Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,200)

Search Parameters:
Keywords = vehicle networking

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 10836 KiB  
Article
Potential Utilization of End-of-Life Vehicle Carpet Waste in Subfloor Mortars: Incorporation into Portland Cement Matrices
by Núbia dos Santos Coimbra, Ângela de Moura Ferreira Danilevicz, Daniel Tregnago Pagnussat and Thiago Gonçalves Fernandes
Materials 2025, 18(15), 3680; https://doi.org/10.3390/ma18153680 - 5 Aug 2025
Abstract
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of [...] Read more.
The growing need to improve the management of end-of-life vehicle (ELV) waste and mitigate its environmental impact is a global concern. One promising approach to enhancing the recyclability of these vehicles is leveraging synergies between the automotive and construction industries as part of a circular economy strategy. In this context, ELV waste emerges as a valuable source of secondary raw materials, enabling the development of sustainable innovations that capitalize on its physical and mechanical properties. This paper aims to develop and evaluate construction industry composites incorporating waste from ELV carpets, with a focus on maintaining or enhancing performance compared to conventional materials. To achieve this, an experimental program was designed to assess cementitious composites, specifically subfloor mortars, incorporating automotive carpet waste (ACW). The results demonstrate that, beyond the physical and mechanical properties of the developed composites, the dynamic stiffness significantly improved across all tested waste incorporation levels. This finding highlights the potential of these composites as an alternative material for impact noise insulation in flooring systems. From an academic perspective, this research advances knowledge on the application of ACW in cement-based composites for construction. In terms of managerial contributions, two key market opportunities emerge: (1) the commercial exploitation of composites produced with ELV carpet waste and (2) the development of a network of environmental service providers to ensure a stable waste supply chain for innovative and sustainable products. Both strategies contribute to reducing landfill disposal and mitigating the environmental impact of ELV waste, reinforcing the principles of the circular economy. Full article
Show Figures

Figure 1

21 pages, 3733 KiB  
Article
DNO-RL: A Reinforcement-Learning-Based Approach to Dynamic Noise Optimization for Differential Privacy
by Guixin Wang, Xiangfei Liu, Yukun Zheng, Zeyu Zhang and Zhiming Cai
Electronics 2025, 14(15), 3122; https://doi.org/10.3390/electronics14153122 - 5 Aug 2025
Abstract
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional [...] Read more.
With the globalized deployment of cross-border vehicle location services and the trajectory data, which contain user identity information and geographically sensitive features, the variability in privacy regulations in different jurisdictions can further exacerbate the technical and compliance challenges of data privacy protection. Traditional static differential privacy mechanisms struggle to accommodate spatiotemporal heterogeneity in dynamic scenarios because of the use of a fixed privacy budget parameter, leading to wasted privacy budgets or insufficient protection of sensitive regions. This study proposes a reinforcement-learning-based dynamic noise optimization method (DNO-RL) that dynamically adjusts the Laplacian noise scale by real-time sensing of vehicle density, region sensitivity, and the remaining privacy budget via a deep Q-network (DQN), with the aim of providing context-adaptive differential privacy protection for cross-border vehicle location services. Simulation experiments of cross-border scenarios based on the T-Drive dataset showed that DNO-RL reduced the average localization error by 28.3% and saved 17.9% of the privacy budget compared with the local differential privacy under the same privacy budget. This study provides a new paradigm for the dynamic privacy–utility balancing of cross-border vehicular networking services. Full article
Show Figures

