Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (171)

Search Parameters:
Keywords = unmanned aerial vehicle laser scanning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7731 KiB  
Article
Semantic HBIM for Heritage Conservation: A Methodology for Mapping Deterioration and Structural Deformation in Historic Envelopes
by Enrique Nieto-Julián, María Dolores Robador, Juan Moyano and Silvana Bruno
Buildings 2025, 15(12), 1990; https://doi.org/10.3390/buildings15121990 - 10 Jun 2025
Viewed by 519
Abstract
The conservation and intervention of heritage structures require a flexible, interdisciplinary environment capable of managing data throughout the building’s life cycle. Historic building information modeling (HBIM) has emerged as an effective tool for supporting these processes. Originally conceived for parametric construction modeling, BIM [...] Read more.
The conservation and intervention of heritage structures require a flexible, interdisciplinary environment capable of managing data throughout the building’s life cycle. Historic building information modeling (HBIM) has emerged as an effective tool for supporting these processes. Originally conceived for parametric construction modeling, BIM can also integrate historical transformations, aiding in maintenance and preservation. Historic buildings often feature complex geometries and visible material traces of time, requiring detailed analysis. This research proposes a methodology for documenting and assessing the envelope of historic buildings by locating, classifying, and recording transformations, deterioration, and structural deformations. The approach is based on semantic segmentation and classification using data from terrestrial laser scanning (TLS) and unmanned aerial vehicles (UAVs), applied to the Palace of Miguel de Mañara—an iconic 17th-century building in Seville. Archival images were integrated into the HBIM model to identify previous restoration interventions and assess current deterioration. The methodology included geometric characterization, material mapping, semantic segmentation, diagnostic input, and temporal analysis. The results validated a process for detecting pathological cracks in masonry facades, providing a collaborative HBIM framework enriched with expert-validated data to support repair decisions and guide conservation efforts. Full article
Show Figures

Figure 1

16 pages, 11784 KiB  
Article
Application of Unmanned Aerial Vehicle and Airborne Light Detection and Ranging Technologies to Identifying Terrain Obstacles and Designing Access Solutions for the Interior Parts of Forest Stands
by Petr Hrůza, Tomáš Mikita and Nikola Žižlavská
Forests 2025, 16(5), 729; https://doi.org/10.3390/f16050729 - 24 Apr 2025
Viewed by 531
Abstract
We applied UAV (Unmanned Aerial Vehicle) and ALS (Airborne Laser Scanning) remote sensing methods to identify terrain obstacles encountered during timber extraction in the skidding process with the aim of proposing accessibility solutions to the inner parts of forest stands using skidding trails. [...] Read more.
We applied UAV (Unmanned Aerial Vehicle) and ALS (Airborne Laser Scanning) remote sensing methods to identify terrain obstacles encountered during timber extraction in the skidding process with the aim of proposing accessibility solutions to the inner parts of forest stands using skidding trails. At the Vítovický žleb site, located east of Brno in the South Moravian Region of the Czech Republic, we analysed the accuracy of digital terrain models (DTMs) created from UAV LiDAR (Light Detection and Ranging), RGB (Red–Green–Blue) UAV, ALS data taken on site and publicly available LiDAR data DMR 5G (Digital Model of Relief of the Czech Republic, 5th Generation, based on airborne laser scanning, providing pre-classified ground points with an average density of 1 point/m2). UAV data were obtained using two types of drones: a DJI Mavic 2 mounted with an RGB photogrammetric camera and a GeoSLAM Horizon laser scanner on a DJI M600 Pro hexacopter. We achieved the best accuracy with UAV technologies, with an average deviation of 0.06 m, compared to 0.20 m and 0.71 m for ALS and DMR 5G, respectively. The RMSE (Root Mean Square Error) values further confirm the differences in accuracy, with UAV-based models reaching as low as 0.71 m compared to over 1.0 m for ALS and DMR 5G. The results demonstrated that UAVs are well-suited for detailed analysis of rugged terrain morphology and obstacle identification during timber extraction, potentially replacing physical terrain surveys for timber extraction planning. Meanwhile, ALS and DMR 5G data showed significant potential for use in planning the placement of skidding trails and determining the direction and length of timber extraction from logging sites to forest roads, primarily due to their ability to cover large areas effectively. Differences in the analysis results obtained using GIS (Geographic Information System) cost surface solutions applied to ALS and DMR 5G data DTMs were evident on logging sites with terrain obstacles, where the site-specific ALS data proved to be more precise. While DMR 5G is based on ALS data, its generalised nature results in lower accuracy, making site-specific ALS data preferable for analysing rugged terrain and planning timber extractions. However, DMR 5G remains suitable for use in more uniform terrain without obstacles. Thus, we recommend combining UAV and ALS technologies for terrain with obstacles, as we found this approach optimal for efficiently planning the logging-transport process. Full article
(This article belongs to the Section Forest Operations and Engineering)
Show Figures

