Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (33)

Search Parameters:
Keywords = uniparental disomy (UPD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 227 KiB  
Case Report
Mixed Segmental Uniparental Disomy of Chromosome 15q11-q1 Coexists with Homozygous Variant in GNB5 Gene in Child with Prader–Willi and Lodder–Merla Syndrome
by Tomasz Marczyk, Maria Libura, Beata Wikiera, Magdalena Góralska, Agnieszka Pollak, Marlena Telenga, Rafał Płoski and Robert Śmigiel
Genes 2025, 16(6), 689; https://doi.org/10.3390/genes16060689 - 5 Jun 2025
Viewed by 683
Abstract
Background: Uniparental disomy (UPD) refers to the condition in which both chromosomes (or part of chromosome) of a pair are inherited from the same parent. There are two types of UPD: uniparental isodisomy (both chromosomes inherited from one parent are identical copies) and [...] Read more.
Background: Uniparental disomy (UPD) refers to the condition in which both chromosomes (or part of chromosome) of a pair are inherited from the same parent. There are two types of UPD: uniparental isodisomy (both chromosomes inherited from one parent are identical copies) and uniparental heterodisomy (two different chromosomes are inherited from one parent). UPD presents two primary developmental risks: recessive trait inheritance or an imprinting disorder. These risks may coexist, leading to an ultra-rare comorbidity. Managing the comorbidities associated with rare diseases presents unique clinical challenges. Results: The existence of such phenomena is evidenced by our case report of a boy who was ultimately diagnosed with two rare diseases: Prader–Willi syndrome (PWS), due to the maternal uniparental disomy of chromosome 15 (UPD), and autosomal recessive Lodder–Merla type 1 syndrome, linked to a novel pathogenic variant in the G protein subunit β 5 (GNB5) gene, as detailed in this paper. Conclusions: An unusual or severe phenotype in a patient diagnosed with PWS should invariably prompt the consideration of a comorbid genetic disease attributable to genes located in the PWS critical region of chromosome 15q, or elsewhere on chromosome 15. In cases of epileptic encephalopathy with cardiac arrhythmia, prompt consultation with a cardiologist and comprehensive genetic testing are essential to reduce the risks associated with untreated arrhythmia and ensure the provision of appropriate and safe anti-epileptic therapy. The presented case provides further support for the hypothesis that uniparental disomy may serve as an underlying cause of Lodder–Merla syndrome. This underscores the significance of comprehensive genetic testing, encompassing parental testing and familial cascade testing (in selected cases where there is consanguinity, or the likelihood of close common ancestral background between partners) to establish the recurrence risk. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
12 pages, 2049 KiB  
Article
Functional Independence of Taiwanese Children with Silver–Russell Syndrome
by Hung-Hsiang Fang, Chung-Lin Lee, Chih-Kuang Chuang, Huei-Ching Chiu, Ya-Hui Chang, Yuan-Rong Tu, Yun-Ting Lo, Jun-Yi Wu, Yen-Yin Chou, Chung-Hsing Wang, Shio-Jean Lin, Shao-Yin Chu, Chen Yang, Tsung-Ying Ou, Hsiang-Yu Lin and Shuan-Pei Lin
Diagnostics 2025, 15(9), 1109; https://doi.org/10.3390/diagnostics15091109 - 27 Apr 2025
Viewed by 1649
Abstract
Background: Silver–Russell syndrome (SRS) is a genetic disorder characterized by prenatal and postnatal growth retardation. Affected individuals commonly present with low birth weight, intrauterine growth restriction, postnatal short stature, hemihypotrophy, characteristic facial features, and body asymmetry. Methods: This study includes 24 Taiwanese children [...] Read more.
Background: Silver–Russell syndrome (SRS) is a genetic disorder characterized by prenatal and postnatal growth retardation. Affected individuals commonly present with low birth weight, intrauterine growth restriction, postnatal short stature, hemihypotrophy, characteristic facial features, and body asymmetry. Methods: This study includes 24 Taiwanese children with SRS aged 2 years to 13 years and 3 months who were recruited at MacKay Memorial Hospital and other Taiwan hospitals between January 2013 and December 2024. Functional independence was assessed using the Functional Independence Measure for Children (WeeFIM) to evaluate self-care, mobility, and cognition domains. Results: The mean total WeeFIM score was 106.9 ± 23.2 (range: 54–126), with mean self-care, mobility, and cognition scores of 44.4 ± 13.8 (maximum 56), 32.4 ± 5.1 (maximum 35), and 30.2 ± 6.0 (maximum 35), respectively. The results of the restricted cubic spline analysis reveal a clear positive linear correlation before school age (approximately 72 months), followed by a plateau (p for nonlinearity < 0.05). Traceable molecular data were available for thirteen participants, of whom nine (69%) had loss of methylation at chromosome 11p15 (11p15LOM), and four (31%) had maternal uniparental disomy of chromosome 7 (upd(7)mat). Of the 24 children, 46% required assistance with bathing, which was strongly correlated with self-care ability and body height. In contrast, most of the children had independence in mobility tasks such as walking and stair climbing. However, some required support in cognitive tasks, including problem-solving, comprehension, and expression. Overall, the included children reached a functional plateau later than the normative population, with the greatest delays in self-care and mobility domains. Conclusions: This study highlights that Taiwanese children with SRS require support in self-care and cognitive tasks. Functional independence in self-care and mobility domains was positively associated with body height. The WeeFIM questionnaire effectively identified strengths and limitations, emphasizing the need for individualized support in daily activities. Full article
(This article belongs to the Special Issue Advances in the Diagnosis and Management of Pediatric Diseases)
Show Figures

