Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (128)

Search Parameters:
Keywords = urban metro network

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 2557 KiB  
Article
A Simulated Annealing Solution Approach for the Urban Rail Transit Rolling Stock Rotation Planning Problem with Deadhead Routing and Maintenance Scheduling
by Alyaa Mohammad Younes, Amr Eltawil and Islam Ali
Logistics 2025, 9(3), 120; https://doi.org/10.3390/logistics9030120 - 22 Aug 2025
Abstract
Background: Urban rail transit ensures efficient mobility in densely populated metropolitan areas. This study focuses on the Cairo Metro Network and addresses the Rolling Stock Rotation Planning Problem (RSRPP), aiming to improve operational efficiency and service quality. Methods: A Mixed-Integer Linear [...] Read more.
Background: Urban rail transit ensures efficient mobility in densely populated metropolitan areas. This study focuses on the Cairo Metro Network and addresses the Rolling Stock Rotation Planning Problem (RSRPP), aiming to improve operational efficiency and service quality. Methods: A Mixed-Integer Linear Programming (MILP) model is developed to integrate rolling stock rotation, deadhead routing, and maintenance scheduling. Two single-objective formulations are introduced to separately minimize denied passengers and the number of Electric Multiple Units (EMUs) used. To address scalability for larger instances, a Simulated Annealing (SA) metaheuristic is designed using a list-based solution representation and customized neighborhood operators that preserve feasibility. Results: Computational experiments based on real-world data validate the practical relevance of the model. The MILP achieves optimal solutions for small and medium-sized instances but becomes computationally infeasible for larger ones. In contrast, the SA algorithm consistently produces high-quality solutions with significantly reduced solve times. Conclusions: To the best of the authors’ knowledge, this is the first study to apply SA to the urban rail RSRPP while jointly integrating deadhead routing and maintenance scheduling. The proposed approach proves to be robust and scalable for large metro systems such as Cairo’s. Full article
Show Figures

Figure 1

24 pages, 4549 KiB  
Article
Research on the Choice of Strategy for Connecting Online Ride-Hailing to Rail Transit Based on GQL Algorithm
by Zhijian Wang, Qinghua Zhou, Yajie Song, Junwei Zhang and Jiuzeng Wang
Electronics 2025, 14(16), 3199; https://doi.org/10.3390/electronics14163199 - 12 Aug 2025
Viewed by 293
Abstract
As traditional connection studies ignore the unbalanced distribution of connection demand and the variability of connection situations, this results in a poor match between passenger demand and connection mode, increasing passenger travel costs. Combining the economic efficiency of metro network operations with the [...] Read more.
As traditional connection studies ignore the unbalanced distribution of connection demand and the variability of connection situations, this results in a poor match between passenger demand and connection mode, increasing passenger travel costs. Combining the economic efficiency of metro network operations with the unique accessibility advantages of ride-hailing services, this study clusters origin and destination points based on different travel needs and proposes four transfer strategies for integrating ride-hailing services with urban rail transit. Four nested strategies are developed based on the distance between the trip origin and the subway station’s service range. A reinforcement learning approach is employed to identify the optimal connection strategy by minimizing overall travel cost. The guided reinforcement learning principle is further introduced to accelerate convergence and enhance solution quality. Finally, this study takes the Fengtai area in Beijing as an example and deploys the Guided Q-Learning (GQL) algorithm based on extracting the hotspot passenger flow ODs and constructing the road network model in the area, searching for the optimal connecting modes and the shortest paths and carrying out the simulation validation of different travel modes. The results demonstrate that the GQL algorithm improves search performance by 25% compared to traditional Q-learning, reduces path length by 8%, and reduces minimum travel cost by 11%. Full article
Show Figures

