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Abstract: Underwater optical imaging for information acquisition has always been an innovative and
crucial research direction. Unlike imaging in the air medium, the underwater optical environment
is more intricate. From an optical perspective, natural factors such as turbulence and suspended
particles in the water cause issues like light scattering and attenuation, leading to color distortion, loss
of details, decreased contrast, and overall blurriness. These challenges significantly impact the acqui-
sition of underwater image information, rendering subsequent algorithms reliant on such data unable
to function properly. Therefore, this paper proposes a method for underwater image restoration
using Stokes linearly polarized light, specifically tailored to the challenges of underwater complex
optical imaging environments. This method effectively utilizes linear polarization information and
designs a system that uses the information of the first few frames to calculate the enhanced images
of the later frames. By doing so, it achieves real-time underwater Stokes linear polarized imaging
while minimizing human interference during the imaging process. Furthermore, the paper provides
a comprehensive analysis of the deficiencies observed during the testing of the method and proposes
improvement perspectives, along with offering insights into potential future research directions.

Keywords: polarization; underwater imaging; polarimetric imaging; turbid media; optical sensors;
optical measurements

1. Introduction

High-definition underwater optical imaging has always been a challenging and highly
valuable research topic, providing significant technical support for various underwater
machine operations, such as underwater target recognition, environmental detection, and
fish population management. Polarized light imaging is a method that utilizes multiple
angle-polarized images to recover clear images. This approach leverages one of the funda-
mental properties of light polarization, where light vibrates perpendicular to its direction
of propagation. A polarizing filter is an optical instrument that restricts the passage of light
at certain angles. It allows light with vibrations parallel to the narrow slit to pass through
while blocking light with vibrations perpendicular to it. When light propagates in water, it
is subject to absorption and scattering due to the density and absorption effects of solutes
in the water [1]. In this scenario, a polarized light sensor can effectively filter out stray
light produced during these processes, allowing for a better representation of the detailed
information in images. In traditional polarized light sensors, specific angle polarizers are
typically set in front of the imaging device to obtain polarized light imaging results at
a certain angle. In this mode, multiple sets of polarized light sensors are often needed
simultaneously to meet practical requirements. The operation of multiple sets of polarized
sensors usually requires a significant budget and results in a larger volume, hindering
widespread application. However, the emergence of the Sony IMX250 series polarized light
sensor has changed this situation. Each pixel in this sensor has its own polarizing filter.
This polarized light sensor has a unique structure, with each pixel’s polarizing filter coated

Sensors 2024, 24, 1367. https://doi.org/10.3390/s24051367 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24051367
https://doi.org/10.3390/s24051367
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0003-8407-8840
https://orcid.org/0009-0007-7492-1303
https://orcid.org/0000-0002-6033-071X
https://doi.org/10.3390/s24051367
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24051367?type=check_update&version=2


Sensors 2024, 24, 1367 2 of 13

with an anti-reflective layer and positioned between micro-lenses and photodiodes [2].
Therefore, it can capture polarized light photos containing information from four different
angles in a single shot. The miniaturization of this polarized light sensor can effectively
facilitate the application of polarized light technology in underwater robotics.

