Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = underwater visible-light communication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1965 KiB  
Article
Beyond 100 m Range Mini-LED-Based Visible Light Communication System
by Zhijian Lv, Shuang Wu, Junye Zhong, Zikun Xu, Tiefeng He, Jinpeng Tian, Linfeng Zheng, Haichuan Zhang, Wenwei Zhang and Muxin Nian
Photonics 2025, 12(7), 629; https://doi.org/10.3390/photonics12070629 - 20 Jun 2025
Viewed by 292
Abstract
In visible light communication (VLC) systems, lenses are typically used to collimate light at the transmitter. However, due to the wide light emission angle of mini-LEDs, capturing light at large angles using a lens at the transmitter can be challenging. This paper presents [...] Read more.
In visible light communication (VLC) systems, lenses are typically used to collimate light at the transmitter. However, due to the wide light emission angle of mini-LEDs, capturing light at large angles using a lens at the transmitter can be challenging. This paper presents a design of a reflective cup at the mini-LED-based VLC transmitter. The redesigned reflective cup can collect most of the light and collimate it, achieving an efficiency of approximately 86% at a distance of 10 m in the simulation. In the experiment, error-free communication was achieved at a distance of 100 m with a data rate of 190 Mbps. To the best of our knowledge, a long-distance VLC system based on mini-LEDs is investigated for the first time. The reflective cup offers advantages, including high efficiency, low cost, and a simple structure. It holds reference value for addressing the issue of limited communication distance in underwater wireless optical communication (UWOC). Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

29 pages, 819 KiB  
Review
Visible Light Communication for Underwater Applications: Principles, Challenges, and Future Prospects
by Vindula L. Jayaweera, Chamodi Peiris, Dhanushika Darshani, Sampath Edirisinghe, Nishan Dharmaweera and Uditha Wijewardhana
Photonics 2025, 12(6), 593; https://doi.org/10.3390/photonics12060593 - 10 Jun 2025
Viewed by 1002
Abstract
Underwater wireless communications face significant challenges due to high attenuation, turbulence, and water turbidity. Traditional methods like acoustic and radio frequency (RF) communication suffer from low data rates (<100 kbps), high latency (>1 s), and limited transmission distances (<10 km).Visible Light Communication (VLC) [...] Read more.
Underwater wireless communications face significant challenges due to high attenuation, turbulence, and water turbidity. Traditional methods like acoustic and radio frequency (RF) communication suffer from low data rates (<100 kbps), high latency (>1 s), and limited transmission distances (<10 km).Visible Light Communication (VLC) emerges as a promising alternative, offering high-speed data transmission (up to 5 Gbps), low latency (<1 ms), and immunity to electromagnetic interference. This paper provides an in-depth review of underwater VLC, covering fundamental principles, environmental factors (scattering, absorption), and dynamic water properties. We analyze modulation techniques, including adaptive and hybrid schemes (QAM-OFDM achieving 4.92 Gbps over 1.5 m), and demonstrate their superiority over conventional methods. Practical applications—underwater exploration, autonomous vehicle control, and environmental monitoring—are discussed alongside security challenges. Key findings highlight UVLC’s ability to overcome traditional limitations, with experimental results showing 500 Mbps over 150 m using PAM4 modulation. Future research directions include integrating quantum communication and Reconfigurable Intelligent Surfaces (RISs) to further enhance performance, with simulations projecting 40% improved spectral efficiency in turbulent conditions. Full article
Show Figures