Figure 1

16 pages, 647 KiB  
Article
Geographic Scale Matters in Analyzing the Effects of the Built Environment on Choice of Travel Modes: A Case Study of Grocery Shopping Trips in Salt Lake County, USA
by Ensheng Dong, Felix Haifeng Liao and Hejun Kang
Urban Sci. 2025, 9(8), 307; https://doi.org/10.3390/urbansci9080307 - 5 Aug 2025
Abstract
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt [...] Read more.
Compared to commuting, grocery shopping trips, despite their profound implications for mixed land use and transportation planning, have received limited attention in travel behavior research. Drawing upon a travel diary survey conducted in a fast-growing metropolitan region of the United States, i.e., Salt Lake County, UT, this research investigated a variety of influential factors affecting mode choices associated with grocery shopping. We analyze how built environment (BE) characteristics, measured at seven spatial scales or different ways of aggregating spatial data—including straight-line buffers, network buffers, and census units—affect travel mode decisions. Key predictors of choosing walking, biking, or transit over driving include age, household size, vehicle ownership, income, land use mix, street density, and distance to the central business district (CBD). Notably, the influence of BE factors on mode choice is sensitive to different spatial aggregation methods and locations of origins and destinations. The straight-line buffer was a good indicator for the influence of store sales amount on mode choices; the network buffer was more suitable for the household built environment factors, whereas the measurement at the census block and block group levels was more effective for store-area characteristics. These findings underscore the importance of considering both the spatial analysis method and the location (home vs. store) when modeling non-work travel. A multi-scalar approach can enhance the accuracy of travel demand models and inform more effective land use and transportation planning strategies. Full article
33 pages, 4254 KiB  
Article
A Method of Simplified Synthetic Objects Creation for Detection of Underwater Objects from Remote Sensing Data Using YOLO Networks
by Daniel Klukowski, Jacek Lubczonek and Pawel Adamski
Remote Sens. 2025, 17(15), 2707; https://doi.org/10.3390/rs17152707 - 5 Aug 2025
Abstract
The number of CNN application areas is growing, which leads to the need for training data. The research conducted in this work aimed to obtain effective detection models trained only using simplified synthetic objects (SSOs). The research was conducted on inland shallow water [...] Read more.
The number of CNN application areas is growing, which leads to the need for training data. The research conducted in this work aimed to obtain effective detection models trained only using simplified synthetic objects (SSOs). The research was conducted on inland shallow water areas, while images of bottom objects were obtained using a UAV platform. The work consisted in preparing SSOs, thanks to which composite images were created. On such training data, 120 models based on the YOLO (You Only Look Once) network were obtained. The study confirmed the effectiveness of models created using YOLOv3, YOLOv5, YOLOv8, YOLOv9, and YOLOv10. A comparison was made between versions of YOLO. The influence of the amount of training data, SSO type, and augmentation parameters used in the training process was analyzed. The main parameter of model performance was the F1-score. The calculated statistics of individual models indicate that the most effective networks use partial augmentation, trained on sets consisting of 2000 SSOs. On the other hand, the increased transparency of SSOs resulted in increasing the diversity of training data and improving the performance of models. This research is developmental, and further research should improve the processes of obtaining detection models using deep networks. Full article
Show Figures

