Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,244)

Search Parameters:
Keywords = urban climate policy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 792 KiB  
Article
From Green to Adaptation: How Does a Green Business Environment Shape Urban Climate Resilience?
by Lei Li, Xi Zhen, Xiaoyu Ma, Shaojun Ma, Jian Zuo and Michael Goodsite
Systems 2025, 13(8), 660; https://doi.org/10.3390/systems13080660 - 4 Aug 2025
Abstract
Strengthening climate resilience constitutes a foundational approach through which cities adapt to climate change and mitigate associated environmental risks. However, research on the influence of economic policy environments on climate resilience remains limited. Guided by institutional theory and dynamic capability theory, this study [...] Read more.
Strengthening climate resilience constitutes a foundational approach through which cities adapt to climate change and mitigate associated environmental risks. However, research on the influence of economic policy environments on climate resilience remains limited. Guided by institutional theory and dynamic capability theory, this study employs a panel dataset comprising 272 Chinese cities at the prefecture level and above, covering the period from 2009 to 2023. It constructs a composite index framework for evaluating the green business environment (GBE) and urban climate resilience (UCR) using the entropy weight method. Employing a two-way fixed-effect regression model, it examined the impact of GBE optimization on UCR empirically and also explored the underlying mechanisms. The results show that improvements in the GBE significantly enhance UCR, with green innovation (GI) in technology functioning as an intermediary mechanism within this relationship. Moreover, climate policy uncertainty (CPU) exerts a moderating effect along this transmission pathway: on the one hand, it amplifies the beneficial effect of the GBE on GI; on the other hand, it hampers the transformation of GI into improved GBEs. The former effect dominates, indicating that optimizing the GBE becomes particularly critical for enhancing UCR under high CPU. To eliminate potential endogenous issues, this paper adopts a two-stage regression model based on the instrumental variable method (2SLS). The above conclusion still holds after undergoing a series of robustness tests. This study reveals the mechanism by which a GBE enhances its growth through GI. By incorporating CPU as a heterogeneous factor, the findings suggest that governments should balance policy incentives with environmental regulations in climate resilience governance. Furthermore, maintaining awareness of the risks stemming from climate policy volatility is of critical importance. By providing a stable and supportive institutional environment, governments can foster steady progress in green innovation and comprehensively improve urban adaptive capacity to climate change. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

28 pages, 2743 KiB  
Article
Unlocking Synergies: How Digital Infrastructure Reshapes the Pollution-Carbon Reduction Nexus at the Chinese Prefecture-Level Cities
by Zhe Ji, Yuqi Chang and Fengxiu Zhou
Sustainability 2025, 17(15), 7066; https://doi.org/10.3390/su17157066 - 4 Aug 2025
Abstract
In the context of global climate governance and the green transition, digital infrastructure serves as a critical enabler of resource allocation in the digital economy, offering strategic value in tackling synergistic pollution and carbon reduction challenges. Using panel data from 280 prefecture-level cities, [...] Read more.
In the context of global climate governance and the green transition, digital infrastructure serves as a critical enabler of resource allocation in the digital economy, offering strategic value in tackling synergistic pollution and carbon reduction challenges. Using panel data from 280 prefecture-level cities, this study employs a multiperiod difference-in-differences (DID) approach, leveraging smart city pilot policies as a quasinatural experiment, to assess how digital infrastructure affects urban synergistic pollution-carbon mitigation (SPCM). The empirical results show that digital infrastructure increases the urban SPCM index by 1.5%, indicating statistically significant effects. Compared with energy and income effects, digital infrastructure can influence this synergistic effect through indirect channels such as the energy effect, economic agglomeration effect, and income effect, with the economic agglomeration effect accounting for a larger share of the total effect. Additionally, fixed-asset investment has a nonlinear moderating effect on this relationship, with diminishing marginal returns on emission reduction when investment exceeds a threshold. Heterogeneity tests reveal greater impacts in eastern, nonresource-based, and environmentally regulated cities. This study expands the theory of collaborative environmental governance from the perspective of new infrastructure, providing a theoretical foundation for establishing a long-term digital technology-driven mechanism for SPCM. Full article
Show Figures

