a predictive perspective using a bargaining
methodology, which, as far as we know, has never been used. In recent works, only some
results have been based on the theory of bargaining games as a problem of cooperative
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control in distributed systems without considering vehicle platoon emulation [28]. Other
works have emulated multiagent systems without considering the application of predictive
control techniques or game theory in vehicles [29], including recently in [30]. Identifying
the research gap falls at the application level in the case of cooperative cruise control, where
the control strategy must solve a distributed optimization problem according to the states
of the agents, the point of disagreement, and the predefined cost functions for energy
expenditure presets for simulation and emulation. A distributed bargaining methodology
is a technique that allows managing control algorithms efficiently without increasing
computational expense in the presence of the network. Second is the inclusion of bargaining
game theory for the cooperative control problem in simulation. This development allows
it to be compared with centralized and decentralized predictive control algorithms for
symmetric and non-symmetric cases. It allows observing the response in comparison with
conventional methods and validates its efficiency. Finally, a validation of the procedures
has been developed in emulation with an HIL system for application. For the initial test of
vehicular applications, the emulation of dynamic systems in HIL enables the validation
of real-time methods in situations where the models are unavailable (e.g., autonomous
vehicle network).

The rest of the paper is organized as follows: Section 2 presents the cooperative
cruise control and bargaining games as a tool for the background of Distributed Model
Predictive Control (DMPC). Section 3 contextualizes the bargaining problem to solve the
cooperative cruise problem. In Section 4, we show the study case application and its
simulation. Section 5 shows the emulation of the system in HIL, and finally, Section 6 sets
out the conclusions of the work.

2. Background

This section presents the basic foundations of the cooperative cruise control theory
and DMPC as a bargaining game.

2.1. Cooperative Cruise Control

The cooperative cruise control problem has been extensively studied in recent years.
Recent developments have focused on wireless Vehicle-to-Vehicle (V2V) communication
that has grown commercially. The wireless communication led to the definition of the Grand
Cooperative Driving Challenge (GCDC) to manage a platoon of vehicles that have this
technology. The main objective of cooperative cruise control is synchronizing the vehicles
on the road with the traffic profile considered by an established reference. The traffic profile
is commonly constituted by the inter-vehicle distance and the speed on a highway, reducing
the time to transit in a highway and the fuel consumption. Communication is usually
considered by the predecessor vehicle as a string stability case.

A simple description of the CACC setting (for longitudinal dynamics) is considered.
In this case, each vehicle is modeled through its physical and mechanical parameters. The
dynamics proposed in this case are linear, as follows:

ṗ(t) = v(t),

v̇(t) = a1 p(t) + a2v(t) + b(τ(t) + f (p, v)), (1)

where variables are speed v and position p, respectively. The parameters a1 and a2 are
transmission parameters, b is related to transmission efficiency, and τ has the dimension
of acceleration, or the force when it is multiplied by the vehicle mass. The term f (p, v) is
associated with an input uncertainty. These parameters can be included in the dynamics
due to the approximation by an invertible steady-stable time-invariant model without the
presence of uncertainties [31]. This approach considerably reduces the complexity of the
model without losing performance, and it has been used as an approximation in previous
theories to validate this type of problem [32].
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The cooperative cruise control system is based on a simple setting for longitudinal
dynamics, where each vehicle is modeled with its physical and mechanical parameters.
The system dynamics are represented by a linear affine model, which includes transmission
parameters, transmission efficiency, and acceleration. The controller’s goal is to regulate the
speed of each vehicle and maintain a safe distance from its neighbors. Wireless communica-
tion enables real-time decision making and control actions based on network information
and traffic profiles. The cooperative platoon formation exemplified in Figure 1 shows a
group of vehicles synchronously positioned on the road while maintaining a predetermined
inter-vehicle distance. This innovative strategy aims to optimize traffic flow, minimize gaps
between vehicles, and improve fuel efficiency through coordinated speed regulation. The
controller must be able to regulate the speed of each vehicle and maintain a distance from
its neighbors. The graphic representation of the vehicle’s platoon is shown in Figure 1,
where the distance between each vehicle is defined as d(t) = p1(t) − p2(t), that is, the
difference of the position of vehicles 1 and 2 with its respective subscripts p1 and p2.

di d(i+1)

vi
v(i+1)

Figure 1. Cooperative platoon formation for cooperative cruise control (vi: vehicle velocity, di:
distance between vehicles).

