Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = vacuum electronic amplifier

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3331 KiB  
Article
Piezo-VFETs: Vacuum Field Emission Transistors Controlled by Piezoelectric MEMS Sensors as an Artificial Mechanoreceptor with High Sensitivity and Low Power Consumption
by Chang Ge, Yuezhong Chen, Daolong Yu, Zhixia Liu and Ji Xu
Sensors 2024, 24(20), 6764; https://doi.org/10.3390/s24206764 - 21 Oct 2024
Cited by 1 | Viewed by 3689
Abstract
As one of the most promising electronic devices in the post-Moore era, nanoscale vacuum field emission transistors (VFETs) have garnered significant attention due to their unique electron transport mechanism featuring ballistic transport within vacuum channels. Existing research on these nanoscale vacuum channel devices [...] Read more.
As one of the most promising electronic devices in the post-Moore era, nanoscale vacuum field emission transistors (VFETs) have garnered significant attention due to their unique electron transport mechanism featuring ballistic transport within vacuum channels. Existing research on these nanoscale vacuum channel devices has primarily focused on structural design for logic circuits. Studies exploring their application potential in other vital fields, such as sensors based on VFET, are more limited. In this study, for the first time, the design of a vacuum field emission transistor (VFET) coupled with a piezoelectric microelectromechanical (MEMS) sensing unit is proposed as the artificial mechanoreceptor for sensing purposes. With a negative threshold voltage similar to an N-channel depletion-mode metal oxide silicon field effect transistor, the proposed VFET has its continuous current tuned by the piezoelectric potential generated by the sensing unit, amplifying the magnitude of signals resulting from electromechanical coupling. Simulations have been conducted to validate the feasibility of such a configuration. As indictable from the simulation results, the proposed piezoelectric VFET exhibits high sensitivity and an electrically adjustable measurement range. Compared to the traditional combination of piezoelectric MEMS sensors and solid-state field effect transistors (FETs), the piezoelectric VFET design has a significantly reduced power consumption thanks to its continuous current that is orders of magnitude smaller. These findings reveal the immense potential of piezoelectric VFET in sensing applications, building up the basis for using VFETs for simple, effective, and low-power pre-amplification of piezoelectric MEMS sensors and broadening the application scope of VFET in general. Full article
(This article belongs to the Special Issue Advanced Sensors in MEMS: 2nd Edition)
Show Figures

Figure 1

12 pages, 2293 KiB  
Article
Density Functional Theory Studies on the Chemical Reactivity of Allyl Mercaptan and Its Derivatives
by Marcin Molski
Molecules 2024, 29(3), 668; https://doi.org/10.3390/molecules29030668 - 31 Jan 2024
Cited by 3 | Viewed by 2460
Abstract
On the basis of density functional theory (DFT) at the B3LYP/cc-pVQZ level with the C-PCM solvation model, a comparative analysis of the reactivity of the garlic metabolites 2-propenesulfenic acid (PSA) and allyl mercaptan (AM, 2-propene-1-thiol) was performed. In particular, the thermodynamic descriptors (BDE, [...] Read more.
On the basis of density functional theory (DFT) at the B3LYP/cc-pVQZ level with the C-PCM solvation model, a comparative analysis of the reactivity of the garlic metabolites 2-propenesulfenic acid (PSA) and allyl mercaptan (AM, 2-propene-1-thiol) was performed. In particular, the thermodynamic descriptors (BDE, PA, ETE, AIP, PDE, and Gacidity) and global descriptors of chemical activity (ionization potential (IP), electron affinity (EA), chemical potential (μ), absolute electronegativity (χ), molecular hardness (η) and softness (S), electrophilicity index (ω), electro-donating (ω) and electro-accepting (ω+) powers, and Ra and Rd indexes) were determined. The calculations revealed that PSA is more reactive than AM, but the latter may play a crucial role in the deactivation of free radicals due to its greater chemical stability and longer lifetime. The presence of a double bond in AM enables its polymerization, preserving the antiradical activity of the S-H group. This activity can be amplified by aryl-substituent-containing hydroxyl groups. The results of the calculations for the simplest phenol–AM derivative indicate that both the O-H and S-H moieties show greater antiradical activity in a vacuum and aqueous medium than the parent molecules. The results obtained prove that AM and its derivatives can be used not only as flavoring food additives but also as potent radical scavengers, protecting food, supplements, cosmetics, and drug ingredients from physicochemical decomposition caused by exogenous radicals. Full article
(This article belongs to the Special Issue Multiconfigurational and DFT Methods Applied to Chemical Systems)
Show Figures

