Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = underwater polarization imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2054 KiB  
Article
Polarization-Enhanced Multi-Target Underwater Salient Object Detection
by Jiayi Song, Peikai Zhao, Jiangtao Li, Liming Zhu, Khian-Hooi Chew and Rui-Pin Chen
Photonics 2025, 12(7), 707; https://doi.org/10.3390/photonics12070707 - 12 Jul 2025
Viewed by 185
Abstract
Salient object detection (SOD) plays a critical role in underwater exploration systems. Traditional SOD approaches encounter notable constraints in underwater image analysis, primarily stemming from light scattering and absorption effects induced by suspended particulate matter in complex underwater environments. In this work, we [...] Read more.
Salient object detection (SOD) plays a critical role in underwater exploration systems. Traditional SOD approaches encounter notable constraints in underwater image analysis, primarily stemming from light scattering and absorption effects induced by suspended particulate matter in complex underwater environments. In this work, we propose a deep learning-based multimodal method guided by multi-polarization parameters that integrates polarization de-scattering mechanisms with the powerful feature learning capability of neural networks to achieve adaptive multi-target SOD in an underwater turbid scattering environment. The proposed polarization-enhanced salient object detection network (PESODNet) employs a multi-polarization-parameter-guided, material-aware attention mechanism and a contrastive feature calibration unit, significantly enhancing its multi-material, multi-target detection capabilities in underwater scattering environments. The experimental results confirm that the proposed method achieves substantial performance improvements in multi-target underwater SOD tasks, outperforming state-of-the-art models of salient object detection in detection accuracy. Full article
Show Figures

Figure 1

16 pages, 2304 KiB  
Article
Optical Design and Polarization Analysis for Full-Polarization Underwater Imaging Lens
by Zhongju Ren, Keyan Dong, Xiuhua Fu, Ying Lai and Jingjing Zhang
Photonics 2025, 12(5), 517; https://doi.org/10.3390/photonics12050517 - 21 May 2025
Viewed by 440
Abstract
Underwater polarization imaging has emerged as a fundamental technique for detecting and imaging underwater targets. However, the effectiveness of this technique is hampered by the low light intensity and optical system deformation induced by water pressure in deep-water environments, particularly for the detection [...] Read more.
Underwater polarization imaging has emerged as a fundamental technique for detecting and imaging underwater targets. However, the effectiveness of this technique is hampered by the low light intensity and optical system deformation induced by water pressure in deep-water environments, particularly for the detection of polarized signals. To address this issue, a wide-field-of-view oil-immersion lens tailored for deep-sea operations is designed, offering robust imaging performance and an extensive observation range. A Mueller matrix is deployed to scrutinize the polarization properties of the entire optical system across diverse fields of view, and the measurement errors in the polarization degree under incident polarization states are discussed. Simulation results demonstrate that the measurement error for linearly polarized light is greater than that for circularly polarized light. Therefore, the system adopts circularly polarized light as the active illumination source, characterized by minimal polarization effects and high detection accuracy. Finally, a deep-sea camera lens is produced and manufactured. The resulting lens is shown to pass a test in a hydrodynamic simulator machine, demonstrating that it can operate properly and capture images. Full article
Show Figures