Figure 1

18 pages, 1848 KiB  
Article
The Built Environment and Urban Vibrancy: A Data-Driven Study of Non-Commuters’ Destination Choices Around Metro Stations
by Yanan Liu and Hua Du
Land 2025, 14(8), 1619; https://doi.org/10.3390/land14081619 - 8 Aug 2025
Viewed by 386
Abstract
The metro railway system is pivotal not just as a crucial transportation network for daily commuters but also as a significant enhancer of urban vibrancy, especially through its role in attracting a substantial volume of non-commuters. This study focuses on non-commuting travel behaviors [...] Read more.
The metro railway system is pivotal not just as a crucial transportation network for daily commuters but also as a significant enhancer of urban vibrancy, especially through its role in attracting a substantial volume of non-commuters. This study focuses on non-commuting travel behaviors around metro stations, exploring how the built environment affects non-commuters’ destination choices. A Random Forest model is developed based on data from Chengdu, China. The model is interpreted with SHapley Additive exPlanations (SHAP) analysis. Route length, building coverage, greenery, and proximity are key factors and indicate a nonlinear impact on non-commuters’ destination choices. The impact of these factors was found to vary significantly depending on the scale and context, indicating a need for nuanced urban planning approaches. The findings highlight the need for sophisticated urban planning that balances functionality and needs in transit-oriented development, aiming to cater to non-commuters and promote sustainable, vibrant urban spaces. Full article
Show Figures

Figure 1

22 pages, 14160 KiB  
Article
Commute Networks as a Signature of Urban Socioeconomic Performance: Evaluating Mobility Structures with Deep Learning Models
by Devashish Khulbe, Alexander Belyi and Stanislav Sobolevsky
Smart Cities 2025, 8(4), 125; https://doi.org/10.3390/smartcities8040125 - 29 Jul 2025
Viewed by 395
Abstract
Urban socioeconomic modeling has predominantly concentrated on extensive location and neighborhood-based features, relying on the localized population footprint. However, networks in urban systems are common, and many urban modeling methods do not account for network-based effects. Additionally, network-based research has explored a multitude [...] Read more.
Urban socioeconomic modeling has predominantly concentrated on extensive location and neighborhood-based features, relying on the localized population footprint. However, networks in urban systems are common, and many urban modeling methods do not account for network-based effects. Additionally, network-based research has explored a multitude of data from urban landscapes. However, achieving a comprehensive understanding of urban mobility proves challenging without exhaustive datasets. In this study, we propose using commute information records from the census as a reliable and comprehensive source to construct mobility networks across cities. Leveraging deep learning architectures, we employ these commute networks across U.S. metro areas for socioeconomic modeling. We show that mobility network structures provide significant predictive performance without considering any node features. Consequently, we use mobility networks to present a supervised learning framework to model a city’s socioeconomic indicator directly, combining Graph Neural Network and Vanilla Neural Network models to learn all parameters in a single learning pipeline. In experiments in 12 major U.S. cities, the proposed model achieves considerable explanatory performance and is able to outperform previous conventional machine learning models based on extensive regional-level features. Providing researchers with methods to incorporate network effects in urban modeling, this work also informs stakeholders of wider network-based effects in urban policymaking and planning. Full article
Show Figures

Figure 1

16 pages, 1145 KiB  
Article
A Hybrid Transformer–Mamba Model for Multivariate Metro Energy Consumption Forecasting
by Liheng Long, Zhiyao Chen, Junqian Wu, Qing Fu, Zirui Zhang, Fan Feng and Ronghui Zhang
Electronics 2025, 14(15), 2986; https://doi.org/10.3390/electronics14152986 - 26 Jul 2025
Viewed by 492
Abstract
With the rapid growth of urban populations and the expansion of metro networks, accurate energy consumption prediction has become a critical task for optimizing metro operations and supporting low-carbon city development. Traditional statistical and machine learning methods often struggle to model the complex, [...] Read more.
With the rapid growth of urban populations and the expansion of metro networks, accurate energy consumption prediction has become a critical task for optimizing metro operations and supporting low-carbon city development. Traditional statistical and machine learning methods often struggle to model the complex, nonlinear, and time-varying nature of metro energy data. To address these challenges, this paper proposes MTMM, a novel hybrid model that integrates the multi-head attention mechanism of the Transformer with the efficient, state-space-based Mamba architecture. The Transformer effectively captures long-range temporal dependencies, while Mamba enhances inference speed and reduces complexity. Additionally, the model incorporates multivariate energy features, leveraging the correlations among different energy consumption types to improve predictive performance. Experimental results on real-world data from the Guangzhou Metro demonstrate that MTMM significantly outperforms existing methods in terms of both MAE and MSE. The model also shows strong generalization ability across different prediction lengths and time step configurations, offering a promising solution for intelligent energy management in metro systems. Full article
(This article belongs to the Special Issue AI Applications for Smart Grid)
Show Figures