Figure 1

21 pages, 4331 KiB  
Article
Research on Lightweight Tracking of Small-Sized UAVs Based on the Improved YOLOv8N-Drone Architecture
by Yongjuan Zhao, Qiang Ma, Guannan Lei, Lijin Wang and Chaozhe Guo
Drones 2025, 9(8), 551; https://doi.org/10.3390/drones9080551 - 5 Aug 2025
Abstract
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To [...] Read more.
Traditional unmanned aerial vehicle (UAV) detection and tracking methods have long faced the twin challenges of high cost and poor efficiency. In real-world battlefield environments with complex backgrounds, occlusions, and varying speeds, existing techniques struggle to track small UAVs accurately and stably. To tackle these issues, this paper presents an enhanced YOLOv8N-Drone-based algorithm for improved target tracking of small UAVs. Firstly, a novel module named C2f-DSFEM (Depthwise-Separable and Sobel Feature Enhancement Module) is designed, integrating Sobel convolution with depthwise separable convolution across layers. Edge detail extraction and multi-scale feature representation are synchronized through a bidirectional feature enhancement mechanism, and the discriminability of target features in complex backgrounds is thus significantly enhanced. For the feature confusion problem, the improved lightweight Context Anchored Attention (CAA) mechanism is integrated into the Neck network, which effectively improves the system’s adaptability to complex scenes. By employing a position-aware weight allocation strategy, this approach enables adaptive suppression of background interference and precise focus on the target region, thereby improving localization accuracy. At the level of loss function optimization, the traditional classification loss is replaced by the focal loss (Focal Loss). This mechanism effectively suppresses the contribution of easy-to-classify samples through a dynamic weight adjustment strategy, while significantly increasing the priority of difficult samples in the training process. The class imbalance that exists between the positive and negative samples is then significantly mitigated. Experimental results show the enhanced YOLOv8 boosts mean average precision (Map@0.5) by 12.3%, hitting 99.2%. In terms of tracking performance, the proposed YOLOv8 N-Drone algorithm achieves a 19.2% improvement in Multiple Object Tracking Accuracy (MOTA) under complex multi-scenario conditions. Additionally, the IDF1 score increases by 6.8%, and the number of ID switches is reduced by 85.2%, indicating significant improvements in both accuracy and stability of UAV tracking. Compared to other mainstream algorithms, the proposed improved method demonstrates significant advantages in tracking performance, offering a more effective and reliable solution for small-target tracking tasks in UAV applications. Full article
Show Figures

Figure 1

23 pages, 23638 KiB  
Article
Enhanced YOLO and Scanning Portal System for Vehicle Component Detection
by Feng Ye, Mingzhe Yuan, Chen Luo, Shuo Li, Duotao Pan, Wenhong Wang, Feidao Cao and Diwen Chen
Sensors 2025, 25(15), 4809; https://doi.org/10.3390/s25154809 - 5 Aug 2025
Abstract
In this paper, a novel online detection system is designed to enhance accuracy and operational efficiency in the outbound logistics of automotive components after production. The system consists of a scanning portal system and an improved YOLOv12-based detection algorithm which captures images of [...] Read more.
In this paper, a novel online detection system is designed to enhance accuracy and operational efficiency in the outbound logistics of automotive components after production. The system consists of a scanning portal system and an improved YOLOv12-based detection algorithm which captures images of automotive parts passing through the scanning portal in real time. By integrating deep learning, the system enables real-time monitoring and identification, thereby preventing misdetections and missed detections of automotive parts, in this way promoting intelligent automotive part recognition and detection. Our system introduces the A2C2f-SA module, which achieves an efficient feature attention mechanism while maintaining a lightweight design. Additionally, Dynamic Space-to-Depth (Dynamic S2D) is employed to improve convolution and replace the stride convolution and pooling layers in the baseline network, helping to mitigate the loss of fine-grained information and enhancing the network’s feature extraction capability. To improve real-time performance, a GFL-MBConv lightweight detection head is proposed. Furthermore, adaptive frequency-aware feature fusion (Adpfreqfusion) is hybridized at the end of the neck network to effectively enhance high-frequency information lost during downsampling, thereby improving the model’s detection accuracy for target objects in complex backgrounds. On-site tests demonstrate that the system achieves a comprehensive accuracy of 97.3% and an average vehicle detection time of 7.59 s, exhibiting not only high precision but also high detection efficiency. These results can make the proposed system highly valuable for applications in the automotive industry. Full article
(This article belongs to the Topic Smart Production in Terms of Industry 4.0 and 5.0)
Show Figures