Let the states of the system be x(t) = [d(t), v(t)]>, where the distance is position
minus a predefined distance, and the control input u(t) = τ(t) with a possibly input
matched uncertainty f (p, v). It is possible to write the system as a linear affine continuous
model of the form

ẋ(t) = Ax(t) + b(u(t) + f (x)), (2)

with

A =

[
0 1
a1 a2

]
, b =

[
0
b

]
. (3)

This model considers the acceleration of neighboring vehicles in a k-th instant. For
implementation control prediction, it is necessary to use the discrete dynamics of the system.
Therefore, (2) is modified as

x(k + 1) = Akx(k) + bk(u(k) + f (xk)), (4)

with Ak = eAT and bk = A− 1(Ak − I)bk.
Note that onboard sensors for controller action measure distance and speed, and the

parameters of each vehicle can be different for a heterogeneous case. In the same way, it
is important to consider that for the managed approximations of the cooperative cruise
control theory, the considered model relates the position, inter-vehicular distance, and
speed of the vehicles in the network. In this particular application, a constant acceleration
in an instant of time for each agent is the input for the developments. To ensure the
robustness of the algorithm, accurate state estimation and localization are vital. State
estimation techniques, such as the consensus Kalman filter for sideslip angle estimation,
fusion of IMU and GNSS with heading alignment, and automated vehicle sideslip angle
estimation considering signal measurement characteristics, play a crucial role in enhancing
the algorithm’s robustness against localization error and velocity error. By incorporating
advanced state estimation methods, the cooperative cruise control system can better handle
uncertainties and errors in sensor measurements, leading to more reliable platoon formation
and control actions. Additionally, integrating fault detection and correction methods will
further enhance the algorithm’s safety and dependability.



Sustainability 2023, 15, 11898 5 of 21

2.2. Distributed Model Predictive Control with Bargaining Games

This section introduces the basic concepts of MPC from a bargaining game perspective.
The control problem is contextualized as the negotiation method for solving a distributed
optimization problem. The block diagram representing the framework is presented in
Figure 2, where it is observed that each vehicle, through its dynamics, enters a bargaining
algorithm along a prediction horizon. In this cooperative cruise control process, a network
of vehicles equipped with V2V communication technology communicates wirelessly. Each
vehicle in the network is considered an agent and possesses a discrete dynamic model,
along with its control action u∗i (k) and a point of disagreement for negotiation βi. This
information is fed into a sophisticated negotiation process that combines local cost functions
with a global objective. The core of the negotiation lies in solving an optimization problem
based on predictive control, aiming to determine the optimal control actions for each vehicle
at every instant of time. During the negotiation process, the vehicles exchange their states
and control actions, seeking an agreement that aligns with Nash’s notions of achieving the
best collective benefit. In case a consensus cannot be reached, the point of disagreement
comes into play, defining the minimum satisfaction expected for the negotiation. The
algorithm’s distributed nature allows for efficient decision making without the need for
iterative solutions, thereby reducing computational overhead and making it highly suitable
for applications involving vehicle platoons. The convergence of this cooperative control
approach enhances synchronization, minimizes travel time, and reduces fuel consumption,
leading to improved efficiency and performance of the overall vehicular network. This
block diagram is used for non-symmetric bargaining cases. For symmetric cases, the
characteristics of each vehicle are the same. All cases are regulated by regulatory aspects or
physical restrictions of the vehicles to be considered.

Figure 2. Model predictive control with bargaining games.

Definition 1. Bargaining Game A bargaining game is mathematically defined as the tuple
G = (N, Λi, ψi), ∀i ∈ N.

In this case, N is the number of vehicles involved in the process, Λ is the decision
space of the control law, and ψi is defined as the local cost function of each vehicle. It is
assumed that the vehicles are in a negotiating position to achieve a common objective, such
as Nash’s notions [33]. In the game, if it is impossible to reach an agreement, the term
disagreement point is used for the bargain between vehicles [34].