Figure 1

52 pages, 18012 KiB  
Review
Underwater SLAM Meets Deep Learning: Challenges, Multi-Sensor Integration, and Future Directions
by Mohamed Heshmat, Lyes Saad Saoud, Muayad Abujabal, Atif Sultan, Mahmoud Elmezain, Lakmal Seneviratne and Irfan Hussain
Sensors 2025, 25(11), 3258; https://doi.org/10.3390/s25113258 - 22 May 2025
Cited by 1 | Viewed by 2246
Abstract
The underwater domain presents unique challenges and opportunities for scientific exploration, resource extraction, and environmental monitoring. Autonomous underwater vehicles (AUVs) rely on simultaneous localization and mapping (SLAM) for real-time navigation and mapping in these complex environments. However, traditional SLAM techniques face significant obstacles, [...] Read more.
The underwater domain presents unique challenges and opportunities for scientific exploration, resource extraction, and environmental monitoring. Autonomous underwater vehicles (AUVs) rely on simultaneous localization and mapping (SLAM) for real-time navigation and mapping in these complex environments. However, traditional SLAM techniques face significant obstacles, including poor visibility, dynamic lighting conditions, sensor noise, and water-induced distortions, all of which degrade the accuracy and robustness of underwater navigation systems. Recent advances in deep learning (DL) have introduced powerful solutions to overcome these challenges. DL techniques enhance underwater SLAM by improving feature extraction, image denoising, distortion correction, and sensor fusion. This survey provides a comprehensive analysis of the latest developments in DL-enhanced SLAM for underwater applications, categorizing approaches based on their methodologies, sensor dependencies, and integration with deep learning models. We critically evaluate the benefits and limitations of existing techniques, highlighting key innovations and unresolved challenges. In addition, we introduce a novel classification framework for underwater SLAM based on its integration with underwater wireless sensor networks (UWSNs). UWSNs offer a collaborative framework that enhances localization, mapping, and real-time data sharing among AUVs by leveraging acoustic communication and distributed sensing. Our proposed taxonomy provides new insights into how communication-aware SLAM methodologies can improve navigation accuracy and operational efficiency in underwater environments. Furthermore, we discuss emerging research trends, including the use of transformer-based architectures, multi-modal sensor fusion, lightweight neural networks for real-time deployment, and self-supervised learning techniques. By identifying gaps in current research and outlining potential directions for future work, this survey serves as a valuable reference for researchers and engineers striving to develop robust and adaptive underwater SLAM solutions. Our findings aim to inspire further advancements in autonomous underwater exploration, supporting critical applications in marine science, deep-sea resource management, and environmental conservation. Full article
(This article belongs to the Special Issue Multi-Sensor Data Fusion)
Show Figures

Figure 1

20 pages, 6268 KiB  
Article
Three-Dimensional Localization of Underwater Nodes Using Airborne Visible Light Beams
by Jaeed Bin Saif, Mohamed Younis and Fow-Sen Choa
Photonics 2025, 12(5), 503; https://doi.org/10.3390/photonics12050503 - 18 May 2025
Viewed by 337
Abstract
Localizing underwater nodes when they cannot be tethered or float on the surface presents significant challenges, primarily due to node mobility and the absence of fixed anchors with known coordinates. This paper advocates a strategy for tackling such a challenge by using visible [...] Read more.
Localizing underwater nodes when they cannot be tethered or float on the surface presents significant challenges, primarily due to node mobility and the absence of fixed anchors with known coordinates. This paper advocates a strategy for tackling such a challenge by using visible light communication (VLC) from an airborne unit. A novel localization method is proposed where VLC transmissions are made towards the water surface; each transmission is encoded with the Global Positioning System (GPS) coordinates with the incident point of the corresponding light beam. Existing techniques deal with the problem in 2D by assuming that the underwater node has a pressure sensor to measure its depth. The proposed method avoids this limitation and utilizes the intensity of VLC signals to estimate the 3D position of the underwater node. The idea is to map the light intensity at the underwater receiver for airborne light beams and devise an error optimization formulation to estimate the 3D coordinates of the underwater node. Extensive simulations validate the effectiveness of the proposed method and capture its performance across various parameters. Full article
Show Figures