There are three classical methods of polarized light imaging. The first is Polarization
Difference Imaging (PD), which involves using two orthogonal polarized images at different
angles to estimate transmittance and obtain a restored clear image [3]. For instance, Rowe
and Tyo utilized PD as a common-mode suppressor to mitigate the influence of backward
scattered light, amplifying the PD amplitude from the background to detect details that
are not easily discernible, providing a novel approach to underwater imaging [4]. In
1996, Tyo and Rowe studied the restoration capability of PD and the polarization sum
under different scattering conditions, and PD was found to significantly enhance the
target detection range [3]. Schechner proposed a method that establishes an underwater
imaging model by solving the backscatter PD using two orthogonal polarized images and
referencing the atmospheric imaging model. This fusion enables the application of polarized
imaging in underwater environments [5]. The second method is Stokes Polarization
Imaging (SP), which utilizes the robustness of polarization angles to eliminate backscattered
light and achieve image clarity [6]. For instance, Tian et al. combined occluded light
Stokes vectors with differential polarization imaging, devising an improved PD imaging
method. The main advantage of this approach is its ability to rapidly restore images
through algorithmic calculations, given the Stokes parameters, providing PD imaging
with fast imaging capabilities [7]. In summary, as Stokes vectors offer additional valuable
information in images, such as Degree of Polarization (DoP) and Angle of Polarization
(AoP), which are typically related to backscatter caused by water particles and background
light, methods based on Stokes polarization imaging generally outperform traditional
polarization imaging techniques in image restoration [8]. In 2009, Setälä et al. demonstrated
the disparity between DoP in the time and frequency domains. In this article, they employed
mathematical derivations to establish that the spectral degree of polarization is contingent
upon the temporal coherence of the field, whereas the temporal degree of polarization is not
necessarily so [9]. This mathematical foundation enhances the theoretical underpinning for
the improved application of DoP. Thus, increasing information dimensions and optimizing
parameters can effectively enhance the imaging quality. The third method is Mueller Matrix
Imaging (MM), which can better utilize all the information of polarized light, resulting in
improved polarization image restoration [10]. Initially, polarization imaging of scattering
media based on MM involved linear polarization imaging with the modulation of active
illumination, which typically required nine images for computation [11]. Wang et al.
analyzed the physical optical model of backward scattered light and target reflected light,
altering the angle between the polarizer direction and the direction of backscattered light.
By combining MM imaging with PD imaging, they successfully eliminated scattered light,
achieving excellent output results under ideal conditions [12]. Compared to the first two
polarization imaging methods, MM-based approaches have the advantage of utilizing more
useful image information and increasing polarization degrees of freedom, but they also
require higher data processing and computational complexity. Overall, each polarized
imaging method has its strengths and weaknesses, making it meaningful to choose the
appropriate approach for polarization imaging based on different application scenarios.

We recognize the significance of real-time imaging techniques in various underwater
machine applications. Algorithms capable of real-time imaging are more suitable for
practical underwater working environments compared to those limited to image processing
only [13]. They can often reveal more details present in the underwater environment,
such as detecting cracks in underwater structures or salvaging underwater objects, tasks
that require prolonged and effective detection by underwater machinery. Traditional
underwater polarized light imaging algorithms, however, are often limited to processing a
single or a few images [14], lacking the ability to process video data over an extended period.
This limitation greatly hinders the application of various polarized imaging techniques in
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underwater environments. To address this drawback, we propose a real-time underwater
image dehazing technique based on Stokes polarized imaging. This method capitalizes
on the slow movement speed of underwater robots, ensuring that environmental light
intensity and underwater conditions do not change significantly over short periods. The
approach involves using the information from the first frame to dehaze subsequent images.
It first processes the first frame, calculates the background light of this frame, and then uses
the estimated background light to dehaze subsequent images. Simultaneously, it computes
the clarity metrics of these images, and if they do not meet the standard, it recalculates
the background light and repeats the process. This method proves effective in scenarios
where parameters affecting background light estimation, such as underwater light intensity,
solute–solvent interactions, and impurities, change little over short periods in underwater
slow-motion robots. To validate the effectiveness of the proposed method, we conducted
several practical experiments in turbid water. Finally, we acknowledge the limitations and
shortcomings of this method and provide its recommendations for improvement. This
research also offers some perspectives on underwater polarized light modeling.

This paper is structured as follows: In Section 2, we provide the classical principles of
underwater polarized light imaging and the innovative contributions made in this work. In
Section 3, we elaborate on the experimental conditions and outcomes, providing a detailed
account of the experimental setup and results. In Section 4, we present conclusions and
future prospects.

2. Methodology of Imaging Recovery by Stokes Polarization in Real-Time Imaging
2.1. Traditional Underwater Polarization Imaging Model

In polarized imaging models, based on the light source used, polarized imaging can be
categorized into active polarized imaging and passive polarized imaging. Active polarized
imaging refers to polarized imaging with an active polarized light source, primarily aiming
to eliminate the absorption, scattering, and attenuation of water on natural light. Traditional
passive polarized imaging, on the other hand, does not require an artificial light source and
mainly relies on natural light. However, as research advances, an increasing number of
passive polarized imaging systems have also started to introduce polarized light sources to
counter water interference. In 2005, Schechner et al. proposed the classic model for uniform
turbid media underwater polarized imaging, as shown in Figure 1 [5].
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Figure 1. Physical model of underwater passive polarization imaging [5].

This model posits that the polarization degree of the target information light is much
smaller than that of the background scattering, allowing us to neglect forward scattering.
Based on this premise, the total received light by the camera can be divided into the
direct transmitted light D(x, y) radiated by the target object and the background light
B(x, y) formed by the scattering particles in the water. L(x, y) represents the brightness
of the object that is neither scattered nor absorbed by the water particles, typically used
to denote the recovered image. The transmission coefficient of the scattering medium,
t(x, y), generally varies with changes in the underwater environment, while A∞ denotes
the background scattering light at an infinite distance, which also varies with the intensity
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of light and the underwater conditions. The mathematical formulation of this model is
given by the following Equation (1).