Figure 1

10 pages, 1156 KiB  
Case Report
Maternal Uniparental Isodisomy of Chromosome 6: A Novel Case of Teratoma and Autism Spectrum Disorder with a Diagnostic and Management Framework
by Aleksandra Świeca, Maria Franaszczyk, Agnieszka Maryniak, Patryk Lipiński, Rafał Płoski and Krzysztof Szczałuba
Genes 2025, 16(4), 434; https://doi.org/10.3390/genes16040434 - 5 Apr 2025
Viewed by 939
Abstract
Background: Uniparental disomy (UPD) is the inheritance of both copies of a chromosome from a single parent, leading to distinct genetic conditions. Maternal UPD of chromosome 6 (UPD(6)mat) is extremely rare, with few molecularly confirmed cases reported. Methods: We report a prematurely born [...] Read more.
Background: Uniparental disomy (UPD) is the inheritance of both copies of a chromosome from a single parent, leading to distinct genetic conditions. Maternal UPD of chromosome 6 (UPD(6)mat) is extremely rare, with few molecularly confirmed cases reported. Methods: We report a prematurely born female with isodisomic UPD(6)mat, presenting with intrauterine growth restriction (IUGR), developmental delay, autism spectrum disorder, dysmorphic features, and a sacrococcygeal teratoma. In addition, we reviewed 24 confirmed UPD(6)mat cases to assess clinical patterns in prenatal findings, birth outcomes, and postnatal features. Results: Trio whole-exome sequencing revealed complete isodisomy of chromosome 6 and a de novo heterozygous DIAPH2 variant of uncertain significance. In the literature review, IUGR was present in 87% of cases, with most individuals born small for gestational age and preterm. Failure to thrive and neurodevelopmental issues were also frequent. While the exact molecular basis remains unknown, imprinting disturbances—similar to those in UPD(6)pat—and cryptic trisomy 6 mosaicism, particularly in heterodisomy, are the most likely mechanisms. No specific gene or consistent epigenetic abnormality has been identified. Conclusions: This study aims to enhance the understanding of the genetic and phenotypic spectrum of UPD(6)mat, improving diagnostic and management approaches for this ultra-rare genetic disorder. We propose a detailed list of clinical assessments and tests to be performed following the detection of maternal uniparental disomy of chromosome 6. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 813 KiB  
Article
Molecular and Clinical Features of Adrenocortical Tumors in Beckwith–Wiedemann Spectrum
by Diana Carli, Federico Rondot, Maria Luca, Anna Campello, Stefano Gabriele Vallero, Elisa Tirtei, Andrea Gazzin, Simona Cardaropoli, Francesca Montanari, Claudio Graziano, Paola Quarello, Abu Saadat, Angela Sparago, Giovanni Battista Ferrero, Franca Fagioli and Alessandro Mussa
Cancers 2024, 16(23), 3967; https://doi.org/10.3390/cancers16233967 - 26 Nov 2024
Viewed by 1091
Abstract
Background/Objectives: Adrenocortical tumors (ACTs), including adrenocortical adenoma (ACA) and carcinoma (ACC), represent 0.3–0.4% of pediatric tumors. Beckwith–Wiedemann spectrum (BWSp) confer an increased risk of ACTs, but prognosis, management, and associated molecular characteristics are unclear. Methods: This paper combines a literature review of 54 [...] Read more.
Background/Objectives: Adrenocortical tumors (ACTs), including adrenocortical adenoma (ACA) and carcinoma (ACC), represent 0.3–0.4% of pediatric tumors. Beckwith–Wiedemann spectrum (BWSp) confer an increased risk of ACTs, but prognosis, management, and associated molecular characteristics are unclear. Methods: This paper combines a literature review of 54 published cases of BWSp-ACT with a report of one newly identified patient, totaling 55 cases with a confirmed BWSp clinical and/or molecular diagnosis. Results: Nineteen patients with ACA, 33 with ACC, and 3 with ACT of uncertain malignant potential (umACT) were included. Twenty patients had uniparental disomy of chromosome 11p15.5 (patUPD11), 11imprinting Center 2 Loss-of-methylation (IC2-LoM), and had 2 11p15 locus duplication. Eleven patients were diagnosed during cancer screening procedures, including two metastatic at diagnosis ACC. Conclusions: Almost half of ACC patients reached the minimum score for clinical BWSp diagnosis only after ACC onset, suggesting that the BWSp score has limited value for the early diagnosis in such a setting. Two patients with metastatic ACC had a histopathological Wieneke score ≤2, not correlating with clinical malignancy and confirming limitations of the current histopathological classification, as previously documented. Ultrasound screening failed identifying the ACC before metastasis in two cases, indicating an urgent need to develop new strategies for screening of ACTs in BWSp. Furthermore, some cases of metastatic ACC exhibited unexpectedly indolent behavior despite being malignant. Full article
(This article belongs to the Section Pediatric Oncology)
Show Figures