Figure 1

27 pages, 3107 KiB  
Article
Modeling School Commuting Mode Choice Under Normal and Adverse Weather Conditions in Chiang Rai City
by Chanyanuch Pangderm, Tosporn Arreeras and Xiaoyan Jia
Future Transp. 2025, 5(3), 101; https://doi.org/10.3390/futuretransp5030101 - 1 Aug 2025
Viewed by 96
Abstract
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit [...] Read more.
This study investigates the factors influencing school trip mode choice among senior high school students in the Chiang Rai urban area, Chiang Rai, Thailand, under normal and adverse weather conditions. Utilizing data from 472 students across six extra-large urban schools, a Multinomial Logit (MNL) regression model was applied to examine the effects of socio-demographic attributes, household vehicle ownership, travel distance, and spatial variables on mode selection. The results revealed notable modal shifts during adverse weather, with motorcycle usage decreasing and private vehicle reliance increasing, while school bus usage remained stable, highlighting its role as a resilient transport option. Car ownership emerged as a strong enabler of modal flexibility, whereas students with limited access to private transport demonstrated reduced adaptability. Additionally, increased waiting and travel times during adverse conditions underscored infrastructure and service vulnerabilities, particularly for mid-distance travelers. The findings suggest an urgent need for transport policies that promote inclusive and climate-resilient mobility systems, particularly in the context of Chiang Rai, including expanded school bus services, improved first-mile connectivity, and enhanced pedestrian infrastructure. This study contributes to the literature by addressing environmental variability in school travel behavior and offers actionable insights for sustainable transport planning in secondary cities and border regions. Full article
Show Figures

Figure 1

16 pages, 513 KiB  
Article
Dismantling the Myths of Urban Informality for the Inclusion of the Climate Displaced in Cities of the Global South
by Susana Herrero Olarte and Angela María Díaz-Márquez
World 2025, 6(3), 109; https://doi.org/10.3390/world6030109 - 1 Aug 2025
Viewed by 206
Abstract
By 2050, it is estimated that approximately 200 million people will be displaced due to the impacts of climate change. Vulnerability to climate change is shaped not only by environmental factors but fundamentally by systemic power relations and structural conditions present at both [...] Read more.
By 2050, it is estimated that approximately 200 million people will be displaced due to the impacts of climate change. Vulnerability to climate change is shaped not only by environmental factors but fundamentally by systemic power relations and structural conditions present at both the places of origin and destination. In Latin America, climate-displaced persons predominantly settle in marginalised neighbourhoods, where widely accepted informality facilitates their rapid arrival but obstructs genuine progress and full integration as urban citizens. This paper critically examines the prevailing myths that justify the persistence of informality, revealing the socioeconomic challenges faced by climate migrants in the region. These four dominant myths are (1) Latin America’s inherently low productivity levels; (2) concessions by the ruling class enabling excluded groups to merely survive; (3) the perceived privilege of marginalised neighbourhoods to generate income outside formal legal frameworks, which supports their social capital; and (4) the limited benefits associated with formalisation. Debunking these myths is essential for developing effective public policies aimed at reducing informality and promoting inclusive urban integration, ultimately benefiting both climate migrants and host communities. Full article
Show Figures