Figure 1

15 pages, 14931 KiB  
Article
UAV-LiDAR-Based Structural Diversity of Subtropical Forests Under Different Management Practices in Southern China
by Xiaobo Hao and Yu Liu
Forests 2025, 16(5), 723; https://doi.org/10.3390/f16050723 - 24 Apr 2025
Viewed by 562
Abstract
Forest structural diversity, referring to the variety of physical structural traits, has been identified as a critical indicator of both plant species and environmental diversity. Mapping structural diversity serves as a cost-effective proxy for monitoring forest biodiversity and large-scale ecosystem functions like productivity. [...] Read more.
Forest structural diversity, referring to the variety of physical structural traits, has been identified as a critical indicator of both plant species and environmental diversity. Mapping structural diversity serves as a cost-effective proxy for monitoring forest biodiversity and large-scale ecosystem functions like productivity. Light detection and ranging (LiDAR) carried by unmanned aerial vehicles (UAVs) can achieve precise quantification of structural parameters with a resolution of sub-meter at the stand scale, providing robust support for accurately depicting three-dimensional forest structural features. Since forest management influences biodiversity and ecological functions by shaping the physical structure of forests, this study investigates how different forest management strategies affect structural diversity in China’s red soil hilly region. Using point cloud data obtained by unmanned aerial vehicle laser scanning (UAV-LS), we derived structural metrics including canopy volume diversity (CVD), and tree height diversity (THD), which were then used as variables to calculate the Shannon diversity index (SDI) of forests. The study focused on three forest types: close-to-nature broadleaf forest (CNBF), coniferous mature plantations (CPM), and close-to-nature coniferous forest (CNCF). Results revealed that CNBF exhibited the highest structural diversity, with superior values for canopy volume (CVD = 2.09 ± 0.35), tree height (THD = 1.72 ± 0.53), and canopy projected area diversity (CAD = 2.13 ± 0.32), approaching the upper range of the theoretical maximum for SDI (theoretical maximum ≈ 2.3; typical range: 0.5–2.0). This was attributed to optimal understory vegetation and higher biomass. Despite exhibiting greater tree height, CPM demonstrated lower structural diversity, while CNCF recorded a CVD (1.81 ± 0.39) similar to that of CPM but lower than that of CNBF. These results indicate that close-to-nature forest management enhances forest structural diversity. It is implied that the forest structural diversity can serve as an effective tool for evaluating forests biodiversity under different forest management strategies. The study also suggests that improving understory vegetation is a direction in the future management of coniferous plantations. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