Figure 1

13 pages, 316 KiB  
Review
Is Oxytocin a Contributor to Behavioral and Metabolic Features in Prader–Willi Syndrome?
by Maria Petersson and Charlotte Höybye
Curr. Issues Mol. Biol. 2024, 46(8), 8767-8779; https://doi.org/10.3390/cimb46080518 - 13 Aug 2024
Cited by 4 | Viewed by 1760
Abstract
Prader–Willi Syndrome (PWS) is a rare genetic disorder typically characterized by decreased social interaction, hyperphagia, poor behavioral control and temper tantrums, together with a high risk of morbid obesity unless food intake is controlled. The genetic defects that cause PWS include paternal 15q [...] Read more.
Prader–Willi Syndrome (PWS) is a rare genetic disorder typically characterized by decreased social interaction, hyperphagia, poor behavioral control and temper tantrums, together with a high risk of morbid obesity unless food intake is controlled. The genetic defects that cause PWS include paternal 15q deletion (estimated in 60% of cases), chromosome 15 maternal uniparental disomy (UPD) (estimated in 35% of cases) and imprinting defects and translocations. Several studies indicate an oxytocin deficiency in PWS. Oxytocin is a hypothalamic nonapeptide with receptors located in the brain and in various other tissues in the body. It acts as a neuropeptide in several brain areas of great importance for behavioral and metabolic effects, as well as a neurohypophyseal hormone released into the circulation. Oxytocin in both rats and humans has strong and long-lasting behavioral and metabolic effects. Thus, an oxytocin deficiency might be involved in several of the behavioral and metabolic symptoms characterizing PWS. Treatment with oxytocin has, in some studies, shown improvement in psycho-social behavior and hyperphagia in individuals with PWS. This review focus on the behavioral and metabolic effects of oxytocin, the symptoms of a potential oxytocin deficiency in PWS and the effects of oxytocin treatment. Full article
(This article belongs to the Special Issue Current Advances in Oxytocin Research)
13 pages, 20689 KiB  
Article
Diagnosis of Two Unrelated Syndromes of Prader-Willi and Calpainopathy: Insight from Trio Whole Genome Analysis and Isodisomy Mapping
by Mario Cuk, Busra Unal, Andjela Bevanda, Connor P. Hayes, McKenzie Walker, Feruza Abraamyan, Robert Beluzic, Kristina Crkvenac Gornik, David Ozretic, Maja Prutki, Qian Nie, Honey V. Reddi and Arezou A. Ghazani
Genes 2024, 15(7), 946; https://doi.org/10.3390/genes15070946 - 19 Jul 2024
Cited by 1 | Viewed by 1759
Abstract
Purpose: An investigation for the co-occurrence of two unrelated genetic disorders of muscular dystrophy and Prader-Willi syndrome (PWS) (OMIM#176270) using joint whole genome sequencing (WGS). Methods: Trio WGS joint analysis was performed to investigate the genetic etiology in a proband with PWS, prolonged [...] Read more.
Purpose: An investigation for the co-occurrence of two unrelated genetic disorders of muscular dystrophy and Prader-Willi syndrome (PWS) (OMIM#176270) using joint whole genome sequencing (WGS). Methods: Trio WGS joint analysis was performed to investigate the genetic etiology in a proband with PWS, prolonged muscular hypotonia associated hyperCKemia, and early-onset obesity. The parents were unaffected. Results: Results showed maternal isodisomy uniparental disomy (UPD) in chromosome 15, expanding from 15q11.2 to 15q22.2, including PWS regions at 15q11.2–15q13. Maternal heterodisomy was detected from 15q22.2 to 15q26.3. A pathogenic variant, NM_000070.3(CAPN3):c.550del (p.Thr184fs), was identified at 15q15.1 in a heterozygous state in the mother that was homozygous in the proband due to maternal isodisomy. Conclusion: This is the first study of the concurrent molecular etiology of PWS and calpainopathy (OMIM#253600) in the same patient. This report highlights the utility of joint analysis and the need for the assessment of autosomal recessive disease in regions of isodisomy in patients with complex and unexplained phenotypes. Full article
(This article belongs to the Special Issue Precision Medicine and Genetics)
Show Figures