Figure 1

33 pages, 870 KiB  
Article
Decarbonizing Urban Transport: Policies and Challenges in Bucharest
by Adina-Petruța Pavel and Adina-Roxana Munteanu
Future Transp. 2025, 5(3), 99; https://doi.org/10.3390/futuretransp5030099 (registering DOI) - 1 Aug 2025
Viewed by 177
Abstract
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for [...] Read more.
Urban transport is a key driver of greenhouse gas emissions in Europe, making its decarbonization essential to achieving EU climate neutrality targets. This study examines how European strategies, such as the Green Deal, the Sustainable and Smart Mobility Strategy, and the Fit for 55 package, are reflected in Romania’s transport policies, with a focus on implementation challenges and urban outcomes in Bucharest. By combining policy analysis, stakeholder mapping, and comparative mobility indicators, the paper critically assesses Bucharest’s current reliance on private vehicles, underperforming public transport satisfaction, and limited progress on active mobility. The study develops a context-sensitive reform framework for the Romanian capital, grounded in transferable lessons from Western and Central European cities. It emphasizes coordinated metropolitan governance, public trust-building, phased car-restraint measures, and investment alignment as key levers. Rather than merely cataloguing policy intentions, the paper offers practical recommendations informed by systemic governance barriers and public attitudes. The findings will contribute to academic debates on urban mobility transitions in post-socialist cities and provide actionable insights for policymakers seeking to operationalize EU decarbonization goals at the metropolitan scale. Full article
Show Figures

Figure 1

14 pages, 2200 KiB  
Article
Tree Species as Metabolic Indicators: A Comparative Simulation in Amman, Jordan
by Anas Tuffaha and Ágnes Sallay
Land 2025, 14(8), 1566; https://doi.org/10.3390/land14081566 - 31 Jul 2025
Viewed by 324
Abstract
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices [...] Read more.
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices forecast long-term urban metabolic performance. Using ENVI-met 5.61 simulations, we compare Melia azedarach, Olea europaea, and Ceratonia siliqua, mainly assessing urban flow related elements like air temperature reduction, CO2 sequestration, and evapotranspiration alongside rooting depth, isoprene emissions, and biodiversity support. Melia delivers rapid cooling but shows other negatives like a low biodiversity value; Olea offers average cooling and sequestration but has allergenic pollen issues in people as a flow; Ceratonia provides scalable cooling, increased carbon uptake, and has a high ecological value. We propose a metabolic reframing of green infrastructure planning to choose urban species, guided by system feedback rather than aesthetics, to ensure long-term resilience in arid urban climates. Full article
Show Figures

Figure 1

33 pages, 7374 KiB  
Article
Exploration of Carbon Emission Reduction Pathways for Urban Residential Buildings at the Provincial Level: A Case Study of Jiangsu Province
by Jian Xu, Tao Lei, Milun Yang, Huixuan Xiang, Ronge Miao, Huan Zhou, Ruiqu Ma, Wenlei Ding and Genyu Xu
Buildings 2025, 15(15), 2687; https://doi.org/10.3390/buildings15152687 - 30 Jul 2025
Viewed by 278
Abstract
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework [...] Read more.
Achieving carbon emission reductions in the residential building sector while maintaining economic growth represents a global challenge, particularly in rapidly developing regions with internal disparities. This study examines Jiangsu Province in eastern China—a economic hub with north-south development gradients—to develop an integrated framework for differentiated carbon reduction pathways. The methodology combines spatial autocorrelation analysis, logarithmic mean Divisia index (LMDI) decomposition, system dynamics modeling, and Tapio decoupling analysis to examine urban residential building emissions across three regions from 2016–2022. Results reveal significant spatial clustering of emissions (Moran’s I peaking at 0.735), with energy consumption per unit area as the dominant driver across all regions (contributing 147.61%, 131.82%, and 147.57% respectively). Scenario analysis demonstrates that energy efficiency policies can reduce emissions by 10.1% while maintaining 99.2% of economic performance, enabling carbon peak achievement by 2030. However, less developed northern regions emerge as binding constraints, requiring technology investments. Decoupling analysis identifies region-specific optimal pathways: conventional development for advanced regions, balanced approaches for transitional areas, and subsidies for lagging regions. These findings challenge assumptions about environment-economy trade-offs and provide a replicable framework for designing differentiated climate policies in heterogeneous territories, offering insights for similar regions worldwide navigating the transition to sustainable development. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