I(x, y)= D(x, y)+B(x, y),
I(x, y)= L(x, y)·t(x, y) + A∞[1 − t(x, y)].

(1)

Traditional polarization imaging restoration methods are based on two orthogonal
polarized images, namely the co-linear image and the cross-linear image [15]. These two
polarized images can be represented by the following Equation (2).

I∥(x, y) = D(x, y)
2 + B∥(x, y),

I⊥(x, y) = D(x, y)
2 + B⊥(x, y).

(2)

Hence, the backscattered DoP can be represented as Pscat= (A∥
∞ − A⊥

∞)/(A∥
∞ + A⊥

∞

)
,

and the veiling light can be expressed as B(x, y) = (I∥ − I⊥)/ Pscat [16]. Subsequently,
the transmittance and scene brightness can be obtained through calculations as shown in
Equation (3).

t(x, y) = 1 − I∥(x, y) −I⊥(x, y)
PscatA∞

,

L(x, y) = I(x, y) −B(x, y)
t(x, y) =

I∥(x, y)+I⊥(x, y) −B(x, y)
t(x, y) .

(3)

2.2. Traditional Stokes Polarization Parameter Method

The previously mentioned model describes Schechner’s traditional polarization image
recovery based on linearly polarized light. Many current research models and innovations
build upon this foundation to enhance and update the approach. Moreover, the calculations
for I∥ and I⊥ can be replaced and computed using other parameters, allowing the model
to be adapted for different scenarios. In comparison, Stokes polarimetry outperforms
traditional polarization imaging as it better utilizes DoP and AoP. In traditional polarization
imaging, target light is always partially polarized, making it challenging to obtain an ideal
polarization sub-image with a rotating polarizer [17]. Therefore, Stokes polarimetry can
more effectively recover image information. The Stokes vector [I Q U V] describes both the
intensity and polarization (including DoP and AoP) information of the light wave. However,
obtaining the Stokes vector using previous methods has been complex and computationally
challenging [18]. The radiation received by the detector includes linearly and circularly
polarized light. Thus, the Stokes vector can be specifically divided into linearly polarized,
circularly polarized, and unpolarized components [19]. The representation is shown in
Equation (4), where the table from left to right represents linearly polarized light, circularly
polarized light, and the unpolarized component. The DoP is a physical quantity that
characterizes the polarization degree of an electromagnetic wave. It is a value between 0
and 1, representing the proportion of polarization in the total power of an electromagnetic
wave. Ppolarized is the power of the polarized component, and Ptotal is the total power.
The AoP is the angle between the vibration direction of the electromagnetic wave and
a reference direction. When polarization occurs in the electromagnetic wave, the angle
between the vibration direction and the direction of wave propagation is the polarization
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angle. These two physical quantities play a crucial role in describing polarized light. The
process for calculating AoP and DoP is also provided in Equation (4).

S =Sl−polarized + Sc−polarized + Sunpolarized,

S =


√

S2
1 + S2

2
S1
S2
0

+


S3
0
0
S3

+


S0 −

√
S2

1 + S2
2 − S3

0
0
0

,

AoP = 1
2 tan−1

[
S2
S1

]
,

DoP =
Ppolarized

Ptotal
=

√
S2

1+S2
2+S2

3
S0

.

(4)

Indeed, calculating Stokes polarization parameters can be a complex process, involving
considerations of the polarization distribution of Stokes vectors. The specific derivation
process can be quite intricate, and detailed explanations have been provided in research
articles. For a comprehensive understanding of the derivation process, you may refer
to the work by Wei and colleagues, which presents a novel method for utilizing Stokes
polarization to enhance underwater image quality [20]. It is important to note that the
Stokes polarization parameters offer valuable information about the polarization state of
light and can be highly beneficial in various applications, including underwater imaging.
Researchers have continuously worked on refining and improving methods for deriving
and utilizing Stokes parameters to better extract and enhance information from polarized
light in underwater environments.