Figure 1

17 pages, 3344 KiB  
Article
Connectiveness of Antimicrobial Resistance Genotype–Genotype and Genotype–Phenotype in the “Intersection” of Skin and Gut Microbes
by Ruizhao Jia, Wenya Su, Wenjia Wang, Lulu Shi, Xinrou Zheng, Youming Zhang, Hai Xu, Xueyun Geng, Ling Li, Mingyu Wang and Xiang Li
Biology 2025, 14(8), 1000; https://doi.org/10.3390/biology14081000 - 5 Aug 2025
Abstract
The perianal skin is a unique “skin–gut” boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns [...] Read more.
The perianal skin is a unique “skin–gut” boundary that serves as a critical hotspot for the exchange and evolution of antibiotic resistance genes (ARGs). However, its role in the dissemination of antimicrobial resistance (AMR) has often been underestimated. To characterize the resistance patterns in the perianal skin environment of patients with perianal diseases and to investigate the drivers of AMR in this niche, a total of 51 bacterial isolates were selected from a historical strain bank containing isolates originally collected from patients with perianal diseases. All the isolates originated from the skin site and were subjected to antimicrobial susceptibility testing, whole-genome sequencing, and co-occurrence network analysis. The analysis revealed a highly structured resistance pattern, dominated by two distinct modules: one representing a classic Staphylococcal resistance platform centered around mecA and the bla operon, and a broad-spectrum multidrug resistance module in Gram-negative bacteria centered around tet(A) and predominantly carried by IncFIB and other IncF family plasmids. Further analysis pinpointed IncFIB-type plasmids as potent vehicles driving the efficient dissemination of the latter resistance module. Moreover, numerous unexplained resistance phenotypes were observed in a subset of isolates, indicating the potential presence of emerging and uncharacterized AMR threats. These findings establish the perianal skin as a complex reservoir of multidrug resistance genes and a hub for mobile genetic element exchange, highlighting the necessity of enhanced surveillance and targeted interventions in this clinically important ecological niche. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

20 pages, 2225 KiB  
Article
Network Saturation: Key Indicator for Profitability and Sensitivity Analyses of PRT and GRT Systems
by Joerg Schweizer, Giacomo Bernieri and Federico Rupi
Future Transp. 2025, 5(3), 104; https://doi.org/10.3390/futuretransp5030104 - 4 Aug 2025
Abstract
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as [...] Read more.
Personal Rapid Transit (PRT) and Group Rapid Transit (GRT) are classes of fully automated public transport systems, where passengers can travel in small vehicles on an interconnected, grade-separated network of guideways, non-stop, from origin to destination. PRT and GRT are considered sustainable as they are low-emission and able to attract car drivers. The parameterized cost modeling framework developed in this paper has the advantage that profitability of different PRT/GRT systems can be rapidly verified in a transparent way and in function of a variety of relevant system parameters. This framework may contribute to a more transparent, rapid, and low-cost evaluation of PRT/GRT schemes for planning and decision-making purposes. The main innovation is the introduction of the “peak hour network saturation” S: the number of vehicles in circulation during peak hour divided by the maximum number of vehicles running at line speed with minimum time headways. It is an index that aggregates the main uncertainties in the planning process, namely the demand level relative to the supply level. Furthermore, a maximum S can be estimated for a PRT/GRT project, even without a detailed demand estimation. The profit per trip is analytically derived based on S and a series of more certain parameters, such as fares, capital and maintenance costs, daily demand curve, empty vehicle share, and physical properties of the system. To demonstrate the ability of the framework to analyze profitability in function of various parameters, we apply the methods to a single vehicle PRT, a platooned PRT, and a mixed PRT/GRT. The results show that PRT services with trip length proportional fares could be profitable already for S>0.25. The PRT capacity, profitability, and robustness to tripled infrastructure costs can be increased by vehicle platooning or GRT service during peak hours. Full article
Show Figures