17 pages, 3289 KiB  
Article
Significant Attribution of Urbanization to Triggering Extreme Rainfall in the Urban Core—A Case of Dallas–Fort Worth in North Texas
by Junaid Ahmad, Jessica A. Eisma and Muhammad Sajjad
Urban Sci. 2025, 9(8), 295; https://doi.org/10.3390/urbansci9080295 - 29 Jul 2025
Viewed by 325
Abstract
While rainfall occurs for several reasons, climate change and urbanization influence its frequency and geographical disparities. Although recent research suggests that urbanization may lead to increased rainfall, insights into how urbanization can trigger rainfall remain limited. We selected the Dallas–Fort Worth (DFW) metroplex, [...] Read more.
While rainfall occurs for several reasons, climate change and urbanization influence its frequency and geographical disparities. Although recent research suggests that urbanization may lead to increased rainfall, insights into how urbanization can trigger rainfall remain limited. We selected the Dallas–Fort Worth (DFW) metroplex, which has minimal orographic and coastal influences, to analyze the urban impact on rainfall. DFW was divided into 256 equal grids (10 km × 10 km) and grouped into four clusters using K-means clustering based on the urbanization ratio. Using Multi-Sensor Precipitation Estimator data (with a spatial resolution of 4 km), we examined rainfall exceeding the 95th percentile (i.e., extreme rainfall) on low synoptic days to highlight localized effects. The urban heat island (UHI) effect was estimated based on the average temperature difference between the urban core and the other three non-urban clusters. Multiple rainfall events were monitored on an hourly basis. Potential linkages between urbanization, the UHI, extreme rainfall, wind speed, wind direction, convective inhibition, and convective available potential energy were evaluated. An intense UHI within the DFW area triggered a tornado, resulting in maximum rainfall in the urban core area under high wind speeds and a dominant wind direction. Our findings further clarify the role of urbanization in generating extreme rainfall events, which is essential for developing better policies for urban planning in response to intensifying extreme events due to climate change. Full article
Show Figures

Figure 1

20 pages, 8132 KiB  
Article
Spatiotemporal Evolution and Driving Force Analysis of Habitat Quality in the Beibu Gulf Urban Agglomeration
by Jing Jing, Hong Jiang, Feili Wei, Jiarui Xie, Ling Xie, Yu Jiang, Yanhong Jia and Zhantu Chen
Land 2025, 14(8), 1556; https://doi.org/10.3390/land14081556 - 29 Jul 2025
Viewed by 198
Abstract
The ecological environment is crucial for human survival and development. As ecological issues become more pressing, studying the spatiotemporal evolution of ecological quality (EQ) and its driving mechanisms is vital for sustainable development. This study, based on MODIS data from 2000 to 2022 [...] Read more.
The ecological environment is crucial for human survival and development. As ecological issues become more pressing, studying the spatiotemporal evolution of ecological quality (EQ) and its driving mechanisms is vital for sustainable development. This study, based on MODIS data from 2000 to 2022 and the Google Earth Engine platform, constructs a remote sensing ecological index for the Beibu Gulf Urban Agglomeration and analyzes its spatiotemporal evolution using Theil–Sen trend analysis, Hurst index (HI), and geographic detector. The results show the following: (1) From 2000 to 2010, EQ improved, particularly from 2005 to 2010, with a significant increase in areas of excellent and good quality due to national policies and climate improvements. From 2010 to 2015, EQ degraded, with a sharp reduction in areas of excellent quality, likely due to urban expansion and industrial pressures. After 2015, EQ rebounded with successful governance measures. (2) The HI analysis indicates that future changes will continue the past trend, especially in areas like southeastern Chongzuo and northwestern Fangchenggang, where governance efforts were effective. (3) EQ shows a positive spatial correlation, with high-quality areas in central Nanning and Fangchenggang, and low-quality areas in Nanning and Beihai. After 2015, both high–high and low–low clusters showed changes, likely due to ecological governance measures. (4) NDBSI (dryness) is the main driver of EQ changes (q = 0.806), with significant impacts from NDVI (vegetation coverage), LST (heat), and WET (humidity). Urban expansion’s increase in impervious surfaces (NDBSI rise) and vegetation loss (NDVI decline) have a synergistic effect (q = 0.856), significantly affecting EQ. Based on these findings, it is recommended to control construction land expansion, optimize land use structure, protect ecologically sensitive areas, and enhance climate adaptation strategies to ensure continuous improvement in EQ. Full article
Show Figures