Assuming the dynamics of each vehicle as in (2) and with its discrete representation (4),
the particular objective is to achieve energy-level optimization in each vehicle’s operation.
For this optimization problem, a locally distributed cost function is defined as

Li(x̃i(k), ũi(k)) =
Np

∑
t=0

ψi(x̃i(k), ũi(k)), (5)
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with x̃i(k) as the representation of vehicle i states built along the prediction horizon
[x>i (k), . . . , x>i(k + Np)]>, and likewise ũi(k) = [ui(k), . . . , ui(k + Nu), . . . , ui(k + Np)]
considering the control horizon Nu with Nu ≤ Np. Each cost function ψi is defined as

ψi(ũ(k)) = ũ>(k)Quuiũ(k) + 2x>i (k)Qxuiũ(k) + x>i (k)Qxxixi(k), (6)

which is positively defined, convex, and where Quui, Qxui, and Qxxi are weighted positive
definite matrices, i.e., Quui � 0. This cost function, by taking a conventional quadratic form,
does not become the main contribution of the paper, which focuses on the application of
this application in the predictive control algorithm.

For the control problem formulation, defining a decision space Λ = ∏N
i=1 Λi for

the whole system according to the physical operating conditions is important. An MPC
problem with communication between agents is interpreted as a bargain so that it can be
a bargaining game. For the analysis and solution of this type of game, Nash proposes an
axiomatic methodology [35], which was used in continuous and static systems [34].

A continuous representation for a bargaining game is with the tuple (S, βd), where S is
the game decision space, which is a non-empty closed subset of RN , and βd ∈ int(S) is the
interaction disagreement point. For implementation purposes, it is important to consider
the discrete dynamics of the game, so it is then defined as (Γ(k), βd(k))

∞
k=0 with Γ(k), a

closed non-empty RN subset that contains the profit function values of each vehicle. The
values of the states xi, the set Γ, and the point of disagreement β vary dynamically.

The evolution value of the disagreement point varies as

βi(k + 1) =

{
βi(k)− µ(βi(k)− ψi(ũ(k))) if βi(k) ≥ ψi(ũ(k)),
βi(k) + (ψi(ũ(k))− ψi(k)) if βi(k) < ψi(ũ(k)),

(7)

with 0 ≤ µ ≤ 1 as an adjustment constant according to the definition of the axioms
of the negotiation processes raised from the work of John Nash [36]. In this case, if
a vehicle decides to cooperate on the road, the disagreement point is reduced with a
µ[βi(k)− ψi(ũ(k))] factor; otherwise, it is increased by a [ψ(ũ(k))− βi(k)] factor.

Definition 2. Utopia point ζi is defined as the utopia point available for the vehicle i as ζi(Γ) =
max ψi, (ψi)i∈N ∈ Γ, ∀i ∈ N.

In this case, Θ is defined as the union of the cost functions ψi of the game, where
then the discrete game can be interpreted as {Θ, β(k)}∞

k=0. Notice that the analysis of a
bargaining game can be carried out symmetrically for a game with similar characteristics
between its players or non-symmetrically for a game where these characteristics differ,
i.e., synchronization of oscillator systems with homogeneous characteristics or control
of mechanical systems with heterogeneous physical characteristics. For the solution of a
bargaining game, a non-symmetrical centralized scenario is proposed based on [37] as

max
ũ(k)

N

∑
i=1

(λi log(βi(k)− ψi(ũi(k)))),

s.t. βi(k) > ψi(ũ(k)), (8)

ũ(k) ∈ Λ,

with λi as a weight variable, usually defined as λi =
1
N , with N as the number of vehicles

involved in the process. However, for a distributed control analysis, the solution to the
optimization problem is proposed as
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max
ũi(k)

N

∑
r=1

(log(βr(k)− κr(ũi(k), ũ−i(k)))),

s.t. βr(k) > κr(ũi(k), ũ−i(k)) (9)

ũi(k) ∈ Λ,

with κr(ũi(k), ũ−i(k)), a distributed cost function usually defined as quadratic, and ũ−i(k),
the set of the remaining vehicle control actions, except for the agent i.