Figure 1

19 pages, 16750 KiB  
Article
Oscillatory Forward-Looking Sonar Based 3D Reconstruction Method for Autonomous Underwater Vehicle Obstacle Avoidance
by Hui Zhi, Zhixin Zhou, Haiteng Wu, Zheng Chen, Shaohua Tian, Yujiong Zhang and Yongwei Ruan
J. Mar. Sci. Eng. 2025, 13(5), 943; https://doi.org/10.3390/jmse13050943 - 12 May 2025
Viewed by 541
Abstract
Autonomous underwater vehicle inspection in 3D environments presents significant challenges in spatial mapping for obstacle avoidance and motion control. Current solutions rely on either 2D forward-looking sonar or expensive 3D sonar systems. To address these limitations, this study proposes a cost-effective 3D reconstruction [...] Read more.
Autonomous underwater vehicle inspection in 3D environments presents significant challenges in spatial mapping for obstacle avoidance and motion control. Current solutions rely on either 2D forward-looking sonar or expensive 3D sonar systems. To address these limitations, this study proposes a cost-effective 3D reconstruction method using an oscillatory forward-looking sonar with a pan-tilt mechanism that extends perception from a 2D plane to a 75-degree spatial range. Additionally, a polar coordinate-based frontier extraction method for sequential sonar images is introduced that captures more complete contour frontiers. Through bridge pier scanning validation, the system shows a maximum measurement error of 0.203 m. Furthermore, the method is integrated with the Ego-Planner path planning algorithm and nonlinear Model Predictive Control (MPC) algorithm, creating a comprehensive underwater 3D perception, planning, and control system. Gazebo simulations confirm that generated 3D point clouds effectively support the Ego-Planner method. Under localisation errors of 0 m, 0.25 m, and 0.5 m, obstacle avoidance success rates are 100%, 60%, and 30%, respectively, demonstrating the method’s potential for autonomous operations in complex underwater environments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 6730 KiB  
Article
Restoration of Turbid Underwater Images of Cobalt Crusts Using Combined Homomorphic Filtering and a Polarization Imaging System
by Enzu Peng, Chengyi Liu and Haiming Zhao
Sensors 2025, 25(4), 1088; https://doi.org/10.3390/s25041088 - 11 Feb 2025
Viewed by 793
Abstract
Marine cobalt-rich crusts, extensively used in industries such as aerospace, automotive, and electronics, are crucial mineral resources located on the ocean floor. To effectively exploit these valuable resources, underwater imaging is essential for real-time detection and distribution mapping in mining areas. However, the [...] Read more.
Marine cobalt-rich crusts, extensively used in industries such as aerospace, automotive, and electronics, are crucial mineral resources located on the ocean floor. To effectively exploit these valuable resources, underwater imaging is essential for real-time detection and distribution mapping in mining areas. However, the presence of suspended particles in the seabed mining environment severely degrades image quality due to light scattering and absorption, hindering the effective identification of the target objects. Traditional image processing techniques—including spatial and frequency domain methods—are ineffective in addressing the interference caused by suspended particles and offer only limited enhancement effects. This paper proposes a novel underwater image restoration method that combines polarization imaging and homomorphic filtering. By exploiting the differences in polarization characteristics between suspended particles and target objects, polarization imaging is used to separate backscattered light from the target signal, enhancing the clarity of the cobalt crust images. Homomorphic filtering is then applied to improve the intensity distribution and contrast of the orthogonal polarization images. To optimize the parameters, a genetic algorithm is used with image quality evaluation indices as the fitness function. The proposed method was compared with traditional image processing techniques and classical polarization imaging methods. Experimental results demonstrate that the proposed approach more effectively suppresses backscattered light, enhancing the clarity of target object features. With significant improvements in image quality confirmed by several no-reference quality metrics, the method shows promise as a solution for high-quality underwater imaging in turbid environments, particularly for deep-sea mining of cobalt-rich crusts. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

15 pages, 19344 KiB  
Article
An Underwater Polarization Imaging Technique Based on the Construction and Decomposition of the Low-Rank and Sparse Matrix in Stokes Space for Polarization State Imaging
by Pengfeng Liu, Yuxiang Zhai, Hongjin Zhu, Zijian Ye, Qinyu He, Zhilie Tang and Peijun Tang
Sensors 2025, 25(3), 704; https://doi.org/10.3390/s25030704 - 24 Jan 2025
Cited by 1 | Viewed by 1077
Abstract
Traditional underwater polarization imaging methods can only provide clear degree of polarization (DOP) and intensity images of the object but cannot provide images of the polarization state of the object. This paper proposes a method to extract clear object information from turbid water [...] Read more.
Traditional underwater polarization imaging methods can only provide clear degree of polarization (DOP) and intensity images of the object but cannot provide images of the polarization state of the object. This paper proposes a method to extract clear object information from turbid water in all four Stokes parameter (I, Q, U, and V) channels by using the full Stokes camera, enabling clear polarization state image reconstruction. The method utilizes multiple images from different angles to construct a low-rank and sparse matrix. Then, by decomposing this matrix into sparse and low-rank components, clear Q, U, and V images (i.e., the full polarization state) can be obtained. Unlike traditional methods that assume the circularly polarized component (V component) to be zero, this method retains V channel information, allowing for circular polarization component measurement. The study successfully reconstructed clear underwater images of samples with inhomogeneous DOP distribution and obtained the clear polarization states of polarizers and fish in the turbid water. The results show that the proposed method can visualize and analyze the object’s polarization state quantitatively with high accuracy in turbid water for the first time, potentially extending the applicability of polarization underwater imaging in ocean exploration. Full article
(This article belongs to the Special Issue Underwater Vision Sensing System)
Show Figures