Figure 1

21 pages, 727 KiB  
Article
Cost-Effective Energy Retrofit Pathways for Buildings: A Case Study in Greece
by Charikleia Karakosta and Isaak Vryzidis
Energies 2025, 18(15), 4014; https://doi.org/10.3390/en18154014 - 28 Jul 2025
Viewed by 200
Abstract
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating [...] Read more.
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating needs. The buildings, constructed between 1986 and 2003, exhibited poor insulation, outdated electromechanical systems, and inefficient lighting, resulting in high oil consumption and low energy ratings. A robust methodology is applied, combining detailed on-site energy audits, thermophysical diagnostics based on U-value calculations, and a techno-economic assessment utilizing Net Present Value (NPV), Internal Rate of Return (IRR), and SWOT analysis. The study evaluates a series of retrofit measures, including ceiling insulation, high-efficiency lighting replacements, and boiler modernization, against both technical performance criteria and financial viability. Results indicate that ceiling insulation and lighting system upgrades yield positive economic returns, while wall and floor insulation measures remain financially unattractive without external subsidies. The findings are further validated through sensitivity analysis and policy scenario modeling, revealing how targeted investments, especially when supported by public funding schemes, can maximize energy savings and emissions reductions. The study concludes that selective implementation of cost-effective measures, supported by public grants, can achieve energy targets, improve indoor environments, and serve as a replicable model of targeted retrofits across the region, though reliance on external funding and high upfront costs pose challenges. Full article
Show Figures

Figure 1

38 pages, 5375 KiB  
Article
Thinking Green: A Place Lab Approach to Citizen Engagement and Indicators for Nature-Based Solutions in a Case Study from Katowice
by Katarzyna Samborska-Goik, Anna Starzewska-Sikorska and Patrycja Obłój
Sustainability 2025, 17(15), 6857; https://doi.org/10.3390/su17156857 - 28 Jul 2025
Viewed by 291
Abstract
Urban areas are at the forefront in addressing global challenges such as climate change and biodiversity loss. Among the key responses are nature-based solutions, which are increasingly being integrated into policy frameworks but which require strong community engagement for their effective implementation. This [...] Read more.
Urban areas are at the forefront in addressing global challenges such as climate change and biodiversity loss. Among the key responses are nature-based solutions, which are increasingly being integrated into policy frameworks but which require strong community engagement for their effective implementation. This paper presents the findings of surveys conducted within the Place Lab in Katowice, Poland, an initiative developed as part of an international project and used as a participatory tool for co-creating and implementing green infrastructure. The project applies both place-based and people-centred approaches to support European cities in their transition towards regenerative urbanism. Place Lab activities encourage collaboration between local authorities and residents, enhancing awareness and fostering participation in environmental initiatives. The survey data collected during the project allowed for the evaluation of changes in public attitudes and levels of engagement and for the identification of broader societal phenomena that may influence the implementation of nature-based solutions. The findings revealed, for instance, that more women were interested in supporting the project, that residents tended to be sceptical of governmental actions on climate change, and that views were divided on the trade-off between urban infrastructure such as parking and roads and the presence of green areas. Furthermore, questions of responsibility, awareness, and long-term commitment were frequently raised. Building on the survey results and the existing literature, the study proposes a set of indicators to assess the contribution of citizen participation to the adoption of nature-based solutions. While the effectiveness of nature-based solutions in mitigating climate change impacts can be assessed relatively directly, evaluating civic engagement is more complex. Nevertheless, when conducted transparently and interpreted by experts, indicator-based assessment can offer valuable insights. This study introduces a novel perspective by considering not only drivers of engagement but also the obstacles. The proposed indicators provide a foundation for evaluating community readiness and commitment to nature-based approaches and may be adapted for application in other urban settings and in future research on climate resilience strategies. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Figure 1