Figure 1

25 pages, 10446 KiB  
Article
Designing an Adaptive Underwater Visible Light Communication System
by Sana Rehman, Yue Rong and Peng Chen
Sensors 2025, 25(6), 1801; https://doi.org/10.3390/s25061801 - 14 Mar 2025
Cited by 2 | Viewed by 1255
Abstract
The Internet of Underwater Things (IoUT) has attracted significant attention from researchers due to the fact that seventy percent of the Earth’s surface is covered by water. Reliable underwater communication is the enabler of IoUT. Different carriers, such as electromagnetic waves, sound, and [...] Read more.
The Internet of Underwater Things (IoUT) has attracted significant attention from researchers due to the fact that seventy percent of the Earth’s surface is covered by water. Reliable underwater communication is the enabler of IoUT. Different carriers, such as electromagnetic waves, sound, and light, are used to transmit data through the water. Among these, optical waves are considered promising due to their high data rates and relatively good bandwidth efficiency, as water becomes transparent to light in the visible spectrum (400–700 nm). However, limitations such as link range, path loss, and turbulence lead to low power and, consequently, a low signal-to-noise ratio (SNR) at the receiver. In this article, we present the design of a smart transceiver for bidirectional communication. The system adapts the divergence angle of the optical beam from the transmitter based on the power of the signal received. This paper details the real-time data transmission process, where the transmitting station consists of a light fidelity (Li-Fi) transmitter with a 470 nm blue-light-emitting diode (LED) and a software-defined radio (SDR) for underwater optical communication. The receiving station is equipped with a Li-Fi receiver, which includes a photodetector with a wide field of view and an SDR. Furthermore, we use pulse position modulation (PPM), which demonstrates promising results for real-time transmission. A key innovation of this paper is the integration of the Li-Fi system with the SDR, while the system adapts dynamically using a servo motor and an Arduino microcontroller assembly. The experimental results show that this approach not only increases throughput but also enhances the robustness and efficiency of the system. Full article
(This article belongs to the Special Issue Wireless Sensor Networks: Signal Processing and Communications)
Show Figures

Figure 1

30 pages, 1489 KiB  
Review
Underwater Communication Systems and Their Impact on Aquatic Life—A Survey
by Feliciano Pedro Francisco Domingos, Ahmad Lotfi, Isibor Kennedy Ihianle, Omprakash Kaiwartya and Pedro Machado
Electronics 2025, 14(1), 7; https://doi.org/10.3390/electronics14010007 - 24 Dec 2024
Viewed by 3283
Abstract
Approximately 75% of the Earth’s surface is covered by water, and 78% of the global animal kingdom resides in marine environments. Furthermore, algae and microalgae in marine ecosystems contribute up to 75% of the planet’s oxygen supply, underscoring the critical need for conservation [...] Read more.
Approximately 75% of the Earth’s surface is covered by water, and 78% of the global animal kingdom resides in marine environments. Furthermore, algae and microalgae in marine ecosystems contribute up to 75% of the planet’s oxygen supply, underscoring the critical need for conservation efforts. This review systematically evaluates the impact of underwater communication systems on aquatic ecosystems, focusing on both wired and wireless technologies. It highlights the applications of these systems in Internet of Underwater Things (IoUT), Underwater Wireless Sensor Networks (UWSNs), remote sensing, bathymetry, and tsunami warning systems, as well as their role in reducing the ecological footprint of human activities in aquatic environments. The main contributions of this work include: a benchmark of various underwater communication systems, comparing their advantages and limitations; an in-depth analysis of the adverse effects of anthropogenic emissions associated with communication systems on marine life; and a discussion of the potential for underwater communication technologies, such as remote sensing and passive monitoring, to aid in the preservation of biodiversity and the protection of fragile ecosystems. Full article
Show Figures

Figure 1

12 pages, 5245 KiB  
Article
Solution-Processed CsPbBr3 Perovskite Photodetectors for Cost-Efficient Underwater Wireless Optical Communication System
by Jiakang Wei, Yutong Deng, Jianjian Fei, Tian Yang, Pinhao Chen, Lu Zhu and Zhanfeng Huang
Micromachines 2024, 15(10), 1185; https://doi.org/10.3390/mi15101185 - 25 Sep 2024
Viewed by 1294
Abstract
Underwater wireless optical communication (UWOC) has attracted increasing attention due to its advantages in bandwidth, latency, interference resistance, and security. Photodetectors, as a crucial part of receivers, have been continuously developed with the great progress that has been made in advanced materials. Metal [...] Read more.
Underwater wireless optical communication (UWOC) has attracted increasing attention due to its advantages in bandwidth, latency, interference resistance, and security. Photodetectors, as a crucial part of receivers, have been continuously developed with the great progress that has been made in advanced materials. Metal halide perovskites emerging as promising optoelectronic materials in the past decade have been used to fabricate various high-performance photodetectors. In this work, high-performance CsPbBr3 perovskite PDs were realized via solution process, with low noise, a high responsivity, and a fast response. Based on these perovskite PDs, a cost-efficient UWOC system was successfully demonstrated on an FPGA platform, achieving a data rate of 6.25 Mbps with a low bit error rate of 0.36%. Due to lower background noise under environment illumination, perovskite PDs exhibit better communication stability before reaching a data rate threshold; however, the BER increases rapidly due to the long fall time, resulting in difficulty in distinguishing switching signals. Reducing the fall time of perovskite PDs and using advanced coding techniques can help to further improve the performance of the UWOC system based on perovskite PDs. This work not only demonstrates the potential of perovskite PDs in the application of UWOC, but also improves the development of a cost-effective UWOC system based on FPGAs. Full article
(This article belongs to the Special Issue Advances in Photodetecting Materials, Devices and Applications)
Show Figures