Figure 1

15 pages, 9179 KiB  
Article
Underwater Dynamic Polarization-Difference Imaging with Greater Applicability
by Jinxin Deng, Jingping Zhu, Haoxiang Li, Yucai Kuang, Angze Li and Xiaofang Liu
Photonics 2024, 11(11), 1069; https://doi.org/10.3390/photonics11111069 - 14 Nov 2024
Cited by 1 | Viewed by 1020
Abstract
Available polarization-difference imaging techniques face serious challenges in imaging speed and application range. To address these issues, this paper proposes an underwater dynamic polarization-difference imaging method with greater applicability. First, the intensity distribution of backscattered light is estimated via the Stokes vector. Afterward, [...] Read more.
Available polarization-difference imaging techniques face serious challenges in imaging speed and application range. To address these issues, this paper proposes an underwater dynamic polarization-difference imaging method with greater applicability. First, the intensity distribution of backscattered light is estimated via the Stokes vector. Afterward, the differential operation between the total intensity of light and the amplified estimation result of backscattered light makes clear imaging immediately accessible. Regardless of the movement states and polarization characteristics of the target, experimental results consistently demonstrate that the backscattered light can be eliminated to a great extent, and imaging quality and applicability are significantly enhanced. Meanwhile, the proposed method is immune to unexpected factors such as uneven illumination and has good stability. More importantly, there are also apparent advantages in terms of imaging time. Full article
(This article belongs to the Special Issue Photonics: 10th Anniversary)
Show Figures

Figure 1

15 pages, 13272 KiB  
Article
Polarization-Enhanced Underwater Laser Range-Gated Imaging for Subaquatic Applications
by Shuaibao Chen, Peng Liu, Wei He, Dong Luo, Yuguang Tan, Liangpei Chen, Jue Wang, Qi Zhao, Guohua Jiao and Wei Chen
Sensors 2024, 24(20), 6681; https://doi.org/10.3390/s24206681 - 17 Oct 2024
Cited by 2 | Viewed by 2076
Abstract
Laser range-gated underwater imaging technology, by removing most of the backscattering noise, can effectively increase image contrast and extend the detection range. The optical signal captured by a range-gated imaging system primarily comprises reflected light from the object and backscattered light from the [...] Read more.
Laser range-gated underwater imaging technology, by removing most of the backscattering noise, can effectively increase image contrast and extend the detection range. The optical signal captured by a range-gated imaging system primarily comprises reflected light from the object and backscattered light from the surrounding water. Consequently, surfaces with low reflectivity or highly turbid water environments substantially constrain the applicability of the range-gated imaging system. To enhance the detection capability of underwater laser range-gated imaging, this paper proposes the incorporation of underwater polarized light imaging technology as an enhancement method. Based on polarization differences, backscattered light and reflected light from an object can be distinguished. Experimental results indicate that, compared to images obtained using a conventional range-gated laser imaging system, those captured with a polarization-enhanced system exhibit an increase of up to 47% for the corresponding Enhancement Measure Evaluation (EME) index. The proposed approach, which integrates polarization imaging with range-gated laser imaging, has the potential to broaden the applicability of underwater laser imaging scenarios, such as deep-sea exploration and military applications. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

17 pages, 6731 KiB  
Article
Method for Detecting Underwater Microbubbles Using Dual-Mode Fusion of Laser Polarization
by Siguang Zong, Shaopeng Yang and Shanyong Liang
Appl. Sci. 2024, 14(18), 8465; https://doi.org/10.3390/app14188465 - 20 Sep 2024
Cited by 2 | Viewed by 1088
Abstract
Bubble detection in water plays important roles in human exploration and management of the ocean. This research presents a detection technique based on laser polarization dual-mode fusion, aiming at solving the difficulties of light scattering intensity characteristics that are hard to extract and [...] Read more.
Bubble detection in water plays important roles in human exploration and management of the ocean. This research presents a detection technique based on laser polarization dual-mode fusion, aiming at solving the difficulties of light scattering intensity characteristics that are hard to extract and the small particle size of underwater bubbles that are hard to detect. To increase the precision of bubble identification, an image fusion technique based on bubble polarization degree is first presented. Second, we quantitatively investigate the grayscale undulation of bubbles with different size and number distributions in the image from both statistical and experimental aspects, introduce image grayscale fluctuation (GF) to fuse two modes of laser polarization and the image, establish an a posteriori distribution probability model of discriminating features such as the size and number of bubbles, and realize the bubble small-sample, multi-source data fitting. The findings demonstrate that dynamic bubble detection in the 50–1000 μm and 100–2000 cm−3 ranges can achieve more than 95%, as well as more than a 93%, accuracy in quantity distribution and bubble size change. This technique achieves the continuous perception of bubble features in complicated underwater environments, and offers a possible application scheme for the detection of marine bubble environments. Full article
Show Figures