Figure 1

18 pages, 3004 KiB  
Article
A Spatiotemporal Convolutional Neural Network Model Based on Dual Attention Mechanism for Passenger Flow Prediction
by Jinlong Li, Haoran Chen, Qiuzi Lu, Xi Wang, Haifeng Song and Lunming Qin
Mathematics 2025, 13(14), 2316; https://doi.org/10.3390/math13142316 - 21 Jul 2025
Viewed by 363
Abstract
Establishing a high-precision passenger flow prediction model is a critical and complex task for the optimization of urban rail transit systems. With the development of artificial intelligence technology, the data-driven technology has been widely studied in the intelligent transportation system. In this study, [...] Read more.
Establishing a high-precision passenger flow prediction model is a critical and complex task for the optimization of urban rail transit systems. With the development of artificial intelligence technology, the data-driven technology has been widely studied in the intelligent transportation system. In this study, a neural network model based on the data-driven technology is established for the prediction of passenger flow in multiple urban rail transit stations to enable smart perception for optimizing urban railway transportation. The integration of network units with different specialities in the proposed model allows the network to capture passenger flow data, temporal correlation, spatial correlation, and spatiotemporal correlation with the dual attention mechanism, further improving the prediction accuracy. Experiments based on the actual passenger flow data of Beijing Metro Line 13 are conducted to compare the prediction performance of the proposed data-driven model with the other baseline models. The experimental results demonstrate that the proposed prediction model achieves lower MAE and RMSE in passenger flow prediction, and its fitted curve more closely aligns with the actual passenger flow data. This demonstrates the model’s practical potential to enhance intelligent transportation system management through more accurate passenger flow forecasting. Full article
Show Figures

Figure 1

18 pages, 847 KiB  
Article
Modeling Public Transportation Use Among Short-Term Rental Guests in Madrid
by Daniel Gálvez-Pérez, Begoña Guirao and Armando Ortuño
Appl. Sci. 2025, 15(14), 7828; https://doi.org/10.3390/app15147828 - 12 Jul 2025
Viewed by 455
Abstract
Urban tourism has experienced significant growth driven by platforms such as Airbnb, yet the relationship between short-term rental (STR) location and guest mobility remains underexplored. In this study, a structured survey of STR guests in Madrid during 2024 was administered face-to-face through property [...] Read more.
Urban tourism has experienced significant growth driven by platforms such as Airbnb, yet the relationship between short-term rental (STR) location and guest mobility remains underexplored. In this study, a structured survey of STR guests in Madrid during 2024 was administered face-to-face through property managers and luggage-storage services to examine factors influencing public transport (PT) use. Responses on bus and metro usage were combined into a three-level ordinal variable and modeled using ordered logistic regression against tourist demographics, trip characteristics, and accommodation attributes, including geocoded location zones. The results indicate that first-time and international visitors are less likely to use PT at high levels, while tourists visiting more points of interest and those who rated PT importance highly when choosing accommodation are significantly more frequent users. Accommodation in the central almond or periphery correlates positively with higher PT use compared to the city center. Distances to transit stops were not significant predictors, reflecting overall network accessibility. These findings suggest that enhancing PT connectivity in peripheral areas could support the spatial dispersion of tourism benefits and improve sustainable mobility for STR guests. Full article
Show Figures