Figure 1

28 pages, 7003 KiB  
Article
Optimal Signal Wavelengths for Underwater Optical Wireless Communication under Sunlight in Stratified Waters
by Tharuka Govinda Waduge, Boon-Chong Seet and Kay Vopel
J. Sens. Actuator Netw. 2024, 13(5), 54; https://doi.org/10.3390/jsan13050054 - 4 Sep 2024
Cited by 2 | Viewed by 2576
Abstract
Underwater optical wireless communication (UOWC) is a field of research that has gained popularity with the development of unmanned underwater vehicle (UUV) technologies. Its utilization is crucial in offshore industries engaging in sustainable alternatives for food production and energy security. Although UOWC can [...] Read more.
Underwater optical wireless communication (UOWC) is a field of research that has gained popularity with the development of unmanned underwater vehicle (UUV) technologies. Its utilization is crucial in offshore industries engaging in sustainable alternatives for food production and energy security. Although UOWC can meet the high data rate and low latency requirements of underwater video transmission for UUV operations, the links that enable such communication are affected by the inhomogeneous light attenuation and the presence of sunlight. Here, we present how the underwater spectral distribution of the light field can be modeled along the depths of eight stratified oceanic water types. We considered other established models, such as SPCTRL2, Haltrin’s single parameter model for inherent optical properties, and a model for the estimation of the depth distribution of chlorophyll-a, and present insights based on transmission wavelength for the maximum signal-to-noise ratio (SNR) under different optical link parameter combinations such as beam divergence and transmit power under “daytime” and “nighttime” conditions. The results seem to challenge the common notion that the blue-green spectrum is the most suitable for underwater optical communication. We highlight a unique relationship between the transmission wavelength for the optimal SNR and the link parameters and distance, which varies with depth depending on the type of oceanic water stratification. Our analyses further highlighted potential implications for solar discriminatory approaches and strategies for routing in cooperative optical wireless networks in the photic region. Full article
(This article belongs to the Section Communications and Networking)
Show Figures

Figure 1

13 pages, 5958 KiB  
Article
Single-Source VLCP System Based on Solar Cell Array Receiver and Right-Angled Tetrahedron Trilateration VLP (RATT-VLP) Algorithm
by Dawei Xie, Zhongxu Liu and Changyuan Yu
Photonics 2024, 11(6), 536; https://doi.org/10.3390/photonics11060536 - 4 Jun 2024
Cited by 2 | Viewed by 1018
Abstract
A significant deployment limitation for visible light communication and positioning (VLCP) systems in energy- and light-source-restricted scenarios is the reliance of photodetectors (PDs) on external power supplies, compromising sustainability and complicating receiver charging. Solar cells (SCs), capable of harvesting and converting environmental light [...] Read more.
A significant deployment limitation for visible light communication and positioning (VLCP) systems in energy- and light-source-restricted scenarios is the reliance of photodetectors (PDs) on external power supplies, compromising sustainability and complicating receiver charging. Solar cells (SCs), capable of harvesting and converting environmental light into electrical energy, offer a promising alternative. Consequently, we first propose an indoor VLCP system that utilizes an SC array as the receiver, alongside a right-angled tetrahedron trilateration visible light positioning (RATT-VLP) algorithm based on a single light source and multiple receivers. The proposed system uses an SC array in place of PDs, utilizing binary phase shift keying (BPSK) signals for simultaneous communication and positioning. In experiments, we verified the system’s error-free communication rate of 1.21 kbps and average positioning error of 3.40 cm in a 30 cm × 30 cm area, indicating that the system can simultaneously satisfy low-speed communication and accurate positioning applications. This provides a viable foundation for further research on SC-based VLCP systems, facilitating potential applications in environments like underwater wireless communication, positioning, and storage tank inspection. Full article
(This article belongs to the Special Issue Advanced Technologies in Optical Wireless Communications)
Show Figures