Figure 1

10 pages, 232 KiB  
Article
Mosaicism for Autosomal Trisomies: A Comprehensive Analysis of 1266 Published Cases Focusing on Maternal Age and Reproductive History
by Natalia V. Kovaleva and Philip D. Cotter
Genes 2024, 15(6), 778; https://doi.org/10.3390/genes15060778 - 13 Jun 2024
Viewed by 1406
Abstract
Mosaicism for autosomal trisomy is uncommon in clinical practice. However, despite its rarity among both prenatally and postnatally diagnoses, there are a large number of characterized and published cases. Surprisingly, in contrast to regular trisomies, no attempts at systematic analyses of mosaic carriers’ [...] Read more.
Mosaicism for autosomal trisomy is uncommon in clinical practice. However, despite its rarity among both prenatally and postnatally diagnoses, there are a large number of characterized and published cases. Surprisingly, in contrast to regular trisomies, no attempts at systematic analyses of mosaic carriers’ demographics were undertaken. This is the first study aimed to address this gap. For that, we have screened more than eight hundred publications on mosaic trisomies, reviewing data including gender and clinical status of mosaic carriers, maternal age and reproductive history. In total, 596 publications were eligible for analysis, containing data on 948 prenatal diagnoses, including true fetal mosaicism (TFM) and confined placental mosaicism (CPM), and on 318 cases of postnatally detected mosaicism (PNM). No difference was found in maternal age between normal pregnancy outcomes with appropriate birth weight and those with intrauterine growth restriction. Unexpectedly, a higher proportion of advanced maternal ages (AMA) was found in normal outcomes compared to abnormal ones (abnormal fetus or newborn) and fetal losses, 73% vs. 56% and 50%, p = 0.0015 and p = 0.0011, correspondingly. Another intriguing finding was a higher AMA proportion in mosaic carriers with concomitant uniparental disomy (UPD) for chromosomes 7, 14, 15, and 16 compared to carriers with biparental disomy (BPD) (72% vs. 58%, 92% vs. 55%, 87% vs. 78%, and 65% vs. 24%, correspondingly); overall figures were 78% vs. 48%, p = 0.0026. Analysis of reproductive histories showed a very poor reporting but almost two-fold higher rate of mothers reporting a previous fetal loss from PNM cohort (in which almost all patients were clinically abnormal) compared to mothers from the TFM and CPM cohorts (with a large proportion of normal outcomes), 30% vs. 16%, p = 0.0072. The occurrence of a previous pregnancy with a chromosome abnormality was 1 in 13 in the prenatal cohort and 1 in 16 in the postnatal cohort, which are five-fold higher compared to published studies on non-mosaic trisomies. We consider the data obtained in this study to be preliminary despite the magnitude of the literature reviewed since reporting of detailed data was mostly poor, and therefore, the studied cohorts do not represent “big data”. Nevertheless, the information obtained is useful both for clinical genetic counseling and for modeling further studies. Full article
(This article belongs to the Special Issue Genomic Mosaicism in Human Development and Diseases)
19 pages, 1391 KiB  
Review
Human IGF2 Gene Epigenetic and Transcriptional Regulation: At the Core of Developmental Growth and Tumorigenic Behavior
by Pierluigi Scalia, Stephen J. Williams and Yoko Fujita-Yamaguchi
Biomedicines 2023, 11(6), 1655; https://doi.org/10.3390/biomedicines11061655 - 7 Jun 2023
Cited by 10 | Viewed by 5711
Abstract
Regulation of the human IGF2 gene displays multiple layers of control, which secures a genetically and epigenetically predetermined gene expression pattern throughout embryonal growth and postnatal life. These predominantly nuclear regulatory mechanisms converge on the function of the IGF2-H19 gene cluster on Chromosome [...] Read more.
Regulation of the human IGF2 gene displays multiple layers of control, which secures a genetically and epigenetically predetermined gene expression pattern throughout embryonal growth and postnatal life. These predominantly nuclear regulatory mechanisms converge on the function of the IGF2-H19 gene cluster on Chromosome 11 and ultimately affect IGF2 gene expression. Deregulation of such control checkpoints leads to the enhancement of IGF2 gene transcription and/or transcript stabilization, ultimately leading to IGF-II peptide overproduction. This type of anomaly is responsible for the effects observed in terms of both abnormal fetal growth and increased cell proliferation, typically observed in pediatric overgrowth syndromes and cancer. We performed a review of relevant experimental work on the mechanisms affecting the human IGF2 gene at the epigenetic, transcriptional and transcript regulatory levels. The result of our work, indeed, provides a wider and diversified scenario for IGF2 gene activation than previously envisioned by shedding new light on its extended regulation. Overall, we focused on the functional integration between the epigenetic and genetic machinery driving its overexpression in overgrowth syndromes and malignancy, independently of the underlying presence of loss of imprinting (LOI). The molecular landscape provided at last strengthens the role of IGF2 in cancer initiation, progression and malignant phenotype maintenance. Finally, this review suggests potential actionable targets for IGF2 gene- and regulatory protein target-degradation therapies. Full article
Show Figures