Graphical abstract

12 pages, 4811 KiB  
Communication
Bandwidth Enhancement of a V-Band Klystron with Stagger-Tuned Multiple Radial Re-Entrant Cavities
by M. Santosh Kumar, Santigopal Maity, Soumaya Mandal, Debasish Pal, Chaitali Koley and Ayan Kumar Bandyopadhyay
Sensors 2023, 23(17), 7471; https://doi.org/10.3390/s23177471 - 28 Aug 2023
Viewed by 1379
Abstract
The V-band frequencies are becoming popular due to their application potential towards secure high data rate communications. This article reports bandwidth enhancement of an 11-cavity V-band Klystron amplifier employing staggered tuning. A systematic approach is presented to stagger-tune the periodically allocated multiple cavities [...] Read more.
The V-band frequencies are becoming popular due to their application potential towards secure high data rate communications. This article reports bandwidth enhancement of an 11-cavity V-band Klystron amplifier employing staggered tuning. A systematic approach is presented to stagger-tune the periodically allocated multiple cavities of the Klystron operating at 60.1 GHz. Using the three-dimensional particle-in-cell (PIC) simulation, it is shown that, employing the proposed approach, the −3 dB bandwidth of the device (with peak tuned configuration) has been increased from 165 MHz to 540 MHz, demonstrating a 260% increment. The −1 dB bandwidth of the device is estimated to be 270 MHz. The proposed approach of stagger tuning may be employed for similar devices employing multiple RF cavities to meet the requirement of wide bandwidth. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

10 pages, 6142 KiB  
Communication
A 237 GHz Traveling Wave Tube for Cloud Radar
by Ying Li, Pan Pan, Bowen Song, Lin Zhang and Jinjun Feng
Electronics 2023, 12(10), 2153; https://doi.org/10.3390/electronics12102153 - 9 May 2023
Cited by 1 | Viewed by 2225
Abstract
In this article, the first 237 GHz traveling wave tube (TWT) is presented as a high-power amplifier for the terahertz (THz) cloud radar. As is common with previous G-band traveling wave tubes developed at Beijing Vacuum Electronics Research Institute, the 237 GHz traveling [...] Read more.
In this article, the first 237 GHz traveling wave tube (TWT) is presented as a high-power amplifier for the terahertz (THz) cloud radar. As is common with previous G-band traveling wave tubes developed at Beijing Vacuum Electronics Research Institute, the 237 GHz traveling wave tube employs a 20 kV, 50 mA pencil electron beam focused using periodic permanent magnets (PPMs) to achieve compactness. A folded waveguide (FWG) slow-wave structure (SWS) with modified circular bends is optimized to provide high impedance and eliminate sideband oscillations. Limited by insufficient drive power, this device is not saturated. The measured maximum output power and gain are 8.9 W and 35.7 dB, and the 3 dB gain bandwidth achieves 4 GHz. Full article
Show Figures

Figure 1

10 pages, 1918 KiB  
Article
Design Studies of Re-Entrant Square Cavities for V-Band Klystrons
by M Santosh Kumar, Santigopal Maity, Soumojit Shee, Ayan Kumar Bandyopadhyay, Debashish Pal and Chaitali Koley
Electronics 2023, 12(1), 6; https://doi.org/10.3390/electronics12010006 - 20 Dec 2022
Cited by 2 | Viewed by 1937
Abstract
V-band Klystrons find applications in satellite communications and 5G technology. Here, we present a V-band Klystron using radial re-entrant square cavities (RRSCs). The RRSCs are easy to fabricate, assemble, align, and tune to the operating frequency, which are significant concerns in V-band. We [...] Read more.
V-band Klystrons find applications in satellite communications and 5G technology. Here, we present a V-band Klystron using radial re-entrant square cavities (RRSCs). The RRSCs are easy to fabricate, assemble, align, and tune to the operating frequency, which are significant concerns in V-band. We have optimized the number of cavities and the gap for best possible gain and bandwidth. The eigenmode and particle-in-cell (PIC) simulation results of the CST microwave studio are presented. The optimum design uses eleven equidistantly placed RRSCs, producing the maximum gain of 27.17 dB at 60.1 GHz with a bandwidth of ∼150 MHz. Full article
Show Figures