Figure 1

21 pages, 6842 KiB  
Article
A 930 m/180 Gbps*User Underwater Coherent Optical Code-Division Multiple-Access Network Based on Hybrid 256-Differential Pulse Position Modulation and Weighted Modified Prime Code Sequence
by Morsy Ahmed Morsy Ismail and Khalid Saleh
Photonics 2024, 11(4), 368; https://doi.org/10.3390/photonics11040368 - 15 Apr 2024
Cited by 3 | Viewed by 1524
Abstract
Currently, there are three types of optical communication networks based on the communication channel between the transmitter and receiver: the optical fiber channel, visible light channel, and optical wireless channel networks. The last type has several advantages for underwater communication, wireless sensors, and [...] Read more.
Currently, there are three types of optical communication networks based on the communication channel between the transmitter and receiver: the optical fiber channel, visible light channel, and optical wireless channel networks. The last type has several advantages for underwater communication, wireless sensors, and military communication networks. However, this type of optical network suffers from weather conditions in free-space communications and attenuation owing to the scattering and absorption mechanisms for underwater communication. In this study, we present a new transceiver architecture of a coherent optical code-division multiple-access (OCDMA) system based on a hybrid M-ary differential pulse position modulation scheme and a spreading code sequence called weighted modified prime code for underwater communication to minimize channel dispersion, increase the transmission rate per second, enhance the network bit error rate (BER) performance, and improve network security. Using an OCDMA system, we can simultaneously expand the network coverage area and increase the number of users sharing the network over the same channel bandwidth. The simulation results in this study proved that the proposed system can accommodate 1310 active users and a network throughput of 180 Gbps*user over a transmission distance of 930 m without any repeater at a 10−9 BER performance, compared to the 45 Gbps*user network throughput and 100 m transmission distance reported in the literature. Full article
Show Figures

Figure 1

15 pages, 9334 KiB  
Article
Real-Time Underwater Wireless Optical Communication System Based on LEDs and Estimation of Maximum Communication Distance
by Minglun Zhang and Hongyu Zhou
Sensors 2023, 23(17), 7649; https://doi.org/10.3390/s23177649 - 4 Sep 2023
Cited by 11 | Viewed by 3770
Abstract
This paper presents a real-time underwater wireless optical communication (UWOC) system. The transmitter of our UWOC system is equipped with four blue LEDs, and we have implemented pre-emphasis technology to extend the modulation bandwidth of these LEDs. At the receiver end, a 3 [...] Read more.
This paper presents a real-time underwater wireless optical communication (UWOC) system. The transmitter of our UWOC system is equipped with four blue LEDs, and we have implemented pre-emphasis technology to extend the modulation bandwidth of these LEDs. At the receiver end, a 3 mm diameter APD is utilized. Both the transmitter and receiver are housed in watertight chassis and are submerged in a water pool to conduct real-time underwater experiments. Through these experiments, we have obtained impressive results. The data rate achieved by our system reaches up to 135 Mbps, with a BER of 5.9 × 10−3, at a distance of 10 m. Additionally, we have developed a convenient method for measuring the underwater attenuation coefficient, using which we have found the attenuation coefficient of the water in experiments to be 0.289 dB/m. Furthermore, we propose a technique to estimate the maximum communication distance of an on–off keying UWOC system with intersymbol interference, based on the Q factor. By applying this method, we conclude that under the same water quality conditions, our system can achieve a maximum communication distance of 25.4 m at 80 Mbps. Overall, our research showcases the successful implementation of a real-time UWOC system, along with novel methods for measuring the underwater attenuation coefficient and estimating the maximum communication distance. Full article
(This article belongs to the Special Issue Underwater Optical Wireless Communication (OWC) Systems)
Show Figures