36 pages, 68826 KiB  
Article
A Holistic High-Resolution Remote Sensing Approach for Mapping Coastal Geomorphology and Marine Habitats
by Evagoras Evagorou, Thomas Hasiotis, Ivan Theophilos Petsimeris, Isavela N. Monioudi, Olympos P. Andreadis, Antonis Chatzipavlis, Demetris Christofi, Josephine Kountouri, Neophytos Stylianou, Christodoulos Mettas, Adonis Velegrakis and Diofantos Hadjimitsis
Remote Sens. 2025, 17(8), 1437; https://doi.org/10.3390/rs17081437 - 17 Apr 2025
Cited by 4 | Viewed by 1184
Abstract
Coastal areas have been the target of interdisciplinary research aiming to support studies related to their socio-economic and ecological value and their role in protecting backshore ecosystems and assets from coastal erosion and flooding. Some of these studies focus on either onshore or [...] Read more.
Coastal areas have been the target of interdisciplinary research aiming to support studies related to their socio-economic and ecological value and their role in protecting backshore ecosystems and assets from coastal erosion and flooding. Some of these studies focus on either onshore or inshore areas using sensors and collecting valuable information that remains unknown and untapped by other researchers. This research demonstrates how satellite, aerial, terrestrial and marine remote sensing techniques can be integrated and inter-validated to produce accurate information, bridging methodologies with different scope. High-resolution data from Unmanned Aerial Vehicle (UAV) data and multispectral satellite imagery, capturing the onshore environment, were utilized to extract underwater information in Coral Bay (Cyprus). These data were systematically integrated with hydroacoustic including bathymetric and side scan sonar measurements as well as ground-truthing methods such as drop camera surveys and sample collection. Onshore, digital elevation models derived from UAV observations revealed significant elevation and shoreline changes over a one-year period, demonstrating clear evidence of beach modifications and highlighting coastal zone dynamics. Temporal comparisons and cross-section analyses displayed elevation variations reaching up to 0.60 m. Terrestrial laser scanning along a restricted sea cliff at the edge of the beach captured fine-scale geomorphological changes that arise considerations for the stability of residential properties at the top of the cliff. Bathymetric estimations derived from PlanetScope and Sentinel 2 imagery returned accuracies ranging from 0.92 to 1.52 m, whilst UAV reached 1.02 m. Habitat classification revealed diverse substrates, providing detailed geoinformation on the existing sediment type distribution. UAV data achieved 89% accuracy in habitat mapping, outperforming the 83% accuracy of satellite imagery and underscoring the value of high-resolution remote sensing for fine-scale assessments. This study emphasizes the necessity of extracting and integrating information from all available sensors for a complete geomorphological and marine habitat mapping that would support sustainable coastal management strategies. Full article
(This article belongs to the Special Issue Remote Sensing in Geomatics (Second Edition))
Show Figures

Graphical abstract

18 pages, 22688 KiB  
Article
Combining UAV Photogrammetry and TLS for Change Detection on Slovenian Coastal Cliffs
by Klemen Kregar and Klemen Kozmus Trajkovski
Drones 2025, 9(4), 228; https://doi.org/10.3390/drones9040228 - 21 Mar 2025
Viewed by 679
Abstract
This article examines the combined use of UAV (Unmanned Aerial Vehicle) photogrammetry and TLS (Terrestrial Laser Scanning) to detect changes in coastal cliffs in the Strunjan Nature Reserve. Coastal cliffs present unique surveying challenges, including limited access, unstable reference points due to erosion, [...] Read more.
This article examines the combined use of UAV (Unmanned Aerial Vehicle) photogrammetry and TLS (Terrestrial Laser Scanning) to detect changes in coastal cliffs in the Strunjan Nature Reserve. Coastal cliffs present unique surveying challenges, including limited access, unstable reference points due to erosion, GNSS (Global Navigation Satellite System) signal obstruction, dense vegetation, private property restrictions and weak mobile data. To overcome these limitations, UAV and TLS techniques are used with the help of GNSS and TPS (Total Positioning Station) surveying to establish a network of GCPs (Ground Control Points) for georeferencing. The methodology includes several epochs of data collection between 2019 and 2024, using a DJI Phantom 4 RTK for UAV surveys and a Riegl VZ-400 scanner for TLS. The data processing includes point cloud filtering, mesh comparison and a DoD (DEM of difference) analysis to quantify cliff surface changes. This study addresses the effects of vegetation by focusing on vegetation-free regions of interest distributed across the cliff face. The results aim to demonstrate the effectiveness and limitations of both methods for detecting and monitoring cliff erosion and provide valuable insights for coastal management and risk assessment. Full article
(This article belongs to the Special Issue Drone-Based Photogrammetric Mapping for Change Detection)
Show Figures