Figure 1

14 pages, 24677 KiB  
Article
Rethinking of Underwater Image Restoration Based on Circularly Polarized Light
by Chao Wang, Zhiyang Wu, Zexiong Han, Junguang Wang, Haofeng Hu and Xiaobo Li
Photonics 2024, 11(8), 773; https://doi.org/10.3390/photonics11080773 - 20 Aug 2024
Cited by 6 | Viewed by 1899
Abstract
Polarimetric imaging technology plays a crucial role in de-scattering, particularly in the field of underwater image restoration. Circularly polarized light (or the underlying circular polarization memory effect) has been proven to better preserve the polarization characteristics of detected light. Utilizing circularly polarized light [...] Read more.
Polarimetric imaging technology plays a crucial role in de-scattering, particularly in the field of underwater image restoration. Circularly polarized light (or the underlying circular polarization memory effect) has been proven to better preserve the polarization characteristics of detected light. Utilizing circularly polarized light as illumination can further enhance the effectiveness of polarization de-scattering techniques. After rethinking the advantages of circularly polarized light, this paper proposes a new method for underwater polarimetric imaging restoration that leverages the pre-processing of polarized sub-images and the correlation of polarization characteristics (i.e., the angle of polarization and degree of polarization). Additionally, to address the challenge of selecting scattering light parameters due to uneven light fields in target scenes, an intensity adjustment factor search algorithm is designed. This algorithm eliminates the need for the manual selection of scattering light parameters, effectively solving the problem of uneven illumination in restoration results. A series of experiments demonstrate that, compared to traditional algorithms, the proposed method offers superior detail restoration and higher robustness. Full article
Show Figures

Figure 1

17 pages, 6477 KiB  
Article
Polarized-Speckle Deviation Imaging through Scattering Media under Strong Background Light Interference
by Si He, Xia Wang and Linhao Li
Photonics 2024, 11(7), 682; https://doi.org/10.3390/photonics11070682 - 22 Jul 2024
Cited by 1 | Viewed by 1587
Abstract
A crucial challenge faced by noninvasive imaging through strongly scattering media is overcoming background light interference. Polarization-based anti-scattering methods can eliminate background light interference, but fail to utilize speckle images that do not contain unscattered object light for object reconstruction. Although speckle correlation [...] Read more.
A crucial challenge faced by noninvasive imaging through strongly scattering media is overcoming background light interference. Polarization-based anti-scattering methods can eliminate background light interference, but fail to utilize speckle images that do not contain unscattered object light for object reconstruction. Although speckle correlation imaging (SCI) methods can utilize speckle images for object reconstruction, it is difficult to achieve stable high-quality reconstruction and overcome background light interference using these methods. In this study, we propose a polarized-speckle deviation imaging (PSDI) method to overcome background light interference and achieve high-quality imaging through strongly scattering media. PSDI utilizes the bispectrum and autocorrelation of polarized speckle image deviations to reconstruct the Fourier phase and amplitude spectra of the object image, respectively. Experimental results show that when the background light is polarized and unpolarized, PSDI can achieve stable high-fidelity reconstruction of a polarized object when the signal-to-background ratio (SBR) is lower than −7 dB and −9 dB, respectively. PSDI bridges the gap between imaging with strongly scattered light and overcoming strong background light interference, and is expected to find widespread applications in fields such as biomedical imaging, astronomical observation, underwater imaging, and remote sensing. Full article
(This article belongs to the Special Issue Polarization Optics)
Show Figures