Figure 1

9 pages, 2223 KiB  
Case Report
Identifying the Carcinogenic Mechanism of Malignant Struma Ovarii Using Whole-Exome Sequencing and DNA Methylation Analysis
by Hitomi Yamashita, Kentaro Nakayama, Kosuke Kanno, Tomoka Ishibashi, Masako Ishikawa, Seiya Sato, Koji Iida, Sultana Razia and Satoru Kyo
Curr. Issues Mol. Biol. 2023, 45(3), 1843-1851; https://doi.org/10.3390/cimb45030118 - 23 Feb 2023
Cited by 4 | Viewed by 2480
Abstract
Background: Since malignant struma ovarii is a very rare disease, its carcinogenic mechanism has not been elucidated. Here, we sought to identify the genetic lesions that may have led to the carcinogenesis of a rare case of malignant struma ovarii (follicular carcinoma) with [...] Read more.
Background: Since malignant struma ovarii is a very rare disease, its carcinogenic mechanism has not been elucidated. Here, we sought to identify the genetic lesions that may have led to the carcinogenesis of a rare case of malignant struma ovarii (follicular carcinoma) with peritoneal dissemination. Methods: DNA was extracted from the paraffin-embedded sections of normal uterine tissues and malignant struma ovarii for genetic analysis. Whole-exome sequencing and DNA methylation analysis were then performed. Results: Germline variants of RECQL4, CNTNAP2, and PRDM2, which are tumor-suppressor genes, were detected by whole-exome sequencing. Somatic uniparental disomy (UPD) was also observed in these three genes. Additionally, the methylation of FRMD6-AS2, SESN3, CYTL1, MIR4429, HIF3A, and ATP1B2, which are associated with tumor growth suppression, was detected by DNA methylation analysis. Conclusions: Somatic UPD and DNA methylation in tumor suppressor genes may be associated with the pathogenesis of malignant struma ovarii. To our knowledge, this is the first report of whole-exome sequencing and DNA methylation analysis in malignant struma ovarii. Genetic and DNA methylation analysis may help elucidate the mechanism of carcinogenesis in rare diseases and guide treatment decisions. Full article
(This article belongs to the Special Issue Next-Generation Sequencing (NGS) Technique and Personalized Medicine)
Show Figures

Figure 1

10 pages, 2349 KiB  
Case Report
Prenatal Diagnosis of Uniparental Disomy in Cases of Rare Autosomal Trisomies Detected Using Noninvasive Prenatal Test: A Case of Prader–Willi Syndrome
by Da Kyung Hong, Ji Eun Park, Kyung Min Kang, Sung Han Shim, So Hyun Shim, You Jung Han, Hee Young Cho and Dong Hyun Cha
Diagnostics 2023, 13(4), 580; https://doi.org/10.3390/diagnostics13040580 - 4 Feb 2023
Cited by 4 | Viewed by 3809
Abstract
Rare autosomal trisomies (RATs) other than common aneuploidies can be detected using noninvasive prenatal testing (NIPT). However, conventional karyotyping is insufficient for evaluating diploid fetuses with uniparental disomy (UPD) due to trisomy rescue. Using the diagnostic process for Prader–Willi syndrome (PWS), we aim [...] Read more.
Rare autosomal trisomies (RATs) other than common aneuploidies can be detected using noninvasive prenatal testing (NIPT). However, conventional karyotyping is insufficient for evaluating diploid fetuses with uniparental disomy (UPD) due to trisomy rescue. Using the diagnostic process for Prader–Willi syndrome (PWS), we aim to describe the need for additional prenatal diagnostic testing for confirming UPD in fetuses diagnosed with RATs via NIPT and its clinical implications. NIPT was performed using the massively parallel sequencing (MPS) method, and all pregnant women with RATs underwent amniocentesis. After confirming the normal karyotype, short tandem repeat (STR) analysis, methylation-specific PCR (MS-PCR), and methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) were performed to detect UPD. Overall, six cases were diagnosed with RATs. There was a suspicion of trisomies of chromosomes 7, 8, and 15 in two cases each. However, these cases were confirmed to have a normal karyotype using amniocentesis. In one of six cases, PWS caused by maternal UPD 15 was diagnosed using MS-PCR and MS-MLPA. We propose that in cases where RAT is detected by NIPT, UPD should be considered following trisomy rescue. Even if amniocentesis confirms a normal karyotype, UPD testing (such as MS-PCR and MS-MLPA) should be recommended for accurate assessment, as an accurate diagnosis can lead to appropriate genetic counseling and improved overall pregnancy management. Full article
(This article belongs to the Special Issue Prenatal Diagnosis: Current Trends and Future Directions)
Show Figures