2.3. Stokes-Based Underwater Polarization Imaging Method

In 2014, Liang et al. conducted research on the relationship between Stokes vectors and
veil light, building on previous studies related to the expression of polarized light using
Stokes vectors [21]. They proposed a method to estimate the backward scattering/airlight
based on the analysis of AoP. This approach involved capturing images at different polar-
ization angles, 0◦, 45◦, and 90◦, which are demonstrated with reference in Section 3. The
formula for solving the linear polarized Stokes parameters that they proposed is shown in
Equation (5).

S0= I(0)+I(90),
S1= I(0)− I(90),
S2= 2I(45)− S0.

(5)

This method optimizes the process of solving the Stokes vector and greatly enhances
the system’s robustness while reducing sensitivity to noise. In real-world machine working
scenarios, circularly polarized light is more challenging to acquire, as it requires higher
demands on angles and generation conditions. On the other hand, linearly polarized light is
easier to generate and detect. Therefore, in this paper, we choose to use the linear polarized
Stokes parameters, as represented by Equation (5), for image restoration, integrating these
parameters into the underwater physical model. In the proposed Stokes underwater
linear polarized imaging model, we first need to process the linearly polarized light as
described in a method similar to what was mentioned in Section 2.1. We need to obtain the
background scattering light (A∞) and the linear polarization degree (Pscat) at infinity. They
are presented by the following Equation (6), where Ω represents the selected background
region, specifically the number of pixels within the background area [22].

A∞ = 1
|Ω|∑(x, y)∈Ω S0(x, y),

Pscat =
1
|Ω|∑(x, y)∈Ω

[√
[S1(x, y)]2+[S2(x, y)]2

S0(x, y)

]
.

(6)

In practical estimation processes, slight variations in the above two parameters may
occur due to different background light selections. To address this, we can introduce an
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additional parameter, denoted as εl, to constrain Pscat as εlPscat. This parameter can be
designed as a fixed value for a specific underwater scenario or set as a constrained index
through multiple optimizations to determine the best solution. While the fixed value
approach is simpler, the optimization-based method yields more accurate results at the cost
of longer processing times. If computational resources are abundant, I recommend using
the second approach, as it can lead to clearer imaging results. By substituting Equation (6)
into the process of solving the medium transmittance and object radiance, as shown in
Equation (3), we can derive the Stokes-based linear polarized underwater physical imaging
model, as presented in Equation (7).

t(x, y) = 1 −
√
[S1(x, y)]2+ [S2(x, y)]2

εlPscatA∞
,

L(x, y) = I(x, y) −B(x, y)
t(x, y) =

S0(x, y) −A∞ [1 −t(x, y)]
t(x, y)

(7)

Based on the equations mentioned earlier, we can develop a waterborne image restora-
tion method by combining Equations (5) and (6). This method utilizes the simplified
equation proposed by Liang et al. for solving Stokes vector parameters and integrates it
with the traditional underwater linear polarized model, resulting in a novel Stokes-based
linear polarized underwater physical imaging model. Additionally, to address the re-
quirements of underwater robotics in processing videos, a system for underwater video
enhancement has been designed to minimize human intervention.