Figure 1

20 pages, 7622 KiB  
Article
High Performance Broadcast Receiver Based on Obsolete Technology
by Laurenţiu Teodorescu and Gabriel Dima
Sensors 2022, 22(18), 6784; https://doi.org/10.3390/s22186784 - 8 Sep 2022
Cited by 2 | Viewed by 2535
Abstract
Since its inception, the electronics industry has mass-produced equipment. The fast evolution of electronic technologies made obsolete the entire generation of products and even technologies. Until the government issued regulations and guidelines on how to address the issue of reuse of obsolete electronic [...] Read more.
Since its inception, the electronics industry has mass-produced equipment. The fast evolution of electronic technologies made obsolete the entire generation of products and even technologies. Until the government issued regulations and guidelines on how to address the issue of reuse of obsolete electronic equipment, with special regard to the ones still operating (e.g., give it to family/friends, donate to charity, or sell to individuals or recycling companies), most of it was thrown out with usual rubbish, with a destructive effect on the environment. This paper presents the design techniques and methods for revaluation of obsolete vacuum tube analog receivers, with a focus on the manufacturing steps of a high-performance receiver. The choice of receiver type is not accidental at all, since tube technology is still a real success among audiophiles many providers offer vacuum tube amplifiers at considerably high prices. The redesign implied the original FM unit replacement with a DSP-based AM/FM tuner while the AM RF vacuum tube section has been preserved with the original architecture to allow the reception of the broadcast stations for the long-wave band and the alternative operation with the silicon tuner for the medium-wave and short-wave bands. The electrical performances of the modified receiver in terms of reliability, sensitivity, selectivity, and distortions on the reception chain are clearly superior to the original one, while the power consumption of the RF section is reduced more than 10 times from 11.5 W–15.5 W to 1 W. Last, but not least important, the proposed solution implied the use of few additional parts and resources and extended significantly the lifetime of the original vacuum tubes receiver. The work has been developed to serve as an example of how obsolete electronic equipment can be redesigned and reused avoiding its complete recycling or even worse, its disposal with usual rubbish. It has been imagined and performed as the initial step in launching a professional student contest on the reuse/redesign of obsolete equipment aimed at raising awareness regarding the issue of pollution with e-waste amongst students from the electronic departments of Romanian technical universities. Full article
(This article belongs to the Special Issue Integrated Circuits for Sensor Systems)
Show Figures

Figure 1

19 pages, 2377 KiB  
Review
Early Days of SACLA XFEL
by Tetsuya Ishikawa
Photonics 2022, 9(5), 357; https://doi.org/10.3390/photonics9050357 - 18 May 2022
Viewed by 3389
Abstract
The SACLA (SPring-8 Angstrom compact laser) was designed to significantly downsize the SASE (self-amplified spontaneous emission) type XFEL (X-ray free-electron laser), in order to generate coherent light in the wavelength region of 0.1 nm by adopting an in-vacuum undulator that can shorten the [...] Read more.
The SACLA (SPring-8 Angstrom compact laser) was designed to significantly downsize the SASE (self-amplified spontaneous emission) type XFEL (X-ray free-electron laser), in order to generate coherent light in the wavelength region of 0.1 nm by adopting an in-vacuum undulator that can shorten the magnetic field period length. In addition, a SASE XFEL facility with a total length of 700 m has become a reality by using a C-band RF accelerating tube that enables a high acceleration gradient. Although progress was initially slow, the small-scale, low-cost SACLA was smoothly constructed, and it became the second light source to lase in the 0.1 nm wavelength region, following the LCLS (linac coherent light source) in the United States. In this paper, we look back on the history leading up to SACLA. and describe the SCSS (SPring-8 compact SASE source) project as a preparatory stage and a part of the construction/commissioning of SACLA. Since March 2012, SACLA has been operating as a shared user facility. Just a few of the upgrade activities of the facility and advanced research conducted are introduced. Finally, we will discuss the future development of the SPring-8 site, which has co-located the third-generation synchrotron radiation facility SPring-8 and the X-ray free-electron laser facility SACLA. Full article
(This article belongs to the Special Issue XUV and X-ray Free-Electron Lasers and Applications)
Show Figures