Figure 1

14 pages, 967 KiB  
Review
Placental Mesenchymal Dysplasia and Beckwith–Wiedemann Syndrome
by Hidenobu Soejima, Satoshi Hara, Takashi Ohba and Ken Higashimoto
Cancers 2022, 14(22), 5563; https://doi.org/10.3390/cancers14225563 - 12 Nov 2022
Cited by 7 | Viewed by 3821
Abstract
Placental mesenchymal dysplasia (PMD) is characterized by placentomegaly, aneurysmally dilated chorionic plate vessels, thrombosis of the dilated vessels, and large grapelike vesicles, and is often mistaken for partial or complete hydatidiform mole with a coexisting normal fetus. Androgenetic/biparental mosaicism (ABM) has been found [...] Read more.
Placental mesenchymal dysplasia (PMD) is characterized by placentomegaly, aneurysmally dilated chorionic plate vessels, thrombosis of the dilated vessels, and large grapelike vesicles, and is often mistaken for partial or complete hydatidiform mole with a coexisting normal fetus. Androgenetic/biparental mosaicism (ABM) has been found in many PMD cases. Beckwith–Wiedemann syndrome (BWS) is an imprinting disorder with complex and diverse phenotypes and an increased risk of developing embryonal tumors. There are five major causative alterations: loss of methylation of imprinting control region 2 (KCNQ1OT1:TSS-DMR) (ICR2-LOM), gain of methylation at ICR1 (H19/IGF2:IG-DMR) (ICR1-GOM), paternal uniparental disomy of 11 (pUPD11), loss-of-function variants of the CDKN1C gene, and paternal duplication of 11p15. Additional minor alterations include genetic variants within ICR1, paternal uniparental diploidy/biparental diploidy mosaicism (PUDM, also called ABM), and genetic variants of KCNQ1. ABM (PUDM) is found in both conditions, and approximately 20% of fetuses from PMD cases are BWS and vice versa, suggesting a molecular link. PMD and BWS share some molecular characteristics in some cases, but not in others. These findings raise questions concerning the timing of the occurrence of the molecularly abnormal cells during the postfertilization period and the effects of these abnormalities on cell fates after implantation. Full article
(This article belongs to the Special Issue Beckwith–Wiedemann Spectrum and Cancer)
Show Figures