2.4. Underwater Video Processing Method Based on Stokes Linear Polarization

We delve into the current state of underwater polarized imaging research, revealing
that the existing processing methods and algorithms mainly focus on enhancing images.
Their primary aim is to optimize the computation process and incorporate more image
information to achieve better clarity and restore additional image features in underwater
polarized images. While these studies progress, they often contribute to refining the fun-
damental theories of underwater polarized imaging and explore the integration of other
image processing algorithms to achieve superior results [23]. Considering the operational
environment of underwater robots, it becomes evident that applying this technology to
underwater robotics faces challenges due to the size constraints of underwater imaging
platforms. Most underwater robots worldwide are striving for miniaturization, which
makes processing individual photos with polarized imaging technology costly and ineffi-
cient. In underwater robotics applications, real-time video imaging capabilities are typically
required. Therefore, we design a method for processing video sequences underwater, aim-
ing to minimize human intervention and reduce labor efforts. The main process of this
method is depicted in Figure 2.
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To address the classical underwater polarized imaging methods that require selecting
background light regions for estimating background light intensity and possibly estimating
the parameters in Equation (7), the proposed approach leverages the stable underwater
environment, where solute concentration and light intensity change insignificantly over
short periods. By using the extracted A∞ and Pscat from the first frame of the video
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sequence as indicators for subsequent frames, human intervention is reduced. Firstly, we
segment the captured video into a series of images, one for each frame. For the initial frame,
we manually designate the background light region and use Equation (6) to compute the
average light intensity parameters (A∞) and linear polarization degree (Pscat) for that region.
Secondly, we decompose the captured images arranged by channels to obtain polarized
images in four different directions: 0◦, 45◦, 90◦ and 135◦, as shown in Section 3. Employing
Equation (5), we calculate S0, S1, and S2. Taking these three Stokes parameters along with
environmental parameters A∞ and Pscat, obtained from the initial frame, we input them
into Equation (7) to calculate the enhanced result for the initial frame. Thirdly, using the
environmental parameters obtained from the initial frame and S0, S1, and S2 calculated from
the second frame using Equation (5), we compute the enhanced result for the second frame
using Equation (7). Fourthly, after enhancing the second frame, we assess the enhancement
effect using image evaluation metrics. If the evaluation meets the predefined criteria, the
enhancement result for the second frame is considered acceptable. If the evaluation criteria
are not met, we manually select the background light for the second frame, recalculate
the environmental parameters, and then apply them to image enhancement. This process
is repeated until the end of the image sequence. Regarding the selection of evaluation
metrics, a set of photos can be pre-captured underwater and enhanced. Observing this set
of photos and determining the satisfactory response results will provide a reference value
for evaluation. This reference value can then be chosen as the standard for assessment.
Finally, we concatenate the processed image sequence to obtain the processed video. This
approach effectively reduces the manual effort required for polarized light processing in a
long video, while ensuring a certain level of accuracy in the image results. Additionally,
the Enhancement Measure Evaluation (EME) metric is employed to assess the restoration
results. EME quantifies the local grey-level variations in the image; stronger variations
indicate more pronounced image details. Its calculation is based on segmenting the image
and computing the logarithmic mean of the ratio between the maximum and minimum
grey values within the segmented regions. For blurry underwater images, EME proves to
be an effective indicator of image enhancement quality.

3. Experiments and Results

In this section, we simulate real underwater imaging experiments in a laboratory
pool to validate the underwater imaging model and the algorithm proposed in the second
Section 2. The process involved capturing various images and videos within the simulated
pool environment and subsequently applying algorithms to process these visuals, thereby
substantiating the feasibility of the methods presented in the Section 2. By introducing
varying volumes of milk into the water pool, the experiment emulated different levels
of underwater turbidity. Altering the milk volume facilitated the simulation of distinct
degrees of water turbidity [24]. Milk, being a complex substance composed of water, fats,
proteins, lactose, and particles of varying sizes, is capable of modulating the scattering
characteristics of a solution due to the diverse optical properties of its constituents. Hence,
milk serves as an effective liquid for simulating underwater polarized environments.

In this experiment, we designed and utilized a novel image sensor measurement sys-
tem. This system comprises a polarization camera (LUCID PHX050S-QC color polarization
camera) and a fixed focal length lens for acquiring polarized images. The setup is fixed
within a cylindrical metal waterproof housing, as depicted in Figure 3c.

The camera employs a CMOS-based image sensor (Sony IMX250MYR polarization
sensor). This sensor is equipped with a layer of linear micro-polarizers in different direc-
tions on its photodiodes, as illustrated in Figure 4. This design enables it to simultaneously
capture images with four different polarization directions, and it reduces cost and interfer-
ence compared to acquiring images from four angles by adjusting the polarizer angle and
repeating the shot. The camera boasts a resolution of 5 million pixels.
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In the course of experiments, four distinct objects were chosen for target recognition.
In order to comprehensively represent scenarios that an underwater robot might encounter,
cracked bricks were employed to emulate stone materials typically found in underwater
structures, submerged steel frame structures simulated metallic materials, beverage cans
bearing text and images represented scenarios involving underwater text and image obser-
vation, while a checkerboard pattern was introduced to enhance image recovery contrast.
The experimentation involved two distinct scenarios: images and videos, with processes
that shared some similarities. Ensuring controlled variables, the study maintained stable
external lighting conditions and conducted steady captures at a distance of 10 cm from the
objects. This approach yielded imaging outcomes under varying concentrations. Simulta-
neously, maintaining the same distance, the camera was slowly moved in parallel to obtain
video recordings of the four objects under different concentrations. To offer readers a better
understanding of the experimental setup, Figure 5 below illustrates an overhead view of
the testing pool containing the four designated test objects.
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To derive the Stokes parameters, we initially dissect the polarized images acquired
by the polarized camera into four separate images representing the four polarization
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directions. Figure 6 presents the images captured with the polarized camera and the four
images obtained after decomposition. These four images represent the imaging results
of the original underwater light under the action of four polarizers with different angles.
Following the computational approach outlined by Equation (5) in the article, the four
parameters of the Stokes vector can be calculated.
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Upon obtaining the Stokes vector, the paper proceeds to estimate background scat-
tered light and polarization degree by selecting the appropriate background illumination.
By incorporating a constraint parameter εl, the computational process yields enhanced
image results. For the video dataset, a constraint is enforced based on image enhancement
evaluation metrics. If the restored image result does not meet the evaluation criteria, a reit-
eration of the background light parameter calculation ensues and is applied to subsequent
image enhancements.