23 pages, 1075 KiB  
Article
How Does Social Capital Promote Willingness to Pay for Green Energy? A Social Cognitive Perspective
by Lingchao Huang and Wei Li
Sustainability 2025, 17(15), 6849; https://doi.org/10.3390/su17156849 - 28 Jul 2025
Viewed by 230
Abstract
Individual willingness to pay (WTP) for green energy plays a vital role in mitigating climate change. Based on social cognitive theory (SCT), which emphasizes the dynamic interaction among individual cognition, behavior and the environment, this study develops a theoretical model to identify factors [...] Read more.
Individual willingness to pay (WTP) for green energy plays a vital role in mitigating climate change. Based on social cognitive theory (SCT), which emphasizes the dynamic interaction among individual cognition, behavior and the environment, this study develops a theoretical model to identify factors influencing green energy WTP. The study is based on 585 valid questionnaire responses from urban areas in China and uses Structural Equation Modeling (SEM) to reveal the linear causal path. Meanwhile, fuzzy-set Qualitative Comparative Analysis (fsQCA) is utilized to identify the combined paths of multiple conditions leading to a high WTP, making up for the limitations of SEM in explaining complex mechanisms. The SEM analysis shows that social trust, social networks, and social norms have a significant positive impact on individual green energy WTP. And this influence is further transmitted through the mediating role of environmental self-efficacy and expectations of environmental outcomes. The FsQCA results identified three combined paths of social capital and environmental cognitive conditions, including the Network–Norm path, the Network–efficacy path and the Network–Outcome path, all of which can achieve a high level of green energy WTP. Among them, the social networks are a core condition in every path and a key element for enhancing the high green energy WTP. This study promotes the expansion of SCT, from emphasizing the linear role of individual cognition to focusing on the configuration interaction between social structure and psychological cognition, provides empirical evidence for formulating differentiated social intervention strategies and environmental education policies, and contributes to sustainable development and the green energy transition. Full article
Show Figures

Figure 1

45 pages, 1090 KiB  
Review
Electric Vehicle Adoption in Egypt: A Review of Feasibility, Challenges, and Policy Directions
by Hilmy Awad, Michele De Santis and Ehab H. E. Bayoumi
World Electr. Veh. J. 2025, 16(8), 423; https://doi.org/10.3390/wevj16080423 - 28 Jul 2025
Viewed by 607
Abstract
This study evaluates the feasibility and visibility of electric vehicles (EVs) in Egypt, addressing critical research gaps and proposing actionable strategies to drive adoption. Employing a systematic review of academic, governmental, and industry sources, the paper identifies underexplored areas such as rural–urban adoption [...] Read more.
This study evaluates the feasibility and visibility of electric vehicles (EVs) in Egypt, addressing critical research gaps and proposing actionable strategies to drive adoption. Employing a systematic review of academic, governmental, and industry sources, the paper identifies underexplored areas such as rural–urban adoption disparities, lifecycle assessments of EV batteries, and sociocultural barriers, including gender dynamics and entrenched consumer preferences. Its primary contribution is an interdisciplinary framework that integrates technical aspects, such as grid resilience and climate-related battery degradation, with socioeconomic dimensions, providing a holistic overview of EV feasibility in Egypt tailored to Egypt’s context. Key findings reveal infrastructure limitations, inconsistent policy frameworks, and behavioral skepticism as major hurdles, and highlight the untapped potential of renewable energy integration, particularly through synergies between solar PV generation (e.g., Benban Solar Park) and EV charging infrastructure. Recommendations prioritize policy reforms (e.g., tax incentives, streamlined tariffs), solar-powered charging infrastructure expansion, public awareness campaigns, and local EV manufacturing to stimulate economic growth. The study underscores the urgency of stakeholder collaboration to transform EVs into a mainstream solution, positioning Egypt as a regional leader in sustainable mobility and equitable development. Full article
Show Figures