Figure 1

22 pages, 4426 KiB  
Article
A Digital Twin Platform for Real-Time Intersection Traffic Monitoring, Performance Evaluation, and Calibration
by Abolfazl Afshari, Joyoung Lee and Dejan Besenski
Infrastructures 2025, 10(8), 204; https://doi.org/10.3390/infrastructures10080204 - 4 Aug 2025
Abstract
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with [...] Read more.
Emerging transportation challenges necessitate cutting-edge technologies for real-time infrastructure and traffic monitoring. To create a dynamic digital twin for intersection monitoring, data gathering, performance assessment, and calibration of microsimulation software, this study presents a state-of-the-art platform that combines high-resolution LiDAR sensor data with VISSIM simulation software. Intending to track traffic flow and evaluate important factors, including congestion, delays, and lane configurations, the platform gathers and analyzes real-time data. The technology allows proactive actions to improve safety and reduce interruptions by utilizing the comprehensive information that LiDAR provides, such as vehicle trajectories, speed profiles, and lane changes. The digital twin technique offers unparalleled precision in traffic and infrastructure state monitoring by fusing real data streams with simulation-based performance analysis. The results show how the platform can transform real-time monitoring and open the door to data-driven decision-making, safer intersections, and more intelligent traffic data collection methods. Using the proposed platform, this study calibrated a VISSIM simulation network to optimize the driving behavior parameters in the software. This study addresses current issues in urban traffic management with real-time solutions, demonstrating the revolutionary impact of emerging technology in intelligent infrastructure monitoring. Full article
Show Figures

Figure 1

32 pages, 1986 KiB  
Article
Machine Learning-Based Blockchain Technology for Secure V2X Communication: Open Challenges and Solutions
by Yonas Teweldemedhin Gebrezgiher, Sekione Reward Jeremiah, Xianjun Deng and Jong Hyuk Park
Sensors 2025, 25(15), 4793; https://doi.org/10.3390/s25154793 - 4 Aug 2025
Abstract
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and [...] Read more.
Vehicle-to-everything (V2X) communication is a fundamental technology in the development of intelligent transportation systems, encompassing vehicle-to-vehicle (V2V), infrastructure (V2I), and pedestrian (V2P) communications. This technology enables connected and autonomous vehicles (CAVs) to interact with their surroundings, significantly enhancing road safety, traffic efficiency, and driving comfort. However, as V2X communication becomes more widespread, it becomes a prime target for adversarial and persistent cyberattacks, posing significant threats to the security and privacy of CAVs. These challenges are compounded by the dynamic nature of vehicular networks and the stringent requirements for real-time data processing and decision-making. Much research is on using novel technologies such as machine learning, blockchain, and cryptography to secure V2X communications. Our survey highlights the security challenges faced by V2X communications and assesses current ML and blockchain-based solutions, revealing significant gaps and opportunities for improvement. Specifically, our survey focuses on studies integrating ML, blockchain, and multi-access edge computing (MEC) for low latency, robust, and dynamic security in V2X networks. Based on our findings, we outline a conceptual framework that synergizes ML, blockchain, and MEC to address some of the identified security challenges. This integrated framework demonstrates the potential for real-time anomaly detection, decentralized data sharing, and enhanced system scalability. The survey concludes by identifying future research directions and outlining the remaining challenges for securing V2X communications in the face of evolving threats. Full article
(This article belongs to the Section Vehicular Sensing)
Show Figures

Figure 1

14 pages, 1329 KiB  
Article
Lane-Changing Risk Prediction on Urban Expressways: A Mixed Bayesian Approach for Sustainable Traffic Management
by Quantao Yang, Peikun Li, Fei Yang and Wenbo Lu
Sustainability 2025, 17(15), 7061; https://doi.org/10.3390/su17157061 - 4 Aug 2025
Abstract
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an [...] Read more.
This study addresses critical safety challenges in sustainable urban mobility by developing a probabilistic framework for lane-change risk prediction on congested expressways. Utilizing unmanned aerial vehicle (UAV)-captured trajectory data from 784 validated lane-change events, we construct a Bayesian network model integrated with an I-CH scoring-enhanced MMHC algorithm. This approach quantifies risk probabilities while accounting for driver decision dynamics and input data uncertainties—key gaps in conventional methods like time-to-collision metrics. Validation via the Asia network paradigm demonstrates 80.5% reliability in forecasting high-risk maneuvers. Crucially, we identify two sustainability-oriented operational thresholds: (1) optimal lane-change success occurs when trailing-vehicle speeds in target lanes are maintained at 1.0–3.0 m/s (following-gap < 4.0 m) or 3.0–6.0 m/s (gap ≥ 4.0 m), and (2) insertion-angle change rates exceeding 3.0°/unit-time significantly elevate transition probability. These evidence-based parameters enable traffic management systems to proactively mitigate collision risks by 13.26% while optimizing flow continuity. By converting behavioral insights into adaptive control strategies, this research advances resilient transportation infrastructure and low-carbon mobility through congestion reduction. Full article
Show Figures