Figure 1

12 pages, 644 KiB  
Article
Temple Syndrome: Clinical Findings, Body Composition and Cognition in 15 Patients
by Alicia F. Juriaans, Gerthe F. Kerkhof, Eva F. Mahabier, Theo C. J. Sas, Nitash Zwaveling-Soonawala, Robbert N. H. Touwslager, Joost Rotteveel and Anita C. S. Hokken-Koelega
J. Clin. Med. 2022, 11(21), 6289; https://doi.org/10.3390/jcm11216289 - 25 Oct 2022
Cited by 17 | Viewed by 5314
Abstract
Background: Temple syndrome (TS14) is an imprinting disorder caused by a maternal uniparental disomy of chromosome 14 (UPD(14)mat), paternal deletion of 14q32 or an isolated methylation defect of the MEG3-DMR. Studies on phenotypical characteristics in TS14 are scarce and patients with TS14 often [...] Read more.
Background: Temple syndrome (TS14) is an imprinting disorder caused by a maternal uniparental disomy of chromosome 14 (UPD(14)mat), paternal deletion of 14q32 or an isolated methylation defect of the MEG3-DMR. Studies on phenotypical characteristics in TS14 are scarce and patients with TS14 often experience delay in diagnosis, which has adverse effects on their health. TS14 is often characterized as either Prader–Willi-like, Silver–Russell-like or as a Silver–Russell spectrum disorder. Methods: This study describes 15 patients with TS14 who visited the Dutch Reference Center for Prader–Willi-like from December 2018 to January 2022. Results: Eight patients had UPD(14)mat and seven a methylation defect. The most common symptoms were intra-uterine growth retardation (IUGR) (100%), hypotonia (100%), precocious puberty (89%), small for gestational age (SGA) birth (67%), tube feeding after birth (53%) and psycho-behavioral problems (53%). Median (interquartile range (IQR)) IQ was 91.5 (84.25; 100.0), whilst many patients were enrolled in special education (54%). The median (IQR) fat mass % (FM%) SDS was 2.53 (2.26; 2.90) and lean body mass (LBM) SDS −2.03 (−3.22; −1.28). There were no significant differences in clinical characteristics between patients with a UPD(14)mat and a methylation defect. Conclusions: Our patients share a distinct phenotype consisting of IUGR, SGA birth, precocious puberty, hypotonia, tube feeding after birth, psycho-behavioral problems and abnormal body composition with a high FM% and low LBM. Whilst similarities with Prader–Willi syndrome (PWS) and Silver–Russell syndrome (SRS) exist, TS14 is a discernible syndrome, deserving a tailored clinical approach. Testing for TS14 should be considered in patients with a PWS or SRS phenotype in infancy if PWS/SRS testing is negative. Full article
Show Figures

Figure 1

27 pages, 2251 KiB  
Article
Health Problems in Adults with Prader–Willi Syndrome of Different Genetic Subtypes: Cohort Study, Meta-Analysis and Review of the Literature
by Anna G. W. Rosenberg, Charlotte M. Wellink, Juan M. Tellez Garcia, Karlijn Pellikaan, Denise H. Van Abswoude, Kirsten Davidse, Laura J. C. M. Van Zutven, Hennie T. Brüggenwirth, James L. Resnick, Aart J. Van der Lely and Laura C. G. De Graaff
J. Clin. Med. 2022, 11(14), 4033; https://doi.org/10.3390/jcm11144033 - 12 Jul 2022
Cited by 13 | Viewed by 6576
Abstract
Prader–Willi syndrome (PWS) is a complex, rare genetic disorder caused by a loss of expression of paternally expressed genes on chromosome 15q11.2-q13. The most common underlying genotypes are paternal deletion (DEL) and maternal uniparental disomy (mUPD). DELs can be subdivided into type 1 [...] Read more.
Prader–Willi syndrome (PWS) is a complex, rare genetic disorder caused by a loss of expression of paternally expressed genes on chromosome 15q11.2-q13. The most common underlying genotypes are paternal deletion (DEL) and maternal uniparental disomy (mUPD). DELs can be subdivided into type 1 (DEL-1) and (smaller) type 2 deletions (DEL-2). Most research has focused on behavioral, cognitive and psychological differences between the different genotypes. However, little is known about physical health problems in relation to genetic subtypes. In this cross-sectional study, we compare physical health problems and other clinical features among adults with PWS caused by DEL (N = 65, 12 DEL-1, 27 DEL-2) and mUPD (N = 65). A meta-analysis, including our own data, showed that BMI was 2.79 kg/m2 higher in adults with a DEL (p = 0.001). There were no significant differences between DEL-1 and DEL-2. Scoliosis was more prevalent among adults with a DEL (80% vs. 58%; p = 0.04). Psychotic episodes were more prevalent among adults with an mUPD (44% vs. 9%; p < 0.001). In conclusion, there were no significant differences in physical health outcomes between the genetic subtypes, apart from scoliosis and BMI. The differences in health problems, therefore, mainly apply to the psychological domain. Full article
(This article belongs to the Special Issue Endocrinology and Metabolic Diseases: Prader-Willi Syndrome)
Show Figures