Figure 1

15 pages, 4572 KiB  
Article
An Optimal Adaptive Constellation Design Utilizing an Autoencoder-Based Geometric Shaping Model Framework
by Yuan Wei, Li Yao, Haoyu Zhang, Chao Shen, Nan Chi and Jianyang Shi
Photonics 2023, 10(7), 809; https://doi.org/10.3390/photonics10070809 - 12 Jul 2023
Cited by 7 | Viewed by 2371
Abstract
Since visible-light communication (VLC) has become an increasingly promising candidate for 6G, the field of underwater visible-light communication (UVLC) has also garnered significant attention. However, the impairments introduced by practical systems and the time-varying underwater channels always limit the performance of underwater visible-light [...] Read more.
Since visible-light communication (VLC) has become an increasingly promising candidate for 6G, the field of underwater visible-light communication (UVLC) has also garnered significant attention. However, the impairments introduced by practical systems and the time-varying underwater channels always limit the performance of underwater visible-light communication. In this paper, we propose and experimentally demonstrate an autoencoder-based geometric shaping model (AEGSM) framework to jointly optimize quadrature amplitude modulation (QAM) signals at the symbol-wise and bit-wise levels for underwater visible-light communication. Unlike traditional geometric shaping (GS) methods, which only give theoretically optimal shaping solutions, our framework can always obtain the globally optimal shaping scheme for a specific channel condition or different application scenarios. In our AEGSM framework, an autoencoder is used to find the optimal shaping scheme at the symbol-wise level and a revised pairwise optimization (RPO) algorithm is applied to achieve bit-wise optimization. In a real UVLC system, 2.05 Gbps transmission is achieved under the hard decision–forward error correction (HD-FEC) threshold of 3.8 × 10−3 by employing the autoencoder-based 8QAM (AE-8QAM) optimized by the AEGSM, which is 103 Mbps faster than the Norm-8QAM. The AE-8QAM also shows its resistance to nonlinearity and enables the UVLC system to operate within a larger dynamic range of driving voltages. The results substantiate the potential and practicality of the proposed AEGSM framework in the realm of underwater visible-light communication. Full article
(This article belongs to the Special Issue Visible Light Communications)
Show Figures

Figure 1

17 pages, 3560 KiB  
Article
Adaptive Fuzzy Logic Deep-Learning Equalizer for Mitigating Linear and Nonlinear Distortions in Underwater Visible Light Communication Systems
by Radhakrishnan Rajalakshmi, Sivakumar Pothiraj, Miroslav Mahdal and Muniyandy Elangovan
Sensors 2023, 23(12), 5418; https://doi.org/10.3390/s23125418 - 7 Jun 2023
Cited by 6 | Viewed by 2237
Abstract
Underwater visible light communication (UVLC) has recently come to light as a viable wireless carrier for signal transmission in risky, uncharted, and delicate aquatic environments like seas. Despite the potential of UVLC as a green, clean, and safe alternative to conventional communication methods, [...] Read more.
Underwater visible light communication (UVLC) has recently come to light as a viable wireless carrier for signal transmission in risky, uncharted, and delicate aquatic environments like seas. Despite the potential of UVLC as a green, clean, and safe alternative to conventional communication methods, it is challenged by significant signal attenuation and turbulent channel conditions compared to long-distance terrestrial communication. To address linear and nonlinear impairments in UVLC systems, this paper presents an adaptive fuzzy logic deep-learning equalizer (AFL-DLE) for 64 Quadrature Amplitude Modulation-Component minimal Amplitude Phase shift (QAM-CAP)-modulated UVLC systems. The proposed AFL-DLE is dependent on complex-valued neural networks and constellation partitioning schemes and utilizes the Enhanced Chaotic Sparrow Search Optimization Algorithm (ECSSOA) to improve overall system performance. Experimental outcomes demonstrate that the suggested equalizer achieves significant reductions in bit error rate (55%), distortion rate (45%), computational complexity (48%), and computation cost (75%) while maintaining a high transmission rate (99%). This approach enables the development of high-speed UVLC systems capable of processing data online, thereby advancing state-of-the-art underwater communication. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