Figure 1

21 pages, 10174 KiB  
Article
Digitally Decoding Heritage: Analyzing the Sellman Tenant House Through HBIM and Digital Documentation Techniques
by Botao Li, Danielle S. Willkens, Shadi Alathamneh, Sharon C. Park and Junshan Liu
Virtual Worlds 2025, 4(1), 10; https://doi.org/10.3390/virtualworlds4010010 - 18 Mar 2025
Viewed by 709
Abstract
This study presents a comprehensive digital documentation and preservation effort for the Sellman Tenant House, a historic structure once part of the 18th-century Sellman Plantation in Maryland, USA. This research employs an array of digital technologies, including Terrestrial Laser Scanning (TLS), digital photogrammetry, [...] Read more.
This study presents a comprehensive digital documentation and preservation effort for the Sellman Tenant House, a historic structure once part of the 18th-century Sellman Plantation in Maryland, USA. This research employs an array of digital technologies, including Terrestrial Laser Scanning (TLS), digital photogrammetry, Unmanned Aerial Vehicles (UAVs), 3D virtual tours, and Heritage Building Information Modeling (HBIM), to document and analyze the construction techniques and historical evolution of the house. Given the absence of written records detailing its original construction, this study utilizes data from these digital documentation methods to explore the building’s structure and determine its construction timeline and methods. Additionally, this research investigates the potential of HBIM as an educational platform to enhance public understanding of heritage buildings by creating interactive and accessible digital models. The findings highlight the effectiveness of combining digital tools to decode vernacular construction and showcase the potential of HBIM in preserving and interpreting historic buildings for diverse audiences, especially for educational purposes. This research contributes to the growing field of digital heritage preservation by showcasing a case study of integrating multiple digital technologies to study, preserve, and promote understanding of a culturally significant yet understudied structure. Full article
Show Figures

Figure 1

25 pages, 9187 KiB  
Article
Digital Reconstruction Method for Low-Illumination Road Traffic Accident Scenes Using UAV and Auxiliary Equipment
by Xinyi Zhang, Zhiwei Guan, Xiaofeng Liu and Zejiang Zhang
World Electr. Veh. J. 2025, 16(3), 171; https://doi.org/10.3390/wevj16030171 - 14 Mar 2025
Cited by 1 | Viewed by 775
Abstract
In low-illumination environments, traditional traffic accident survey methods struggle to obtain high-quality data. This paper proposes a traffic accident reconstruction method utilizing an unmanned aerial vehicle (UAV) and auxiliary equipment. Firstly, a methodological framework for investigating traffic accidents under low-illumination conditions is developed. [...] Read more.
In low-illumination environments, traditional traffic accident survey methods struggle to obtain high-quality data. This paper proposes a traffic accident reconstruction method utilizing an unmanned aerial vehicle (UAV) and auxiliary equipment. Firstly, a methodological framework for investigating traffic accidents under low-illumination conditions is developed. Accidents are classified based on the presence of obstructions, and corresponding investigation strategies are formulated. As for the unobstructed scene, a UAV-mounted LiDAR scans the accident site to generate a comprehensive point cloud model. In the partially obstructed scene, a ground-based mobile laser scanner complements the areas that are obscured or inaccessible to the UAV-mounted LiDAR. Subsequently, the collected point cloud data are processed with a multiscale voxel iteration method for down-sampling to determine optimal parameters. Then, the improved normal distributions transform (NDT) algorithm and different filtering algorithms are adopted to register the ground and air point clouds, and the optimal combination of algorithms is selected, thus, to reconstruct a high-precision 3D point cloud model of the accident scene. Finally, two nighttime traffic accident scenarios are conducted. DJI Zenmuse L1 UAV LiDAR system and EinScan Pro 2X mobile scanner are selected for survey reconstruction. In both experiments, the proposed method achieved RMSE values of 0.0427 m and 0.0451 m, outperforming traditional aerial photogrammetry-based modeling with RMSE values of 0.0466 m and 0.0581 m. The results demonstrate that this method can efficiently and accurately investigate low-illumination traffic accident scenes without being affected by obstructions, providing valuable technical support for refined traffic management and accident analysis. Moreover, the challenges and future research directions are discussed. Full article
Show Figures