Figure 1

27 pages, 6258 KiB  
Review
Breakthrough Underwater Physical Environment Limitations on Optical Information Representations: An Overview and Suggestions
by Shuangquan Li, Zhichen Zhang, Qixian Zhang, Haiyang Yao, Xudong Li, Jianjun Mi and Haiyan Wang
J. Mar. Sci. Eng. 2024, 12(7), 1055; https://doi.org/10.3390/jmse12071055 - 23 Jun 2024
Cited by 5 | Viewed by 2873
Abstract
Underwater optics have seen a notable surge of interest in recent years, emerging as a critical medium for conveying information crucial to underwater resource exploration, autonomous underwater vehicle navigation, etc. The intricate dynamics of underwater optical transmission, influenced by factors such as the [...] Read more.
Underwater optics have seen a notable surge of interest in recent years, emerging as a critical medium for conveying information crucial to underwater resource exploration, autonomous underwater vehicle navigation, etc. The intricate dynamics of underwater optical transmission, influenced by factors such as the absorption by the water and scattering by multiple particles, present considerable challenges. One of the most critical issues is that the optical information representation methods fail to take into account the impact of the underwater physical environment. We conducted a comprehensive review and analysis of recent advancements in underwater optical transmission laws and models. We summarized and analyzed relevant research on the effects of underwater particles and turbulence on light and analyzed the polarization effects in various environments. Then, the roles of various types of underwater optical propagation models were analyzed. Although optical models in complex environments are still mostly based on Monte Carlo methods, many underwater optical propagation mechanisms have been revealed and can promote the impacts of optical information expression. We delved into the cutting-edge research findings across three key domains: the enhancement of underwater optical image quality, the 3D reconstruction from monocular images, and the underwater wireless optical communication, examining the pivotal role played by light transmission laws and models in these areas. Drawing upon our extensive experience in underwater optics, including underwater optical sensor development and experiments, we identified and underscored future directions in this field. We advocate for the necessity of further advancements in the comprehension of underwater optical laws and physical models, emphasizing the importance of their expanded application in underwater optical information representations. Deeper exploration into these areas is not only warranted but essential for pushing the boundaries of current underwater optical technologies and unlocking new potential for their application in underwater optical sensor developments, underwater exploration, environmental monitoring, and beyond. Full article
(This article belongs to the Special Issue Underwater Engineering and Image Processing)
Show Figures

Figure 1

25 pages, 17753 KiB  
Article
A Dual-Branch Autoencoder Network for Underwater Low-Light Polarized Image Enhancement
by Chang Xue, Qingyu Liu, Yifan Huang, En Cheng and Fei Yuan
Remote Sens. 2024, 16(7), 1134; https://doi.org/10.3390/rs16071134 - 24 Mar 2024
Cited by 4 | Viewed by 1982
Abstract
Underwater detection faces uncomfortable illumination conditions, and traditional optical images sensitive to intensity often cannot work well in these conditions. Polarization imaging is a good solution for underwater detection under adverse lighting conditions. However, the process of obtaining polarization information causes it to [...] Read more.
Underwater detection faces uncomfortable illumination conditions, and traditional optical images sensitive to intensity often cannot work well in these conditions. Polarization imaging is a good solution for underwater detection under adverse lighting conditions. However, the process of obtaining polarization information causes it to be more sensitive to noise; serious noise reduces the quality of polarized images and subsequent performance in advanced visual tasks. Unfortunately, the flourishing low-light image enhancement methods applied to intensity images have not demonstrated satisfactory performance when transferred to polarized images. In this paper, we propose a low-light image enhancement paradigm based on the antagonistic properties of polarization parameters. Furthermore, we develop a dual-branch network that relies on a gradient residual dense feature extraction module (GRD) designed for polarized image characteristics and polarization loss, effectively avoiding noise introduced during the direct amplification of brightness, and capable of restoring target contour details. To facilitate a data-driven learning method, we propose a simulation method for underwater low-light polarized images. Extensive experimental results on real-world datasets demonstrate the effectiveness of our proposed approach and its superiority against other state-of-the-art methods. Full article
(This article belongs to the Special Issue Advancement in Undersea Remote Sensing II)
Show Figures