Figure 1

33 pages, 3891 KiB  
Review
Utility Transformer DC Bias Caused by Metro Stray Current—A Review
by Adisu Makeyaw, Xiaofeng Yang, Xiangxuan Sun, Ke Liu, Tianyi Wu and Lu Chen
Energies 2025, 18(14), 3678; https://doi.org/10.3390/en18143678 - 11 Jul 2025
Viewed by 676
Abstract
The rapid expansion of the urban rail network has increased concerns regarding stray current generated by the DC traction power supply system. This stray current, which arises from inadequate insulation between the rail and the ground, can cause electrochemical corrosion and operational challenges [...] Read more.
The rapid expansion of the urban rail network has increased concerns regarding stray current generated by the DC traction power supply system. This stray current, which arises from inadequate insulation between the rail and the ground, can cause electrochemical corrosion and operational challenges to nearby buried metallic infrastructures. A portion of stray current entering utility transformers may induce DC bias risk, thereby affecting the stability and reliability of distribution networks. This review studies the trends in utility transformer-related DC bias caused by metro stray current. Various modeling approaches and suppression measures are discussed, with an emphasis on comprehensively understanding stray current distribution behavior, the DC bias coupling loop, and its impacts. This review underscores the need for a thorough evaluation of existing DC bias suppression measures, and more effective and efficient measures must be developed to enhance the resilience of distribution networks. The gaps in current research are highlighted, and further studies are advocated, particularly those focusing on dynamic metro conditions, supported by advanced modeling, field applications, and interdisciplinary collaboration, to address the challenges of DC bias in urban rail environments. Full article
(This article belongs to the Topic Power System Protection)
Show Figures

Figure 1

21 pages, 1390 KiB  
Article
A Model for a Circular Food Supply Chain Using Metro Infrastructure for Quito’s Food Bank Network
by Ariadna Sandoya, Jorge Chicaiza-Vaca, Fernando Sandoya and Benjamín Barán
Sustainability 2025, 17(12), 5635; https://doi.org/10.3390/su17125635 - 19 Jun 2025
Viewed by 782
Abstract
The increasing disparity in global food distribution has amplified the urgency of addressing food waste and food insecurity, both of which exacerbate economic, environmental, and social inequalities. Traditional food bank models often struggle with logistical inefficiencies, limited accessibility, and a lack of transparency [...] Read more.
The increasing disparity in global food distribution has amplified the urgency of addressing food waste and food insecurity, both of which exacerbate economic, environmental, and social inequalities. Traditional food bank models often struggle with logistical inefficiencies, limited accessibility, and a lack of transparency in food distribution, hindering their effectiveness in mitigating these challenges. This study proposes a novel Food Bank Network Redesign (FBNR) that leverages the Quito Metro system to create a decentralized food bank network, enhancing efficiency and equity in food redistribution by introducing strategically positioned donation lockers at metro stations for convenient drop-offs, with donations transported using spare metro capacity to designated stations for collection by charities, reducing reliance on dedicated transportation. To ensure transparency and operational efficiency, we integrate a blockchain-based traceability system with smart contracts, enabling secure, real-time tracking of donations to enhance stakeholder trust, prevent food loss, and ensure regulatory compliance. We develop a multi-objective optimization framework that balances food waste reduction, transportation cost minimization, and social impact maximization, supported by a mixed-integer linear programming (MIP) model to optimize donation allocation based on urban demand patterns. By combining decentralized logistics, blockchain-enhanced traceability, and advanced optimization techniques, this study offers a scalable and adaptable framework for urban food redistribution, improving food security in Quito while providing a replicable blueprint for cities worldwide seeking to implement circular and climate-resilient food supply chains. Full article
Show Figures