Figure 1

24 pages, 5096 KiB  
Article
Aboveground Biomass and Tree Mortality Revealed Through Multi-Scale LiDAR Analysis
by Inacio T. Bueno, Carlos A. Silva, Kristina Anderson-Teixeira, Lukas Magee, Caiwang Zheng, Eben N. Broadbent, Angélica M. Almeyda Zambrano and Daniel J. Johnson
Remote Sens. 2025, 17(5), 796; https://doi.org/10.3390/rs17050796 - 25 Feb 2025
Viewed by 1947
Abstract
Accurately monitoring aboveground biomass (AGB) and tree mortality is crucial for understanding forest health and carbon dynamics. LiDAR (Light Detection and Ranging) has emerged as a powerful tool for capturing forest structure across different spatial scales. However, the effectiveness of LiDAR for predicting [...] Read more.
Accurately monitoring aboveground biomass (AGB) and tree mortality is crucial for understanding forest health and carbon dynamics. LiDAR (Light Detection and Ranging) has emerged as a powerful tool for capturing forest structure across different spatial scales. However, the effectiveness of LiDAR for predicting AGB and tree mortality depends on the type of instrument, platform, and the resolution of the point cloud data. We evaluated the effectiveness of three distinct LiDAR-based approaches for predicting AGB and tree mortality in a 25.6 ha North American temperate forest. Specifically, we evaluated the following: GEDI-simulated waveforms from airborne laser scanning (ALS), grid-based structural metrics derived from unmanned aerial vehicle (UAV)-borne lidar data, and individual tree detection (ITD) from ALS data. Our results demonstrate varying levels of performance in the approaches, with ITD emerging as the most accurate for AGB modeling with a median R2 value of 0.52, followed by UAV (0.38) and GEDI (0.11). Our findings underscore the strengths of the ITD approach for fine-scale analysis, while grid-based forest metrics used to analyze the GEDI and UAV LiDAR showed promise for broader-scale monitoring, if more uncertainty is acceptable. Moreover, the complementary strengths across scales of each LiDAR method may offer valuable insights for forest management and conservation efforts, particularly in monitoring forest dynamics and informing strategic interventions aimed at preserving forest health and mitigating climate change impacts. Full article
(This article belongs to the Section Forest Remote Sensing)
Show Figures

Figure 1

22 pages, 4474 KiB  
Article
Advancing Stem Volume Estimation Using Multi-Platform LiDAR and Taper Model Integration for Precision Forestry
by Yongkyu Lee and Jungsoo Lee
Remote Sens. 2025, 17(5), 785; https://doi.org/10.3390/rs17050785 - 24 Feb 2025
Cited by 1 | Viewed by 1055
Abstract
Stem volume is a critical factor in managing and evaluating forest resources. At present, stem volume is commonly estimated indirectly by constructing a taper model that utilizes sampling, diameter at breast height (DBH), and tree height. However, these estimates are constrained by errors [...] Read more.
Stem volume is a critical factor in managing and evaluating forest resources. At present, stem volume is commonly estimated indirectly by constructing a taper model that utilizes sampling, diameter at breast height (DBH), and tree height. However, these estimates are constrained by errors arising from spatial and stand environment variations as well as uncertainties in height measurements. To address these issues, this study aimed to accurately estimate stem volume using light detection and ranging (LiDAR) technology, a key tool in modern precision forestry. LiDAR data were used to build comprehensive three-dimensional models of forests with multi-platform LiDAR systems. This approach allowed for precise measurements of tree heights and stem diameters at various heights, effectively mitigating the limitations of earlier measurement methods. Based on these data, a Kozak taper curve was developed at the individual tree level using LiDAR-derived tree height and diameter estimates. Integrating this curve with LiDAR data enabled a hybrid approach to estimating stem volume, facilitating the calculation of diameters at points not directly identifiable from LiDAR data alone. The proposed method was implemented and evaluated for two economically significant tree species in Korea: Pinus koraiensis and Larix kaempferi. The RMSE comparison between the taper curve-based approach and the hybrid volume estimation method showed that, for Pinus koraiensis, the RMSE was 0.11 m3 using the taper curve-based approach and 0.07 m3 for the hybrid method, while for Larix kaempferi, the RMSE was 0.13 m3 and 0.05 m3, respectively. The estimation error of the hybrid method was approximately half that of the taper curve-based approach. Consequently, the hybrid volume estimation method, which integrates LiDAR and the taper model, overcomes the limitations of conventional taper curve-based approaches and contributes to improving the accuracy of forest resource monitoring. Full article
(This article belongs to the Special Issue Remote Sensing-Assisted Forest Inventory Planning)
Show Figures