Figure 1

11 pages, 2862 KiB  
Case Report
Homozygosity for a Novel DOCK7 Variant Due to Segmental Uniparental Isodisomy of Chromosome 1 Associated with Early Infantile Epileptic Encephalopathy (EIEE) and Cortical Visual Impairment
by Fatma Kivrak Pfiffner, Samuel Koller, Anika Ménétrey, Urs Graf, Luzy Bähr, Alessandro Maspoli, Annette Hackenberg, Raimund Kottke, Christina Gerth-Kahlert and Wolfgang Berger
Int. J. Mol. Sci. 2022, 23(13), 7382; https://doi.org/10.3390/ijms23137382 - 2 Jul 2022
Cited by 3 | Viewed by 3076
Abstract
Early infantile epileptic encephalopathy (EIEE) is a severe neurologic and neurodevelopmental disease that manifests in the first year of life. It shows a high degree of genetic heterogeneity, but the genetic origin is only identified in half of the cases. We report the [...] Read more.
Early infantile epileptic encephalopathy (EIEE) is a severe neurologic and neurodevelopmental disease that manifests in the first year of life. It shows a high degree of genetic heterogeneity, but the genetic origin is only identified in half of the cases. We report the case of a female child initially diagnosed with Leber congenital amaurosis (LCA), an early-onset retinal dystrophy due to photoreceptor cell degeneration in the retina. The first examination at 9 months of age revealed no reaction to light or objects and showed wandering eye movements. Ophthalmological examination did not show any ocular abnormalities. The patient displayed mildly dysmorphic features and a global developmental delay. Brain MRI demonstrated pontine hypo-/dysplasia. The patient developed myoclonic epileptic seizures and epileptic spasms with focal and generalized epileptiform discharges on electroencephalogram (EEG) at the age of 16 months. Genetic screening for a potentially pathogenic DNA sequence variant by whole-exome sequencing (WES) revealed a novel, conserved, homozygous frameshift variant (c.5391delA, p.(Ala1798LeufsTer59)) in exon 42 of the DOCK7 gene (NM_001271999.1). Further analysis by SNP array (Karyomapping) showed loss of heterozygosity (LOH) in four segments of chromosome 1. WES data of the parents and the index patient (trio analysis) demonstrated that chromosome 1 was exclusively inherited from the mother. Four LOH segments of chromosome 1 alternately showed isodisomy (UPiD) and heterodisomy (UPhD). In WES data, the father was a noncarrier, and the mother was heterozygous for this DOCK7 variant. The DOCK7 gene is located in 1p31.3, a region situated in one of the four isodisomic segments of chromosome 1, explaining the homozygosity seen in the affected child. Finally, Sanger sequencing confirmed maternal UPiD for the DOCK7 variant. Homozygous or compound heterozygous pathogenic variants in the DOCK7 (dedicator of cytokinesis 7) gene are associated with autosomal recessive, early infantile epileptic encephalopathy 23 (EIEE23; OMIM #615,859), a rare and heterogeneous group of neurodevelopmental disorders diagnosed during early childhood. To our knowledge, this is the first report of segmental uniparental iso- and heterodisomy of chromosome 1, leading to homozygosity of the DOCK7 frameshift variant in the affected patient. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

10 pages, 1304 KiB  
Article
Loss of Heterozygosity in the Tumor DNA of De Novo Diagnosed Patients Is Associated with Poor Outcome for B-ALL but Not for T-ALL
by Natalya Risinskaya, Yana Kozhevnikova, Olga Gavrilina, Julia Chabaeva, Ekaterina Kotova, Anna Yushkova, Galina Isinova, Ksenija Zarubina, Tatiana Obukhova, Sergey Kulikov, Hunan Julhakyan, Andrey Sudarikov and Elena Parovichnikova
Genes 2022, 13(3), 398; https://doi.org/10.3390/genes13030398 - 23 Feb 2022
Cited by 7 | Viewed by 2659
Abstract
Despite the introduction of new technologies in molecular diagnostics, one should not underestimate the traditional routine methods for studying tumor DNA. Here we present the evidence that short tandem repeat (STR) profiling of tumor DNA relative to DNA from healthy cells might identify [...] Read more.
Despite the introduction of new technologies in molecular diagnostics, one should not underestimate the traditional routine methods for studying tumor DNA. Here we present the evidence that short tandem repeat (STR) profiling of tumor DNA relative to DNA from healthy cells might identify chromosomal aberrations affecting therapy outcome. Tumor STR profiles of 87 adult patients with de novo Ph-negative ALL (40 B-ALL, 43 T-ALL, 4 mixed phenotype acute leukemia (MPAL)) treated according to the “RALL-2016” regimen were analyzed. DNA of tumor cells was isolated from patient bone marrow samples taken at diagnosis. Control DNA samples were taken from the buccal swab or the blood of patients in complete remission. Overall survival (OS) analysis was used to assess the independent impact of the LOH as a risk factor. Of the 87 patients, 21 were found with LOH in various STR loci (24%). For B-ALL patients, LOH (except 12p LOH) was an independent risk factor (OS hazard ratio 3.89, log-rank p-value 0.0395). In contrast, for T-ALL patients, the OS hazard ratio was 0.59 (log-rank p-value 0.62). LOH in particular STR loci measured at the onset of the disease could be used as a prognostic factor for poor outcome in B-ALL, but not in T-ALL. Full article
Show Figures

Figure 1

Back to TopTop