Figure 1

20 pages, 2486 KiB  
Article
Adaptive Predictive Maintenance and Energy Optimization in Metro Systems Using Deep Reinforcement Learning
by Mohammed Hatim Rziki, Atmane E. Hadbi, Mohamed Khalifa Boutahir and Mohammed Chaouki Abounaima
Sustainability 2025, 17(11), 5096; https://doi.org/10.3390/su17115096 - 1 Jun 2025
Viewed by 1270
Abstract
The rapid growth of urban metro systems requires novel strategies to guarantee operational dependability and energy efficiency. This article describes a new way to use deep reinforcement learning (DRL) to help metro networks with predictive maintenance that adapts to changing conditions and energy [...] Read more.
The rapid growth of urban metro systems requires novel strategies to guarantee operational dependability and energy efficiency. This article describes a new way to use deep reinforcement learning (DRL) to help metro networks with predictive maintenance that adapts to changing conditions and energy optimization. We used real-world transit data from the General Transit Feed Specification (GTFS) to model the maintenance scheduling and energy management problem as a Markov Decision Process. This included important operational metrics like peak-hour demand, train arrival times, and station stop densities. A custom reinforcement learning environment mimics the changing conditions of metro operations. Deep Q-Networks (DQNs) and Proximal Policy Optimization (PPO) sophisticated deep reinforcement learning techniques were used to identify the optimal policies for decreasing energy consumption and downtime. The PPO hyperparameters were additionally optimized using Bayesian optimization by implementing Optuna, which produces a far greater performance than baseline DQNs and basic PPO. Comparative tests showed that our improved DRL-based method improves the accuracy of predictive maintenance and the efficiency of energy use, which lowers operational costs and raises the dependability of the service. These results show that advanced learning and optimization techniques could be added to public transportation systems in cities. This could lead to more sustainable and smart transportation management in big cities. Full article
Show Figures

Figure 1

18 pages, 11901 KiB  
Article
Deformation Monitoring Along Beijing Metro Line 22 Using PS-InSAR Technology
by Fenze Guo, Mingyuan Lyu, Xiaojuan Li, Jiyi Jiang, Lan Wang, Lin Guo, Ke Zhang, Huan Luo and Fengzhou Wang
Land 2025, 14(5), 1098; https://doi.org/10.3390/land14051098 - 18 May 2025
Viewed by 807
Abstract
The construction of subways exacerbates the non-uniformity of surface deformation, which in turn poses a potential threat to the safe construction and stable operation of urban rail transit systems. Beijing, the city with the most extensive subway network in China, has long been [...] Read more.
The construction of subways exacerbates the non-uniformity of surface deformation, which in turn poses a potential threat to the safe construction and stable operation of urban rail transit systems. Beijing, the city with the most extensive subway network in China, has long been affected by land subsidence. Utilizing data from Envisat ASAR, Radarsat-2, and Sentinel-1 satellites, this study employs PS-InSAR technology to monitor and analyze land subsidence within a 2 km buffer zone along Beijing Metro Line 22 over a span of 20 years (from January 2004 to November 2024). The results indicate that land subsidence at Guanzhuang Station and Yanjiao Station along Metro Line 22 is particularly pronounced, forming two distinct subsidence zones. After 2016, the overall rate of subsidence along the subway line began to stabilize, with noticeable ground rebound emerging around 2020. This study further reveals a strong correlation between land subsidence and confined groundwater levels, while geological structures and building construction also exert a significant influence on subsidence development. These findings provide a crucial scientific foundation for the formulation of effective prevention and mitigation strategies for land subsidence along urban rail transit lines. Full article
(This article belongs to the Special Issue Assessing Land Subsidence Using Remote Sensing Data)
Show Figures

Figure 1

31 pages, 14316 KiB  
Article
Impact of Multi-Defect Coupling Effects on the Safety of Shield Tunnels and Cross Passages
by Xiaokai Niu, Hongchuan Xing, Wei Li, Wei Song and Zhitian Xie
Buildings 2025, 15(10), 1696; https://doi.org/10.3390/buildings15101696 - 17 May 2025
Cited by 1 | Viewed by 376
Abstract
As urban rail transit networks age, understanding the synergistic impacts of multi-defect interactions on tunnel structural safety has become critical for underground infrastructure maintenance. This study investigates defect interaction mechanisms in shield tunnels and cross passages of Beijing Metro Line 8, integrating field [...] Read more.
As urban rail transit networks age, understanding the synergistic impacts of multi-defect interactions on tunnel structural safety has become critical for underground infrastructure maintenance. This study investigates defect interaction mechanisms in shield tunnels and cross passages of Beijing Metro Line 8, integrating field monitoring, numerical simulations, and Bayesian network analysis. Long-term field surveys identified spatiotemporal coupling characteristics of four key defects—lining leakage, structural voids, material deterioration, and deformation—while revealing typical defect propagation patterns such as localized leakage at track beds and drainage pipe-induced voids. A 3D fluid–solid coupling numerical model simulated multi-defect interactions, demonstrating that defect clusters in structurally vulnerable zones (e.g., pump rooms) significantly altered pore pressure distribution and intensified displacement, whereas void expansion exacerbated lining uplift and asymmetric ground settlement. Stress concentrations were notably amplified at tunnel–cross passage interfaces. The Bayesian network risk model further validated the dominant roles of defect volume and burial depth in controlling structural safety. Results highlight an inverse correlation between defect severity and structural integrity. Based on these findings, a coordinated maintenance framework combining priority monitoring of high-stress interfaces with targeted grouting treatments is proposed, offering a systematic approach to multi-defect risk management that bridges theoretical models with practical engineering solutions. Full article
Show Figures