Figure 1

8 pages, 2245 KiB  
Article
Broadband and Integratable 2 × 2 TWT Amplifier Unit for Millimeter Wave Phased Array Radar
by Guo Guo, Zhenlin Yan, Zhenzhen Sun, Jianwei Liu, Ruichao Yang, Yubin Gong and Yanyu Wei
Electronics 2021, 10(22), 2808; https://doi.org/10.3390/electronics10222808 - 16 Nov 2021
Cited by 4 | Viewed by 2094
Abstract
A novel power amplifier unit for a phased array radar with 2 × 2 output ports for a vacuum electron device is proposed. Double parallel connecting microstrip meander-lines are employed as the slow-wave circuits of a large power traveling wave tube operate in [...] Read more.
A novel power amplifier unit for a phased array radar with 2 × 2 output ports for a vacuum electron device is proposed. Double parallel connecting microstrip meander-lines are employed as the slow-wave circuits of a large power traveling wave tube operate in a Ka-band. The high frequency characteristics, the transmission characteristics, and the beam–wave interaction processes for this amplifier are simulated and optimized. For each output port of one channel, the simulation results reveal that the output power, saturated gain, and 3-dB bandwidth can reach 566 W, 27.5 dB, and 7 GHz, respectively. Additionally, the amplified signals of four output ports have favorable phase congruency. After fabrication and assembly, transmission tests for the 80-period model are performed preliminarily. The tested “cold” S-parameters match well with the simulated values. This type of integratable amplifier combined with a vacuum device has broad application prospects in the field of high power and broad bandwidth on a millimeter wave phased array radar. Full article
(This article belongs to the Special Issue High-Frequency Vacuum Electron Devices)
Show Figures

Figure 1

14 pages, 5235 KiB  
Article
Design and Preliminary Experiment of W-Band Broadband TE02 Mode Gyro-TWT
by Xu Zeng, Chaohai Du, An Li, Shang Gao, Zheyuan Wang, Yichi Zhang, Zhangxiong Zi and Jinjun Feng
Electronics 2021, 10(16), 1950; https://doi.org/10.3390/electronics10161950 - 13 Aug 2021
Cited by 20 | Viewed by 3053
Abstract
The gyrotron travelling wave tube (gyro-TWT) is an ideal high-power, broadband vacuum electron amplifier in millimeter and sub-millimeter wave bands. It can be applied as the source of the imaging radar to improve the resolution and operating range. To satisfy the requirements of [...] Read more.
The gyrotron travelling wave tube (gyro-TWT) is an ideal high-power, broadband vacuum electron amplifier in millimeter and sub-millimeter wave bands. It can be applied as the source of the imaging radar to improve the resolution and operating range. To satisfy the requirements of the W-band high-resolution imaging radar, the design and the experimentation of the W-band broadband TE02 mode gyro-TWT were carried out. In this paper, the designs of the key components of the vacuum tube are introduced, including the interaction area, electron optical system, and transmission system. The experimental results show that when the duty ratio is 1%, the output power is above 60 kW with a bandwidth of 8 GHz, and the saturated gain is above 32 dB. In addition, parasitic mode oscillations were observed in the experiment, which limited the increase in duty ratio and caused the measured gains to be much lower than the simulation results. For this phenomenon, the reasons and the suppression methods are under study. Full article
Show Figures