Figure 1

27 pages, 5886 KiB  
Article
Green Public Procurement and Its Influence on Urban Carbon Emission Intensity: Spatial Spillovers Across 285 Prefectural Cities in China
by Li Wang, Hongxuan Wu and Jian Zhang
Land 2025, 14(8), 1545; https://doi.org/10.3390/land14081545 - 27 Jul 2025
Viewed by 451
Abstract
Green public procurement (GPP) is a pivotal policy instrument for advancing urban low-carbon transitions. Using panel data from 285 Chinese cities (2015–2023), this study employs a panel fixed-effects model, mediation analysis, and spatial Durbin model to assess the impact, influencing mechanisms, and spatial [...] Read more.
Green public procurement (GPP) is a pivotal policy instrument for advancing urban low-carbon transitions. Using panel data from 285 Chinese cities (2015–2023), this study employs a panel fixed-effects model, mediation analysis, and spatial Durbin model to assess the impact, influencing mechanisms, and spatial spillover effects of GPP on urban carbon emissions intensity. The key findings reveal the following: (1) a 1% increase in GPP implementation is associated with a 1.360% reduction in local urban carbon emissions intensity. (2) GPP reduces urban carbon emissions intensity through urban green innovation, corporate sustainability performance, and public ecological awareness. (3) GPP exhibits significant cross-boundary spillovers, where a 1% reduction in local carbon emissions intensity induced by GPP leads to a 14.510% decline in that in neighboring cities. These results provide robust empirical evidence for integrating GPP into the urban climate governance framework. Furthermore, our findings offer practical insights for optimizing the implementation of GPP policies and strengthen regional cooperation in carbon reduction. Full article
Show Figures

Figure 1

25 pages, 5461 KiB  
Article
Spaceborne LiDAR Reveals Anthropogenic and Biophysical Drivers Shaping the Spatial Distribution of Forest Aboveground Biomass in Eastern Himalayas
by Abhilash Dutta Roy, Abraham Ranglong, Sandeep Timilsina, Sumit Kumar Das, Michael S. Watt, Sergio de-Miguel, Sourabh Deb, Uttam Kumar Sahoo and Midhun Mohan
Land 2025, 14(8), 1540; https://doi.org/10.3390/land14081540 - 27 Jul 2025
Viewed by 410
Abstract
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows [...] Read more.
The distribution of forest aboveground biomass density (AGBD) is a key indicator of carbon stock and ecosystem health in the Eastern Himalayas, which represents a global biodiversity hotspot that sustains diverse forest types across an elevation gradient from lowland rainforests to alpine meadows and contributes to the livelihoods of more than 200 distinct indigenous communities. This study aimed to identify the key factors influencing forest AGBD across this region by analyzing the underlying biophysical and anthropogenic drivers through machine learning (random forest). We processed AGBD data from the Global Ecosystem Dynamics Investigation (GEDI) spaceborne LiDAR and applied filtering to retain 30,257 high-quality footprints across ten ecoregions. We then analyzed the relationship between AGBD and 17 climatic, topographic, soil, and anthropogenic variables using random forest regression models. The results revealed significant spatial variability in AGBD (149.6 ± 79.5 Mg ha−1) across the region. State-wise, Sikkim recorded the highest mean AGBD (218 Mg ha−1) and Manipur the lowest (102.8 Mg ha−1). Within individual ecoregions, the Himalayan subtropical pine forests exhibited the highest mean AGBD (245.5 Mg ha−1). Topographic factors, particularly elevation and latitude, were strong determinants of biomass distribution, with AGBD increasing up to elevations of 2000 m before declining. Protected areas (PAs) consistently showed higher AGBD than unprotected forests for all ecoregions, while proximity to urban and agricultural areas resulted in lower AGBD, pointing towards negative anthropogenic impacts. Our full model explained 41% of AGBD variance across the Eastern Himalayas, with better performance in individual ecoregions like the Northeast India-Myanmar pine forests (R2 = 0.59). While limited by the absence of regionally explicit stand-level forest structure data (age, stand density, species composition), our results provide valuable evidence for conservation policy development, including expansion of PAs, compensating avoided deforestation and modifications in shifting cultivation. Future research should integrate field measurements with remote sensing and use high-resolution LiDAR with locally derived allometric models to enhance biomass estimation and GEDI data validation. Full article
Show Figures

Figure 1

Back to TopTop