Figure 1

22 pages, 29748 KiB  
Article
An Integrated Method for Inverting Beach Surface Moisture by Fusing Unmanned Aerial Vehicle Orthophoto Brightness with Terrestrial Laser Scanner Intensity
by Jun Zhu, Kai Tan, Feijian Yin, Peng Song and Faming Huang
Remote Sens. 2025, 17(3), 522; https://doi.org/10.3390/rs17030522 - 3 Feb 2025
Viewed by 832
Abstract
Beach surface moisture (BSM) is crucial to studying coastal aeolian sand transport processes. However, traditional measurement techniques fail to accurately monitor moisture distribution with high spatiotemporal resolution. Remote sensing technologies have garnered widespread attention for providing rapid and non-contact moisture measurements, but a [...] Read more.
Beach surface moisture (BSM) is crucial to studying coastal aeolian sand transport processes. However, traditional measurement techniques fail to accurately monitor moisture distribution with high spatiotemporal resolution. Remote sensing technologies have garnered widespread attention for providing rapid and non-contact moisture measurements, but a single method has inherent limitations. Passive remote sensing is challenged by complex beach illumination and sediment grain size variability. Active remote sensing represented by LiDAR (light detection and ranging) exhibits high sensitivity to moisture, but requires cumbersome intensity correction and may leave data holes in high-moisture areas. Using machine learning, this research proposes a BSM inversion method that fuses UAV (unmanned aerial vehicle) orthophoto brightness with intensity recorded by TLSs (terrestrial laser scanners). First, a back propagation (BP) network rapidly corrects original intensity with in situ scanning data. Second, beach sand grain size is estimated based on the characteristics of the grain size distribution. Then, by applying nearest point matching, intensity and brightness data are fused at the point cloud level. Finally, a new BP network coupled with the fusion data and grain size information enables automatic brightness correction and BSM inversion. A field experiment at Baicheng Beach in Xiamen, China, confirms that this multi-source data fusion strategy effectively integrates key features from diverse sources, enhancing the BP network predictive performance. This method demonstrates robust predictive accuracy in complex beach environments, with an RMSE of 2.63% across 40 samples, efficiently producing high-resolution BSM maps that offer values in studying aeolian sand transport mechanisms. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

24 pages, 8042 KiB  
Article
Quantitative Genetic Aspects of Accuracy of Tree Biomass Measurement Using LiDAR
by Haruka Sano, Naoko Miura, Minoru Inamori, Yamato Unno, Wei Guo, Sachiko Isobe, Kazutaka Kusunoki and Hiroyoshi Iwata
Remote Sens. 2024, 16(24), 4790; https://doi.org/10.3390/rs16244790 - 22 Dec 2024
Viewed by 1354
Abstract
The growing focus on the role of forests in carbon sequestration highlights the importance of accurately and efficiently measuring biophysical traits, such as diameter at breast height (DBH) and tree height. Understanding genetic contributions to trait variation is crucial for enhancing carbon storage [...] Read more.
The growing focus on the role of forests in carbon sequestration highlights the importance of accurately and efficiently measuring biophysical traits, such as diameter at breast height (DBH) and tree height. Understanding genetic contributions to trait variation is crucial for enhancing carbon storage through the genetic improvement of forest trees. Light detection and ranging (LiDAR) has been used to estimate DBH and tree height; however, few studies have explored the heritability of these traits or assessed the accuracy of biomass increment selection based on them. Therefore, this study aimed to leverage LiDAR to measure DBH and tree height, estimate tree heritability, and evaluate the accuracy of timber volume selection based on these traits, using 60-year-old larch as the study material. Unmanned aerial vehicle laser scanning (ULS) and backpack laser scanning (BLS) were compared against hand-measured values. The accuracy of DBH estimations using BLS resulted in a root mean square error (RMSE) of 2.7 cm and a coefficient of determination of 0.67. Conversely, the accuracy achieved with ULS was 4.0 cm in RMSE and a 0.24 coefficient of determination. The heritability of DBH was higher with BLS than with ULS and even exceeded that of hand measurements. Comparisons of timber volume selection accuracy based on the measured traits demonstrated comparable performance between BLS and ULS. These findings underscore the potential of using LiDAR remote sensing to quantitatively measure forest tree biomass and facilitate their genetic improvement of carbon-sequestration ability based on these measurements. Full article
Show Figures