The optimization problem (9) differs from problem (8) in the sense that it considers
ũ−i(k) fixed and only optimizes as a function of ũi(k); this means that optimization does not
involve the decisions of the entire network cooperatively. The solution to this problem then
arises as a negotiation model that depends on the context given by the cooperative cruise
control theory. This methodology does not use iterative solutions as others commonly used
in distributed optimization problems [38], which reduces the computational cost in opera-
tion with great benefits in high-impact applications such as vehicle platoon. Bargaining
methodology allows the solution to a distributed control problem by solving only one local
optimization with the information collected by its neighbors and achieving an agreement
based on the Nash equilibrium concept of bargaining through the defined disagreement
point. In summary, the objective is to apply a distributed control methodology for a vehicle
network on a highway. Based on the communication of their states, a negotiation can be
interpreted as the solution to an optimization problem (9). It is important to note that
the communication and the parameters sent need to be available at any time. The lack of
information can hinder the ability to reach an optimal or efficient agreement.

3. Cooperative Cruise Control as a Bargaining Game

Considering the definition of a DMPC as a bargaining game presented in Section 2,
the cooperative cruise control problem is contextualized. In this scenario, the vehicles on a
highway synchronize their dynamics from a reference model in vehicle distance and speed.
The global cost function of the DMPC must be made up of two terms: one term associated
with the tracking error in the distance between vehicles and the other term with the speed
of each one during its transit on the road.

The cooperative cruise control model is taken from (4), where matrices Ak, Bk are
obtained from dynamic models and (3). In this case, the output is defined as each vehicle’s
speed. The vehicle’s acceleration gives the control action u(k). An operative constraint is
defined according to comfort parameters of 32.6 m/s [39].

Initially considering each vehicle independently, the local MPC problem is formu-
lated as

min
ũ(k)

J(ũ, x(k))

s.t.xi(k + Np + 1) = Āixi(k + 1) + b̄iui(k + 1),

yi(k + Np + 1) = Cixi(k + 1) + diui(k + 1), (10)

xi ∈ X ,

ui ∈ Λ,

with Nu < α < Np − 1; Λ is the decision space of the control law, and Āi and b̄i are the state
matrix and vector resulting from the prediction along Np. The characteristics of the software
and hardware determine any possible delay that may be found in the communication for
control operations.
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Let κi(ũi(k), ũ−i(k)) be the global cost function of each vehicle defined as

κi(ũi(k), ũ−i(k)) =λ|ṽr(k)− ỹv(ũi(k), ũ−i(k))|
+ [ũ>i (k), ũ>−i(k)]H̄i[ũ>i (k), ũ>−i(k)]

> + 2F̄i[ũ>i (k), ũ>−i(k)]
>, (11)

with H̄i and F̄i as matrices obtained from Quu and Qux, respectively. The input restrictions
and states are time-independent and may differ for each vehicle. Therefore, the bargaining
game for cooperative cruise control is defined as GCCC = {N, {ũi(k), ũ−i(k)}, Λi}, ∀i ∈ N.
Each vehicle at the control level has the same objective: minimize the synchronization error
to maintain the distance between vehicles and the speed in a stable state. The solution of
this game with discrete characteristics of the form {Θ, β(k)}∞

k=0 is solved by Algorithm 1.

Algorithm 1: Distributed bargaining algorithm
Result: Optimal control signals

1 Initialize ui, βi ;
2 while eij > ∆ do
3 xi send to others xi(k),βi(k);
4 xi solve Problem (9);
5 xi selects the first control action ũ(k);
6 Each vehicle modifies βd according to (7);
7 xi sends the modification of ũ(k).
8 end

Algorithm 1 methodologically explains that each vehicle sends its dynamics infor-
mation to its neighbors as long as the synchronization error eij is greater than a given
constant ∆. The algorithm begins by initializing each vehicle’s control action and the
disagreement point. It then enters a loop, where at each iteration, the vehicles exchange
their states and current disagreement points with others in the network. Using this shared
information, each vehicle independently solves an optimization problem (as described
in Problem (9)), seeking to maximize its local cost function while considering the others’
actions and decisions. Upon solving the optimization problem, each vehicle selects the first
control action from the solution and communicates its modification to the disagreement
point based on the negotiation process. The loop continues until the error term between the
vehicles’ control actions falls below a defined threshold, indicating convergence. Through
this distributed approach, the algorithm efficiently finds agreement on the optimal control
actions, fostering synchronization and enhancing overall performance in cooperative cruise
control scenarios. With this information, it is possible to solve the optimization problem (9)
in each agent, to subsequently modify the values of the disagreement point until achieving
convergence in the network synchronization. Finally, the modification to the point of
disagreement is sent back to the neighbors. That process is one of the main contributions
of this work since it summarizes the control methodology used in simulation and beyond
with implementation for a cooperative cruise control problem.