19 pages, 2647 KiB  
Review
Constraints and Recent Solutions of Optical Camera Communication for Practical Applications
by Pinpin Zhang, Ziwei Liu, Xin Hu, Yimao Sun, Xiong Deng, Binbin Zhu and Yanbing Yang
Photonics 2023, 10(6), 608; https://doi.org/10.3390/photonics10060608 - 24 May 2023
Cited by 13 | Viewed by 4112
Abstract
Visible light communication (VLC) has emerged as a promising technology for wireless communication due to its advantages of the vast optical spectrum, high energy efficiency, and no electromagnetic interference radiation. With the widespread adoption of LED infrastructure and camera-equipped smart devices, optical camera [...] Read more.
Visible light communication (VLC) has emerged as a promising technology for wireless communication due to its advantages of the vast optical spectrum, high energy efficiency, and no electromagnetic interference radiation. With the widespread adoption of LED infrastructure and camera-equipped smart devices, optical camera communication (OCC) has gained momentum as a pragmatic version of VLC based on commercial off-the-shelf (COTS) devices. Compared with VLC systems based on photodiodes (PD), the information-carrying capability of OCC enables it to provide a wide range of services in the areas of intelligent transportation, indoor positioning, underwater communication, and the Internet of Things (IoT). This paper presents a brief overview of the OCC system, focuses on the constraints affecting OCC performance, and offers feasible solutions for dependable data transmission in complex and diverse scenarios. Finally, this paper summarizes the potential extended applications of OCC, hoping to push this advanced form of optical wireless communication toward practical deployments in our daily lives. Full article
(This article belongs to the Special Issue State-of-the-Art Optical Communication in China)
Show Figures

Figure 1

97 pages, 16212 KiB  
Review
A Review–Unguided Optical Communications: Developments, Technology Evolution, and Challenges
by A. Arockia Bazil Raj, Prabu Krishnan, Ucuk Darusalam, Georges Kaddoum, Zabih Ghassemlooy, Mojtaba Mansour Abadi, Arun K. Majumdar and Muhammad Ijaz
Electronics 2023, 12(8), 1922; https://doi.org/10.3390/electronics12081922 - 19 Apr 2023
Cited by 31 | Viewed by 14372
Abstract
This review paper discusses the complete evolution of free-space optical (FSO) communication, also known as unguided optical communication (UOC) technologies, all the way back to ancient man’s fire to today’s machine-learning-supported UOC systems. The principles, significance, and developments that have happened over the [...] Read more.
This review paper discusses the complete evolution of free-space optical (FSO) communication, also known as unguided optical communication (UOC) technologies, all the way back to ancient man’s fire to today’s machine-learning-supported UOC systems. The principles, significance, and developments that have happened over the past several decades, as well as installation methodologies, technological limitations, and today’s challenges of UOCs are presented. All the subsets of UOC: FSO communication, underwater optical wireless communication (UOWC), and visible light communication (VLC), with their technology/system developments, potential applications, and limitations are reviewed. The state-of-the-art developments/achievements in (i) FSO channel effects and their mitigation techniques; (ii) radio-over-FSO techniques; (iii) wavelength division multiplexing and sub-carrier multiplexing techniques; (iv) FSO for worldwide interoperability for microwave access applications; (v) space optical satellite communication (SOSC); (vi) UWOC; (vii) photoacoustic communication (PAC); (viii) light-fidelity; (ix) VLC; (x) vehicular VLC (V2LC); and (xi) optical camera communication are reviewed. In addition, the current developments on emerging technologies such as artificial intelligence (to improve the performance of UOC systems), energy harvesting (for the effective utilization of UOC channels), and near-future communication network scenarios (mandatory for secured broadband digital links) are covered. Finally, in brief, to achieve the full potential of UOC systems, challenges that require immediate research attention are summarized. Full article
(This article belongs to the Special Issue New Technologies in Visible Light Communications)
Show Figures

Figure 1

Back to TopTop