Figure 1

21 pages, 10310 KiB  
Article
Rapid Mapping: Unmanned Aerial Vehicles and Mobile-Based Remote Sensing for Flash Flood Consequence Monitoring (A Case Study of Tsarevo Municipality, South Bulgarian Black Sea Coast)
by Stelian Dimitrov, Bilyana Borisova, Ivo Ihtimanski, Kalina Radeva, Martin Iliev, Lidiya Semerdzhieva and Stefan Petrov
Urban Sci. 2024, 8(4), 255; https://doi.org/10.3390/urbansci8040255 - 16 Dec 2024
Viewed by 1995
Abstract
This research seeks to develop and test a rapid mapping approach using unmanned aerial vehicles (UAVs) and terrestrial laser scanning to provide precise, high-resolution spatial data for urban areas right after disasters. This mapping aims to support efforts to protect the population and [...] Read more.
This research seeks to develop and test a rapid mapping approach using unmanned aerial vehicles (UAVs) and terrestrial laser scanning to provide precise, high-resolution spatial data for urban areas right after disasters. This mapping aims to support efforts to protect the population and infrastructure while analyzing the situation in affected areas. It focuses on flood-prone regions lacking modern hydrological data and where regular monitoring is absent. This study was conducted in resort villages and adjacent catchments in Bulgaria’s southern Black Sea coast with leading maritime tourism features, after a flash flood on 5 September 2023 caused human casualties and severe material damage. The resulting field data with a spatial resolution of 3 to 5 cm/px were used to trace the effects of the flood on topographic surface changes and structural disturbances. Flood simulation using UAV data and a digital elevation model was performed. The appropriateness of contemporary land use forms and infrastructure location in catchments is discussed. The role of spatial data in the analysis of genetic factors in risk assessment is commented on. The results confirm the applicability of rapid mapping in informing the activities of responders in a period of increased vulnerability following a flood. The results were used by Bulgaria’s Ministry of Environment and Water to analyze the situation shortly after the disaster. Full article
Show Figures

Figure 1

25 pages, 8832 KiB  
Article
3D-CNN with Multi-Scale Fusion for Tree Crown Segmentation and Species Classification
by Jiayao Wang, Zhen Zhen, Yuting Zhao, Ye Ma and Yinghui Zhao
Remote Sens. 2024, 16(23), 4544; https://doi.org/10.3390/rs16234544 - 4 Dec 2024
Cited by 2 | Viewed by 1534
Abstract
Natural secondary forests play a crucial role in global ecological security, climate change mitigation, and biodiversity conservation. However, accurately delineating individual tree crowns and identifying tree species in dense natural secondary forests remains a challenge. This study combines deep learning with traditional image [...] Read more.
Natural secondary forests play a crucial role in global ecological security, climate change mitigation, and biodiversity conservation. However, accurately delineating individual tree crowns and identifying tree species in dense natural secondary forests remains a challenge. This study combines deep learning with traditional image segmentation methods to improve individual tree crown detection and species classification. The approach utilizes hyperspectral, unmanned aerial vehicle laser scanning data, and ground survey data from Maoershan Forest Farm in Heilongjiang Province, China. The study consists of two main processes: (1) combining semantic segmentation algorithms (U-Net and Deeplab V3 Plus) with watershed transform (WTS) for tree crown detection (U-WTS and D-WTS algorithms); (2) resampling the original images to different pixel densities (16 × 16, 32 × 32, and 64 × 64 pixels) and inputting them into five 3D-CNN models (ResNet10, ResNet18, ResNet34, ResNet50, VGG16). For tree species classification, the MSFB combined with the CNN models were used. The results show that the U-WTS algorithm achieved a recall of 0.809, precision of 0.885, and an F-score of 0.845. ResNet18 with a pixel density of 64 × 64 pixels achieved the highest overall accuracy (OA) of 0.916, an improvement of 0.049 over the original images. After incorporating MSFB, the OA improved by approximately 0.04 across all models, with only a 6% increase in model parameters. Notably, the floating-point operations (FLOPs) of ResNet18 + MSFB were only one-eighth of those of ResNet18 with 64 × 64 pixels, while achieving similar accuracy (OA: 0.912 vs. 0.916). This framework offers a scalable solution for large-scale tree species distribution mapping and forest resource inventories. Full article
Show Figures