Figure 1

18 pages, 2712 KiB  
Article
Resilience Assessment of Urban Bus–Metro Hybrid Networks in Flood Disasters: A Case Study of Zhengzhou, China
by Tianliang Zhu, Hui Li, Yixuan Wu, Yuzhe Jiang, Jie Pan and Zhenhua Dai
Sustainability 2025, 17(10), 4591; https://doi.org/10.3390/su17104591 - 17 May 2025
Viewed by 694
Abstract
Urban transportation systems, particularly integrated bus–metro networks, play a critical role in sustaining city functions but face significant vulnerability during extreme flood disasters. Taking Zhengzhou, China, as a case study, this study developed a comprehensive assessment model to evaluate the resilience of urban [...] Read more.
Urban transportation systems, particularly integrated bus–metro networks, play a critical role in sustaining city functions but face significant vulnerability during extreme flood disasters. Taking Zhengzhou, China, as a case study, this study developed a comprehensive assessment model to evaluate the resilience of urban bus–metro hybrid networks under flood scenarios. First, a complex network-based bus–metro hybrid transportation network model was established, incorporating quantifiable flood disaster risk indices considering disaster-inducing factors, hazard-prone environments, and disaster-bearing entities. A cascading failure model was then constructed to simulate the propagation of node failures and passenger load redistribution during flood events. Subsequently, network resilience was evaluated using the topological metric of the relative size of the largest connected component and the functional metric of global efficiency. The analysis examined the influence of the load capacity sensitivity parameters α and β on resilience outcomes. Simulation results indicated that the parameter combination α = 0.8 and β = 2.0 yielded the highest resilience under the tested conditions, offering a balance between redundancy and the targeted protection of high-load nodes. Additionally, recovery strategies prioritizing nodes based on betweenness centrality significantly improved resilience outcomes. This study provides valuable insights and practical guidance for improving urban transportation resilience, assisting policymakers and planners in better mitigating flood disaster impacts. Full article
Show Figures

Figure 1

21 pages, 5455 KiB  
Article
Research on Spatial Differentiation of Housing Prices Along the Rail Transit Lines in Qingdao City Based on Multi-Scale Geographically Weighted Regression (MGWR) Analysis
by Yanjun Wang, Zixuan Liu, Yawen Wang and Peng Dai
Sustainability 2025, 17(9), 4203; https://doi.org/10.3390/su17094203 - 6 May 2025
Cited by 1 | Viewed by 1142
Abstract
Urban sprawl and excessive reliance on motorization have led to many urban problems. The balance of supply and demand in the real estate market, as well as price fluctuations, also face many challenges. Urban rail transit not only alleviates traffic congestion and air [...] Read more.
Urban sprawl and excessive reliance on motorization have led to many urban problems. The balance of supply and demand in the real estate market, as well as price fluctuations, also face many challenges. Urban rail transit not only alleviates traffic congestion and air pollution, but also significantly reduces residents’ commuting time, broadens urban accessibility, and reshapes the decision-making basis for residents when choosing residential locations. This study takes the 1st, 2nd, 3rd, 4th, 8th, 11th, and 13th metro lines that have been opened in Qingdao City as examples. It selects 12,924 residential samples within a 2 km radius along the rail transit lines. By using GIS spatial analysis tools and the multi-scale geographically weighted regression (MGWR) model, it analyzes the spatial differentiation characteristics of housing prices along the rail transit lines and the reasons and mechanisms behind them. The empirical results show that housing prices decrease to varying degrees with the increase in the distance from the rail transit. For every additional 1 km from the rail transit station, the housing price increases by 0.246%. Through model comparison, it was found that MGWR has a better fitting degree than the traditional ordinary least squares method (OLS) and the previous geographically weighted regression model (GWR), and reveals the spatial heterogeneity of the influence of urban rail transit on housing prices. Different indicator elements have different effects on housing prices along these lines. The urban rail transit factor in the location characteristics has a positive impact on housing prices, and has a significant negative correlation in some areas. The significant influence range of the distance to the nearest metro station on housing prices is concentrated within a radius of 373 m, and the effect decays beyond this range. The total floors, building area, green coverage rate, property management fee, and the distance to hospitals and parks in the neighborhood and structural characteristics have spatial heterogeneity. Analyzing the areas affected by the urban rail transit factor, it was found that the double location superposition effect, the networked transportation system, and the agglomeration of urban functional axes are important reasons for the significant phenomena in some local areas. This research provides a scientific basis for optimizing the sustainable development of rail transit in Qingdao and formulating differentiated housing policies. Meanwhile, it expands the application of the MGWR model in sustainable urban spatial governance and has practical significance for other cities to achieve sustainable urban development. Full article
Show Figures