Figure 1

17 pages, 3816 KiB  
Article
Charging Station Siting and Capacity Determination Based on a Generalized Least-Cost Model of Traffic Distribution
by Mingzhao Ma, Feng Wang, Lirong Xiong, Yuhonghao Wang and Wenxin Li
Algorithms 2025, 18(8), 479; https://doi.org/10.3390/a18080479 - 4 Aug 2025
Abstract
With the popularization of electric vehicles and the continuous expansion of the electric vehicle market, the construction and management of charging facilities for electric vehicles have become important issues in research and practice. In some remote areas, the charging stations are idle due [...] Read more.
With the popularization of electric vehicles and the continuous expansion of the electric vehicle market, the construction and management of charging facilities for electric vehicles have become important issues in research and practice. In some remote areas, the charging stations are idle due to low traffic flow, resulting in a waste of resources. Areas with high traffic flow may have fewer charging stations, resulting in long queues and road congestion. The purpose of this study is to optimize the location of charging stations and the number of charging piles in the stations based on the distribution of traffic flow, and to construct a bi-level programming model by analyzing the distribution of traffic flow. The upper-level planning model is the user-balanced flow allocation model, which is solved to obtain the optimal traffic flow allocation of the road network, and the output of the upper-level planning model is used as the input of the lower-layer model. The lower-level planning model is a generalized minimum cost model with driving time, charging waiting time, charging time, and the cost of electricity consumed to reach the destination of the trip as objective functions. In this study, an empirical simulation is conducted on the road network of Hefei City, Anhui Province, utilizing three algorithms—GA, GWO, and PSO—for optimization and sensitivity analysis. The optimized results are compared with the existing charging station deployment scheme in the road network to demonstrate the effectiveness of the proposed methodology. Full article
Show Figures