The most important features of Algorithm 1 are summarized as follows:

• Distributed and Decentralized Approach: Our algorithm adopts a distributed ap-
proach, allowing each vehicle in the platoon to communicate wirelessly through
vehicle-to-vehicle (V2V) communication. This decentralized nature enables real-time
decision making and control actions without the need for centralized coordination or
external infrastructure. By distributing the control process across the platoon, the al-
gorithm enhances scalability, flexibility, and adaptability to different traffic conditions
and road scenarios.

• Optimization and Predictive Control: The algorithm formulates the cooperative cruise
control problem as an optimization problem based on predictive control. By con-
sidering local cost functions and a global cost function, the algorithm can efficiently
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optimize the control actions for each vehicle at every instant of time. This optimiza-
tion approach ensures that the platoon maintains a synchronized formation while
minimizing inter-vehicle distances and controlling the vehicles’ speeds to match the
desired traffic profile. As a result, traffic congestion is reduced, and fuel consump-
tion is optimized, leading to significant energy savings and reduced greenhouse
gas emissions.

• Robustness and Adaptability: The algorithm incorporates considerations for un-
certainties and input fluctuations by including an input uncertainty term, denoted
as f (p, v). This robustness ensures that the cooperative platoon remains stable
and functional even in the presence of external disturbances or unexpected events.
Moreover, the algorithm can handle heterogeneous cases, where different vehicles
may have distinct parameters and mechanical characteristics, making it versatile for
real-world applications.

• Wireless Communication and Connectivity: One of the algorithm’s strengths is its
reliance on wireless V2V communication, which allows seamless information exchange
among vehicles in the platoon. This real-time connectivity ensures quick response
times and coordinated actions, improving safety, avoiding collisions, and enhancing
overall traffic management.

The bargaining game result is mathematically defined as the tuple ξ(Θ, β(k)) =
{ψ1, ψ2, . . . , ψN } composed of the profit of each vehicle. If there is no cooperation on
the highway, the disagreement point replaces its value in the tuple.

Proposition 1. The proposed solution ξ(Θ, β(k)) of a discrete bargaining game (Θ, β(k))∞
k=0 in k

steptime is unique and depends on optimization problem (10) and Θ, which must be convex.

Proof. It follows by [28].

Notice that we consider two cases, one with similar characteristics of vehicles assimi-
lating a symmetric game and another one with vehicles with non-similar characteristics
assimilating a non-symmetrical game. It is important to note that non-symmetric bargain-
ing games are the most commonly found in real-life applications. For the solution of a
bargaining game, the following lemma is proposed, based on Algorithm 1.

Lemma 1. Consider a cooperative cruise control problem as a bargaining game {(Θ, β(k))}∞
k=0;

then, solution ξ(Θ, β(k)) is the Nash bargaining solution at time k computed by Algorithm 1.

Proof. According to the definition of the game and satisfying its axiomatic analysis ([34],
Section 2), the solution of the cooperative cruise problem as a game {(Θ, β(k))}∞

k=0 is
defined as the Nash bargaining solution for every step time k obtained through the
negotiation problem.

Explicitly, if required, this theory allows a complete structuring of the network through
the transmission of the utility functions or system inputs to benefit the solution of each
local optimization problem. These algorithms can make decisions separately, so their
implementation does not need an iterative process. That decision-making process consider-
ably reduces the computational burden that Lagrange multiplier-based solution methods
can present.

4. Simulation Results

For the mentioned methodology, an application field is proposed based on the problem
of an autonomous network of vehicles, which is increasing nowadays, where each vehicle
must follow the same patterns (position and speed). The most well-known technique for
this problem is cooperative adaptive cruise control, an extension of adaptive cruise control,
and a problem working at the platoon level with onboard sensors. In this case, each agent
is modeled as a linear second-order system such as in (4). For the experiment, the leading
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vehicle defines an acceleration profile that all agents must follow through a fixed distance
between each one. That profile means, in terms of synchronization, xi − xj −→ 0. It is impor-
tant to highlight four aspects of this methodology: the vehicle dynamics, the distributed
controller, the transmitted information, and the graph communication topology [40].