Graphical abstract

13 pages, 3461 KiB  
Article
Enhancing Extractable Quantum Entropy in Vacuum-Based Quantum Random Number Generator
by Xiaomin Guo, Ripeng Liu, Pu Li, Chen Cheng, Mingchuan Wu and Yanqiang Guo
Entropy 2018, 20(11), 819; https://doi.org/10.3390/e20110819 - 24 Oct 2018
Cited by 24 | Viewed by 5322
Abstract
Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the measurements decides the quality and security of the random number [...] Read more.
Information-theoretically provable unique true random numbers, which cannot be correlated or controlled by an attacker, can be generated based on quantum measurement of vacuum state and universal-hashing randomness extraction. Quantum entropy in the measurements decides the quality and security of the random number generator (RNG). At the same time, it directly determines the extraction ratio of true randomness from the raw data, in other words, it obviously affects quantum random bits generating rate. In this work, we commit to enhancing quantum entropy content in the vacuum noise based quantum RNG. We have taken into account main factors in this proposal to establish the theoretical model of quantum entropy content, including the effects of classical noise, the optimum dynamical analog-digital convertor (ADC) range, the local gain and the electronic gain of the homodyne system. We demonstrate that by amplifying the vacuum quantum noise, abundant quantum entropy is extractable in the step of post-processing even classical noise excursion, which may be deliberately induced by an eavesdropper, is large. Based on the discussion and the fact that the bandwidth of quantum vacuum noise is infinite, we propose large dynamical range and moderate TIA gain to pursue higher local oscillator (LO) amplification of vacuum quadrature and broader detection bandwidth in homodyne system. High true randomness extraction ratio together with high sampling rate is attainable. Experimentally, an extraction ratio of true randomness of 85.3% is achieved by finite enhancement of the laser power of the LO when classical noise excursions of the raw data is obvious. Full article
(This article belongs to the Special Issue Quantum Probability and Randomness)
Show Figures

Figure 1

21 pages, 1688 KiB  
Article
An Analytical Temperature-Dependent Design Model for Contour-Mode MEMS Resonators and Oscillators Verified by Measurements
by Johannes Stegner, Sebastian Gropp, Dmitry Podoskin, Uwe Stehr, Martin Hoffmann and Matthias A. Hein
Sensors 2018, 18(7), 2159; https://doi.org/10.3390/s18072159 - 4 Jul 2018
Cited by 8 | Viewed by 4411
Abstract
The importance of micro-electromechanical systems (MEMS) for radio-frequency (RF) applications is rapidly growing. In RF mobile-communication systems, MEMS-based circuits enable a compact implementation, low power consumption and high RF performance, e.g., bulk-acoustic wave filters with low insertion loss and low noise or fast [...] Read more.
The importance of micro-electromechanical systems (MEMS) for radio-frequency (RF) applications is rapidly growing. In RF mobile-communication systems, MEMS-based circuits enable a compact implementation, low power consumption and high RF performance, e.g., bulk-acoustic wave filters with low insertion loss and low noise or fast and reliable MEMS switches. However, the cross-hierarchical modelling of micro-electronic and micro-electromechanical constituents together in one multi-physical design process is still not as established as the design of integrated micro-electronic circuits, such as operational amplifiers. To close the gap between micro-electronics and micro-electromechanics, this paper presents an analytical approach towards the linear top-down design of MEMS resonators, based on their electrical specification, by the solution of the mechanical wave equation. In view of the central importance of thermal effects for the performance and stability of MEMS-based RF circuits, the temperature dependence was included in the model; the aim was to study the variations of the RF parameters of the resonators and to enable a temperature dependent MEMS oscillator simulation. The variations of the resonator parameters with respect to the ambient temperature were then verified by RF measurements in a vacuum chamber at temperatures between −35 C and 85 C. The systematic body of data revealed temperature coefficients of the resonant frequency between −26 ppm/K and −20 ppm/K, which are in good agreement with other data from the literature. Based on the MEMS resonator model derived, a MEMS oscillator was designed, simulated, and measured in a vacuum chamber yielding a measured temperature coefficient of the oscillation frequency of −26.3 ppm/K. The difference of the temperature coefficients of frequency of oscillator and resonator turned out to be mainly influenced by the limited Q-factor of the MEMS device. In both studies, the analytical model and the measurement showed very good agreement in terms of temperature dependence and the prediction of fabrication results of the resonators designed. This analytical modelling approach serves therefore as an important step towards the design and simulation of micro-electronics and micro-electromechanics in one uniform design process. Furthermore, temperature dependences of MEMS oscillators can now be studied by simulations instead of time-consuming and complex measurements. Full article
(This article belongs to the Special Issue MEMS Resonators)
Show Figures

Figure 1

Back to TopTop