Figure 1

14 pages, 18722 KiB  
Article
Safe Autonomous UAV Target-Tracking Under External Disturbance, Through Learned Control Barrier Functions
by Promit Panja, Madan Mohan Rayguru and Sabur Baidya
Robotics 2025, 14(8), 108; https://doi.org/10.3390/robotics14080108 - 3 Aug 2025
Viewed by 53
Abstract
Ensuring the safe operation of Unmanned Aerial Vehicles (UAVs) is crucial for both mission-critical and safety-critical tasks. In scenarios where UAVs must track airborne targets, they need to follow the target’s path while maintaining a safe distance, even in the presence of unmodeled [...] Read more.
Ensuring the safe operation of Unmanned Aerial Vehicles (UAVs) is crucial for both mission-critical and safety-critical tasks. In scenarios where UAVs must track airborne targets, they need to follow the target’s path while maintaining a safe distance, even in the presence of unmodeled dynamics and environmental disturbances. This paper presents a novel collision avoidance strategy for dynamic quadrotor UAVs during target-tracking missions. We propose a safety controller that combines a learning-based Control Barrier Function (CBF) with standard sliding mode feedback. Our approach employs a neural network that learns the true CBF constraint, accounting for wind disturbances, while the sliding mode controller addresses unmodeled dynamics. This unified control law ensures safe leader-following behavior and precise trajectory tracking. By leveraging a learned CBF, the controller offers improved adaptability to complex and unpredictable environments, enhancing both the safety and robustness of the system. The effectiveness of our proposed method is demonstrated through the AirSim platform using the PX4 flight controller. Full article
(This article belongs to the Special Issue Applications of Neural Networks in Robot Control)
16 pages, 3099 KiB  
Article
Multi-Agent Deep Reinforcement Learning for Large-Scale Traffic Signal Control with Spatio-Temporal Attention Mechanism
by Wenzhe Jia and Mingyu Ji
Appl. Sci. 2025, 15(15), 8605; https://doi.org/10.3390/app15158605 (registering DOI) - 3 Aug 2025
Viewed by 75
Abstract
Traffic congestion in large-scale road networks significantly impacts urban sustainability. Traditional traffic signal control methods lack adaptability to dynamic traffic conditions. Recently, deep reinforcement learning (DRL) has emerged as a promising solution for optimizing signal control. This study proposes a Multi-Agent Deep Reinforcement [...] Read more.
Traffic congestion in large-scale road networks significantly impacts urban sustainability. Traditional traffic signal control methods lack adaptability to dynamic traffic conditions. Recently, deep reinforcement learning (DRL) has emerged as a promising solution for optimizing signal control. This study proposes a Multi-Agent Deep Reinforcement Learning (MADRL) framework for large-scale traffic signal control. The framework employs spatio-temporal attention networks to extract relevant traffic patterns and a hierarchical reinforcement learning strategy for coordinated multi-agent optimization. The problem is formulated as a Markov Decision Process (MDP) with a novel reward function that balances vehicle waiting time, throughput, and fairness. We validate our approach on simulated large-scale traffic scenarios using SUMO (Simulation of Urban Mobility). Experimental results demonstrate that our framework reduces vehicle waiting time by 25% compared to baseline methods while maintaining scalability across different road network sizes. The proposed spatio-temporal multi-agent reinforcement learning framework effectively optimizes large-scale traffic signal control, providing a scalable and efficient solution for smart urban transportation. Full article
Show Figures

Figure 1

34 pages, 5777 KiB  
Article
ACNet: An Attention–Convolution Collaborative Semantic Segmentation Network on Sensor-Derived Datasets for Autonomous Driving
by Qiliang Zhang, Kaiwen Hua, Zi Zhang, Yiwei Zhao and Pengpeng Chen
Sensors 2025, 25(15), 4776; https://doi.org/10.3390/s25154776 - 3 Aug 2025
Viewed by 84
Abstract
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in [...] Read more.
In intelligent vehicular networks, the accuracy of semantic segmentation in road scenes is crucial for vehicle-mounted artificial intelligence to achieve environmental perception, decision support, and safety control. Although deep learning methods have made significant progress, two main challenges remain: first, the difficulty in balancing global and local features leads to blurred object boundaries and misclassification; second, conventional convolutions have limited ability to perceive irregular objects, causing information loss and affecting segmentation accuracy. To address these issues, this paper proposes a global–local collaborative attention module and a spider web convolution module. The former enhances feature representation through bidirectional feature interaction and dynamic weight allocation, reducing false positives and missed detections. The latter introduces an asymmetric sampling topology and six-directional receptive field paths to effectively improve the recognition of irregular objects. Experiments on the Cityscapes, CamVid, and BDD100K datasets, collected using vehicle-mounted cameras, demonstrate that the proposed method performs excellently across multiple evaluation metrics, including mIoU, mRecall, mPrecision, and mAccuracy. Comparative experiments with classical segmentation networks, attention mechanisms, and convolution modules validate the effectiveness of the proposed approach. The proposed method demonstrates outstanding performance in sensor-based semantic segmentation tasks and is well-suited for environmental perception systems in autonomous driving. Full article
(This article belongs to the Special Issue AI-Driving for Autonomous Vehicles)
Show Figures

Figure 1

Back to TopTop