A numerical simulation is performed to validate the proposed control laws. Figure 3
shows the simulation digraph, with agent 0 acting as the leader node. The formation
control idea in the platoon starts from the graph representing the communications; inter-
communicating vehicles handle a speed and inter-vehicular distance is contemplated by
the reference vehicle.

3

0

1
2

4

5

6

Figure 3. Study case communication graph.

Table 1 presents the simulation parameters used, highlighting that these are used only
for simulation, not for control design. Table 1 establishes the dynamics and control of each
vehicle in the network. The Player Coefficients represent the transmission parameters (a1
and a2) and the transmission efficiency (b), which are essential for modeling the vehicle’s
behavior. Additionally, the table includes the initial conditions for each vehicle, consisting
of the speed (v) and inter-vehicle distance (di) at the beginning of the cooperative cruise
control process. These initial conditions serve as the starting point for the distributed
bargaining algorithm, where each vehicle uses this information to optimize its control
action and synchronize with others in the network. The coefficients and initial conditions
in Table 1 are inputs for solving the optimization problem, enabling vehicles to achieve
energy-level optimization and ensure smooth and efficient operation during cooperative
cruise control. Both simulation and implementation show the results of symmetric and
non-symmetric games. MATLAB R2018a software and the fmincon optimization problem-
solving command are used for the optimization problems. The cost functions and decision
variables are packed along the prediction horizon using Kronecker-like structures for all
the procedures. External parameters of communication or interaction between the agents
are not considered for simulation purposes.

Table 1. Player Coefficients and initial conditions.

a1 a2 b1 x0

A0 −0.25 −0.5 1 [2 1]>

A1 −1.25 1 0.5 [1 2.1]>

A2 −0.5 2.5 0.75 [1 −0.2]>

A3 −0.75 2 1.5 [3 2.3]>

A4 −1.5 2.5 1 [3 0.6]>

A5 −1 2 1 [2 −0.5]>

A6 −0.75 1 0.5 [1 0.4]>

4.1. Symmetric Game

For the simulation of the system, symmetric and non-symmetric cases are presented.
In the symmetric case, the cost function is defined as (11), making a grouping according to
the theory, and the local cost function is defined as (6).

The following figures show the agents’ response when the solution to the distributed
optimization problem is obtained. For simulation purposes, the reference agents’ dynamic
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is defined with the parameters a1 = 1 and a2 = b1 = −1. Figure 4a shows the network
response with the bargaining model performed, with a convergence time of approximately
60 s, a lower rate for synchronization in this type of application.
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(a) Symmetric distributed bargaining game simulation results. It shows the network response with
the bargaining model performed a lower rate for synchronization in this type of application.
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(b) Symmetric bargaining centralized simulation results. A centralized problem is solved for each
agent without any information sent.
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(c) Symmetric decentralized simulation results. In a decentralized problem, the information is sent,
and a single optimization problem per agent is solved.

Figure 4. Symmetric bargaining simulation results.

We compare a centralized with a decentralized model in a predictive control prob-
lem, reflected in Figure 4a–c. Generally, a centralized problem is solved for each agent
without any information sent. In a decentralized way, the information is sent, and with
it, a single optimization problem per agent is solved. The figures demonstrate that both
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centralized and decentralized systems exhibit faster response times. Additionally, syn-
chronization is achieved through distributed communication of information, thereby opti-
mizing the processes within the network. It is important to highlight that the distributed
controller achieves a synchronization in 40 s, unlike the decentralized and centralized
controllers with a time of 50 s; this is justified based on the complexity of the system.
These factors may require additional time for data analysis and secure decision making to
ensure optimal performance.

Similarly, Figures 5 and 6 shows the evolution of the cost function and control action
values, respectively, where it is evident that they achieve synchronization based on Nash
equilibrium, even when the value is increasing. Although a variation in the control signal
is observed, derived from the analysis at each instant of the time horizon, these variations
are very short; given the magnitude at the application level, they tend to be imperceptible.
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Figure 5. Symmetric bargaining cost function.
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Figure 6. Symmetric bargaining control action.