Figure 1

34 pages, 5615 KiB  
Article
Reflecting the Effect of Physical–Perceptual Components on Increasing the Anxiety of Inner-City Rail Transit’s Users: An Integrative Review
by Toktam Hanaee, Iulian Dincă, Zohreh Moradi, Parinaz Sadegh Eghbali and Ali Boloor
Sustainability 2025, 17(9), 3974; https://doi.org/10.3390/su17093974 - 28 Apr 2025
Viewed by 908
Abstract
As urbanization continues to expand, the design and structure of urban spaces increasingly influence the experiences of individuals, whether intentionally or inadvertently. These effects can result in both positive and negative experiences, with urban facilities generally designed to enhance the comfort and well-being [...] Read more.
As urbanization continues to expand, the design and structure of urban spaces increasingly influence the experiences of individuals, whether intentionally or inadvertently. These effects can result in both positive and negative experiences, with urban facilities generally designed to enhance the comfort and well-being of citizens. However, in certain cases, these spaces can provoke adverse emotional reactions, such as anxiety. Anxiety, a prevalent mental health disorder, is more commonly observed in urban environments than in rural areas. Among various urban settings, rail transport in large cities is often cited as one of the most stressful environments for passengers. In light of the significance of this issue, this study seeks to explore how physical and perceptual components can reduce anxiety and encourage greater use of intra-urban rail transportation. Utilizing a qualitative research approach, the study employed directional content analysis to investigate this topic. Data were collected and analyzed through an exploratory methodology with the assistance of MAXQDA software. The analysis began with guided content coding, drawing on theoretical frameworks pertinent to the research. Through this process, 2387 initial codes were identified, which were then categorized into nine main themes, with the relationships between these codes clarified. The findings were inductively derived from the raw data, leading to the development of a foundational theoretical framework. The study, employing a personalized strategy, identified three key factors that contribute to anxiety: physical, perceptual, and environmental components. Physical factors, such as accessibility, lighting, and signage, were found to have a significant impact on passengers’ psychological well-being. Perceptual factors, including personal perceptions, stress, and fear, played a crucial role in exacerbating anxiety. Additionally, environmental factors, particularly the design of metro networks, rail lines, and flexible transportation lines, such as car-sharing and micromobility, were found to significantly contribute to the overall anxiety experienced by passengers. Moreover, the study suggests that anxiety triggers can be mitigated effectively through the implementation of well-designed policies and management practices. Enhancing the sense of security within transit spaces was found to increase citizens’ willingness to utilize rail transportation. These findings indicate that targeted interventions aimed at improving both the physical and perceptual aspects of the transit environment could enhance the commuter experience and, in turn, foster greater use of rail systems. Full article
(This article belongs to the Special Issue Sustainable Transportation and Traffic Psychology)
Show Figures

Figure 1

Back to TopTop