Figure 1

15 pages, 4236 KiB  
Article
Automated Estimation of Building Heights with ICESat-2 and GEDI LiDAR Altimeter and Building Footprints: The Case of New York City and Los Angeles
by Yunus Kaya
Buildings 2024, 14(11), 3571; https://doi.org/10.3390/buildings14113571 - 9 Nov 2024
Cited by 1 | Viewed by 1933
Abstract
Accurate estimation of building height is crucial for urban aesthetics and urban planning as it enables an accurate calculation of the shadow period, the effective management of urban energy consumption, and thorough investigation of regional climatic patterns and human-environment interactions. Although three-dimensional (3D) [...] Read more.
Accurate estimation of building height is crucial for urban aesthetics and urban planning as it enables an accurate calculation of the shadow period, the effective management of urban energy consumption, and thorough investigation of regional climatic patterns and human-environment interactions. Although three-dimensional (3D) cadastral data, ground measurements (total station, Global Positioning System (GPS), ground laser scanning) and air-based (such as Unmanned Aerial Vehicle—UAV) measurement methods are used to determine building heights, more comprehensive and advanced techniques need to be used in large-scale studies, such as in cities or countries. Although satellite-based altimetry data, such as Ice, Cloud and land Elevation Satellite (ICESat-2) and Global Ecosystem Dynamics Investigation (GEDI), provide important information on building heights due to their high vertical accuracy, it is often difficult to distinguish between building photons and other objects. To overcome this challenge, a self-adaptive method with minimal data is proposed. Using building photons from ICESat-2 and GEDI data and building footprints from the New York City (NYC) and Los Angeles (LA) open data platform, the heights of 50,654 buildings in NYC and 84,045 buildings in LA were estimated. As a result of the study, root mean square error (RMSE) 8.28 m and mean absolute error (MAE) 6.24 m were obtained for NYC. In addition, 46% of the buildings had an RMSE of less than 5 m and 7% less than 1 m. In LA data, the RMSE and MAE were 6.42 m and 4.66 m, respectively. It was less than 5 m in 67% of the buildings and less than 1 m in 7%. However, ICESat-2 data had a better RMSE than GEDI data. Nevertheless, combining the two data provided the advantage of detecting more building heights. This study highlights the importance of using minimum data for determining urban-scale building heights. Moreover, continuous monitoring of urban alterations using satellite altimetry data would provide more effective energy consumption assessment and management. Full article
Show Figures

Figure 1

19 pages, 14346 KiB  
Article
Potential of Low-Cost UAV Photogrammetry for Documenting Hard-to-Access Interior Spaces Through Building Openings
by Marián Marčiš, Marek Fraštia and Katarína Terao Vošková
Heritage 2024, 7(11), 6173-6191; https://doi.org/10.3390/heritage7110290 - 1 Nov 2024
Viewed by 1380
Abstract
Unmanned aerial vehicles (UAVs) are primarily used in the field of cultural heritage for mapping the exteriors of larger objects and documenting the roofs and façades of tall structures that cannot be efficiently or feasibly measured using conventional terrestrial technologies and methods. However, [...] Read more.
Unmanned aerial vehicles (UAVs) are primarily used in the field of cultural heritage for mapping the exteriors of larger objects and documenting the roofs and façades of tall structures that cannot be efficiently or feasibly measured using conventional terrestrial technologies and methods. However, due to the considerable diversity of cultural heritage, there are practical demands for the measurement of complex and inaccessible objects in interior spaces. This article focuses on the use of two different off-the-shelf UAVs for partial photogrammetric reconstruction of the attic of a mining house, which was only visible through a window in the gable wall. Data from both UAVs were compared with each other and with terrestrial laser scanning. Despite the lower quality of the results from the DJI Mini 4 Pro compared to the DJI Mavic 3 Enterprise, the results from both UAVs would still be suitable for documenting the interior attic spaces. However, a detailed analysis of the photogrammetric data indicates that, when selecting a UAV for this purpose, it is necessary to consider the limitations of the camera system, which may lead to a reduction in the geometric accuracy and completeness of the point clouds. Full article
(This article belongs to the Special Issue 3D Reconstruction of Cultural Heritage and 3D Assets Utilisation)
Show Figures

Figure 1

Back to TopTop