4.2. Non-Symmetric Game

The same case of cooperative cruise control is used for the game with non-symmetric
characteristics. However, the parameters of each agent are taken from Table 1. The cost
function used is the same as in the symmetric case (6). Figure 7a–c show the output response
of each system under the negotiation model compared with a centralized and decentralized
predictive control methodology, where convergence is observed equally when handling the
information in a distributed way, with a similar qualitative response in comparison with
symmetric cases, validating the behavior in both cases.
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(a) Non-symmetric distributed bargaining game simulation results. The output response of each
system under the negotiation model for a distributed predictive control methodology.
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(b) Non-symmetric bargaining centralized simulation results. The output response of each system
under the negotiation model for a centralized predictive control methodology.
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(c) Non-symmetric decentralized simulation results. The output response of each system under the
negotiation model for a decentralized predictive control methodology.

Figure 7. Non-symmetric bargaining simulation results.

In this simulation, vehicles with heterogeneous characteristics engage in negotiation
to achieve a common objective, such as optimizing fuel consumption or minimizing travel
time. The non-symmetric nature of the game implies that each vehicle has distinct parame-
ters and constraints, resulting in varied decision-making processes. Figure 7a–c illustrate
how the distributed bargaining algorithm facilitates negotiation among the vehicles, with
some vehicles potentially prioritizing their individual benefits over the collective objec-
tive. As a consequence, the simulation outcome reveals fluctuations in the distributed
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response, showing slower convergence and agreement compared to the symmetric case.
The visualization of the non-symmetric game’s results enables a better understanding of
the challenges and complexities involved in cooperative cruise control when dealing with
vehicles with diverse characteristics, and it can help in refining strategies to achieve more
balanced and efficient cooperative behavior.

In this case, the point of disagreement is shown, since there may be a variation in
that value under the concept of symmetric and non-symmetric games (even considering
symmetric cases with different initial conditions). Then, the response of the disagreement
point is observed in Figure 8, where the Nash agreement achieved from the consensus of
this value is evidenced with a regulation of its value.
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Figure 8. Disagreement point of non-symmetric bargaining simulation result.

Finally, the cost function response is presented in Figure 9, where it is possible to
validate the Nash equilibrium through the convergence of these values in all agents, as well
as the application of the control action for each one in Figure 10. An oscillatory response
is observed due to the fact that when working with a network of vehicles, the interaction
between them can be complex. Among the strategies to combat this complexity is the
simplification of the models, as in (1). The actions of one vehicle can affect other nearby
vehicles, which can lead to non-linear effects and complicate the predictive control response.
The negotiation process becomes more intricate as vehicles with different priorities and
preferences seek a compromise between individual objectives and the platoon’s global
objective. Additionally, wireless communication delays and sensor noise can influence the
perceived distance to neighboring vehicles, leading to temporary control action variations.
Furthermore, the algorithm used for distributed bargaining may require iterations to
converge, resulting in fluctuations during this convergence process.
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Figure 9. Cost function of non-symmetric bargaining simulation result.
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Figure 10. Control action of non-symmetric bargaining simulation result.

5. Implementation Results

Basic experiments are performed to apply the developed algorithms with real-time
simulation in HIL. Validation is made through a temporal response of the developed
algorithms and physical considerations. We use the National Instruments (Austin, TX,
USA) NI CompactRio controllers connected through an Ethernet network. Four controllers
of two types are used for development, a NI9045 CompactRio controller and three NI9063
CompactRio controllers. The photo of the modules inside the DESYNC laboratory at
Universidad Nacional de Colombia is shown in Figure 11. Similarly, as seen in Figure 12,
the inclusion of each controller within each rack is shown. Two NI9063 controllers and their
two power supplies are observed. In the other cabinet, the remaining NI9063 and NI9045
controllers are shown next to their power supplies and the Ethernet communication switch.
The communications graph is defined in Figure 13.

Figure 11. DESYNC laboratory implementation modules.
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Figure 12. Block diagram for HIL implementation.
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Figure 13. Communication graph used in emulation case.

Similarly, for the dynamic models implemented, the same dynamic (1) is used with
a Tustin discretization for system matrices with a sample time of 0.1 s. The simulation
parameters are observed in Table 2.

Table 2. Agent’s coefficients and initial conditions for emulation case.

a1 a2 b1 x0

A0 −0.25 −0.5 1 [1 2]>

A1 −1.25 1 0.5 [1 4]>

A2 −0.5 2.5 0.75 [−1 2]>

A3 −0.75 2 1.5 [1 4]>

For the implementation, communication is made between Labview and Simulink,
where the dynamics of the controllers are emulated. For the response of the symmetric
game, the same parameters of the simulation case are used (a1 = 1 and a2 = b1 = −1).
Figure 14 shows the controller’s response implemented in a symmetric game. In emulation,
the system presents some fluctuations initially, but their response also achieves an adequate
bargain. In all those cases, the fluctuations are derived from the fact that by embedding the
dynamics and control in each module separately and requiring communication between
them, the response does not handle the same synchronization interval as in simulation,
where the communication does not have delays.
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Figure 14. Output synchronization of bargaining game theory implementation in the symmetric case.