Figure 1

16 pages, 3114 KiB  
Article
Underwater Degraded Image Restoration by Joint Evaluation and Polarization Partition Fusion
by Changye Cai, Yuanyi Fan, Ronghua Li, Haotian Cao, Shenghui Zhang and Mianze Wang
Appl. Sci. 2024, 14(5), 1769; https://doi.org/10.3390/app14051769 - 21 Feb 2024
Cited by 2 | Viewed by 1484
Abstract
Images of underwater environments suffer from contrast degradation, reduced clarity, and information attenuation. The traditional method is the global estimate of polarization. However, targets in water often have complex polarization properties. For low polarization regions, since the polarization is similar to the polarization [...] Read more.
Images of underwater environments suffer from contrast degradation, reduced clarity, and information attenuation. The traditional method is the global estimate of polarization. However, targets in water often have complex polarization properties. For low polarization regions, since the polarization is similar to the polarization of background, it is difficult to distinguish between target and non-targeted regions when using traditional methods. Therefore, this paper proposes a joint evaluation and partition fusion method. First, we use histogram stretching methods for preprocessing two polarized orthogonal images, which increases the image contrast and enhances the image detail information. Then, the target is partitioned according to the values of each pixel point of the polarization image, and the low and high polarization target regions are extracted based on polarization values. To address the practical problem, the low polarization region is recovered using the polarization difference method, and the high polarization region is recovered using the joint estimation of multiple optimization metrics. Finally, the low polarization and the high polarization regions are fused. Subjectively, the experimental results as a whole have been fully restored, and the information has been retained completely. Our method can fully recover the low polarization region, effectively remove the scattering effect and increase an image’s contrast. Objectively, the results of the experimental evaluation indexes, EME, Entropy, and Contrast, show that our method performs significantly better than the other methods, which confirms the feasibility of this paper’s algorithm for application in specific underwater scenarios. Full article
(This article belongs to the Topic Computer Vision and Image Processing, 2nd Edition)
Show Figures

Figure 1

13 pages, 4006 KiB  
Article
Underwater Turbid Media Stokes-Based Polarimetric Recovery
by Zhenfei Wang, Meixin Hu and Ketao Zhang
Sensors 2024, 24(5), 1367; https://doi.org/10.3390/s24051367 - 20 Feb 2024
Cited by 3 | Viewed by 2080
Abstract
Underwater optical imaging for information acquisition has always been an innovative and crucial research direction. Unlike imaging in the air medium, the underwater optical environment is more intricate. From an optical perspective, natural factors such as turbulence and suspended particles in the water [...] Read more.
Underwater optical imaging for information acquisition has always been an innovative and crucial research direction. Unlike imaging in the air medium, the underwater optical environment is more intricate. From an optical perspective, natural factors such as turbulence and suspended particles in the water cause issues like light scattering and attenuation, leading to color distortion, loss of details, decreased contrast, and overall blurriness. These challenges significantly impact the acquisition of underwater image information, rendering subsequent algorithms reliant on such data unable to function properly. Therefore, this paper proposes a method for underwater image restoration using Stokes linearly polarized light, specifically tailored to the challenges of underwater complex optical imaging environments. This method effectively utilizes linear polarization information and designs a system that uses the information of the first few frames to calculate the enhanced images of the later frames. By doing so, it achieves real-time underwater Stokes linear polarized imaging while minimizing human interference during the imaging process. Furthermore, the paper provides a comprehensive analysis of the deficiencies observed during the testing of the method and proposes improvement perspectives, along with offering insights into potential future research directions. Full article
(This article belongs to the Special Issue Underwater Vision Sensing System)
Show Figures

Figure 1

15 pages, 4141 KiB  
Article
Automatic Suppression Method for Water Surface Glints Using a Division of Focal Plane Visible Polarimeter
by Meishu Wang, Su Qiu, Weiqi Jin and Jie Yang
Sensors 2023, 23(17), 7446; https://doi.org/10.3390/s23177446 - 26 Aug 2023
Cited by 7 | Viewed by 1632
Abstract
To address the problem of water surface detection imaging equipment being susceptible to water surface glints, this study demonstrates a method called De-Glints for suppressing glints and obtaining clear underwater images using a division of focal plane (DoFP) polarimeter. Based on the principle [...] Read more.
To address the problem of water surface detection imaging equipment being susceptible to water surface glints, this study demonstrates a method called De-Glints for suppressing glints and obtaining clear underwater images using a division of focal plane (DoFP) polarimeter. Based on the principle of polarization imaging, the best polarization angle and the image corresponding to the minimal average gray level of each pixel are calculated. To evaluate the improvement in image quality, the index E was designed. The results of indoor and outdoor experiments show that the error of the angle calculation of this method is within 10%, and the minimum error is only 3%. The E index is positively improved and can be relatively improved by 8.00 under the interference of strong outdoor glints, and the method proposed in this paper shows a good adaptive ability to the dynamic scene. Full article
(This article belongs to the Special Issue Optical Imaging and Sensing)
Show Figures

Figure 1

Back to TopTop