Similarly, the response of the agents’ cost function is observed in Figure 15, which
maintains similarity with the response of the simulation case and also reaches a correct
bargain, as well as the application of the control action in Figure 16. The response of the
signals take a high value while synchronizing the communication, and after this, they
synchronize their value.
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Figure 15. Cost function of bargaining game theory implementation in a symmetric case.
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Figure 16. Control action of bargaining game theory implementation in a symmetric case.

The response of the controller for non-symmetric cases is also validated, according to
the parameters of Table 2. Figure 17 shows the response of the agents’ output in this case,
where it is evidenced that as in the previous cases, the system achieves correct bargaining
in a distributed scenario. It is possible to see in the same way an oscillation in the response,
especially in some agents, derived from being the agent with the furthest communica-
tion from the reference; however, with the passage of the transient, a synchronization
is achieved.
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Figure 17. Output synchronization of bargaining game theory implementation in a non-symmetric case.

Figures 18–20 show the response of the point of disagreement, the cost function, and
the control action in the non-symmetrical case of emulation; the response, as in the previous
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cases, shows a fluctuation in their behavior at the first iterations, followed by a correct
bargain in both cases.
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Figure 18. Disagreement point of bargaining game theory implementation in a non-symmetric case.
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Figure 19. Cost function of bargaining game theory implementation in a non-symmetric case.
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Figure 20. Control action of bargaining game theory implementation in a non-symmetric case.

In the same way, it is important to validate cases where a correct bargain is not
achieved. Considering that, a scenario of multiple agents, in the context of mechanical
systems based on [41], presents a non-linearity in its systemic base that makes it difficult
for the bargain algorithm, as is observed in Figure 21. It is validated that in those scenarios,
synchronization of all the systems is not completely achieved when the value of the point
of disagreement diverges.
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Figure 21. Output synchronization of bargaining game theory implementation in a non-bargaining case.

6. Conclusions

In conclusion, this paper investigated the application of Distributed Model Predictive
Control (DMPC) with bargaining games for a vehicular network, considering both sym-
metric and non-symmetric cases in simulation and emulation. One of the main strengths
lies in its successful application of predictive control to achieve output synchronization of
both symmetric and non-symmetric agents with linear dynamics. The proposed approach
extends this methodology to dynamic cases, even considering a discrete perspective for
practical implementation. This approach dynamically incorporates the analysis of the
disagreement point for negotiation between agents, enabling its application in both sym-
metric and non-symmetric games. Furthermore, in real-world implementation, through
hardware-in-the-loop emulation of dynamic systems, the paper successfully synchronizes
the agents’ dynamics, leading to an agreement. The results demonstrated that the proposed
approach achieved convergence, albeit with slightly slower dynamics and occasional fluctu-
ations observed in the non-symmetric cases during implementation. Nevertheless, despite
these challenges, the system still managed to converge toward the desired reference signal.
These findings highlight the efficacy and potential of DMPC with bargaining games for
coordinating and optimizing vehicular networks, paving the way for future research and
development in this area. Further refinements and optimizations can address the observed
limitations, ultimately leading to more robust and efficient cooperative driving solutions
for enhanced traffic management, reduced environmental impacts, and improved overall
transportation system performance. Looking ahead, future work could strengthen this
theory by incorporating security parameters into cost functions and considering unstable
models in an open-loop configuration. Additionally, the inclusion of heterogeneity pa-
rameters could enhance the response in non-symmetric game implementations, further
expanding the practical applicability of the proposed approach.
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Abbreviations
The following abbreviations are used in this manuscript:

CAV Connected and Autonomous Vehicle
CCAC Cooperative Cruise Adaptive Control
DMPC Distributed Model Predictive Control
HIL Hardware-in-the-Loop
ITS Intelligent Transportation Systems
MPC Model Predictive Control
V2V Vehicle to Vehicle
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