We executed Python programs on a personal laptop featuring an AMD Ryzen 7 5800H
CPU@ 3.20 GHz processor. The choice of εl can be based on specific camera parameters
in the given environment and can be determined by selecting reference empirical values
under different operational conditions. Alternatively, the optimal solution can be obtained
through multiple practical experiments. The paper conducted image enhancement on pho-
tos depicting three distinct turbidity levels. To visually demonstrate the image restoration
effects more intuitively, Figure 7 compares the results of image enhancement with the origi-
nal photos before enhancement. In Figure 7, we present three sets of image enhancement
results under different solution turbidity conditions, namely low concentration, medium
concentration, and high concentration. It can be observed that under low concentration
conditions, the restoration effect on the checkerboard pattern and text is most pronounced.
Under medium to high concentration conditions, there is a more noticeable enhancement
effect on the images and text contours on the can body. It is noteworthy that the camera
used captures four different angle images in a single shot, rendering the restored image
result one-fourth the size of the original. Consequently, a direct visual comparison be-
tween the two may favor the captured image due to their size disparity. This discrepancy,
stemming from differing dimensions and pixel counts, hinders direct comparability.

In the image restoration outcomes, the study observed that the selection of background
image parameters, involving human intervention, influences the evaluation metrics of the
restored images. To mitigate this influence, a strategy of multiple selections to obtain an
averaged result was employed, aiming for more accurate evaluation outcomes. To compare
and quantify the quality of image enhancement under non-reference conditions across
various turbidity levels, multiple evaluation metrics were employed during testing, as
presented in Table 1. These metrics include entropy [25], EME [26], and Sobel operator [27].
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Entropy gauges the amount of information contained in the enhanced image, EME in-
dicates the degree of local grayscale variation in the image enhancement result, and the
Sobel operator assesses edge clarity. These metrics yield higher values for superior image
enhancement results. We tested image enhancement outcomes under varying turbidity
conditions by gradually adding 200 mL of milk to the pool three times, totaling 600 mL.
The milk composition included 2.6 g/100 mL of protein and 4.7 g/100 mL of fat. Based on
the computational outcomes, the data in Table 1 below was formulated.
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Table 1. Evaluate results.

Method Turbidity Level
Evaluation Criteria

EME Entropy Sobel

Our method
Low 7.341 4.975 17.274
Mid 5.436 5.192 13.065
High 5.631 4.983 13.198

PD method
Low 9.454 2.409 16.148
Mid 7.101 3.091 18.368
High 8.384 2.876 18.977

According to the data provided in the table and the image results shown above, it is
evident that the algorithm proposed in this paper can effectively enhance photos taken in
relatively turbid environments. The EME values obtained by our algorithm are lower than
those of the PD method, and the entropy values are higher, approximately twice that of
the PD method. Therefore, our method processes images with more information, resulting
in clearer images. The variation of the EME indicator suggests that as turbidity increases,
the efficiency of image enhancement begins to decrease. This phenomenon arises from the
fact that although the quality of the enhanced image is improved compared to the original
image, the initial capture results of the sensor are not sufficient to recover a clear image.
Therefore, the final restoration results under high turbidity cannot be practically applied to
underwater visual systems. Hence, a comprehensive approach is needed to assess image
clarity results, and the actual enhanced images should be considered as the reference.

Additionally, we validated the image processing method for video sequences proposed
in Section 2.4. As per the algorithm’s principle, the environmental parameters for the first
frame image are computed. Subsequently, these parameters are employed to calculate
and derive processing results for subsequent frames. When the computed results from the
parameters do not meet the current requirements, the system will reutilize the current frame
to calculate the parameters and complete the remaining processing steps. A comprehensive
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evaluation of each frame was conducted through the amalgamation of EME and ENT
metrics, forming distinct variations in images for different concentrations. The variation
graph for low concentration is illustrated in Figure 8a, and for moderate concentration,
it is shown in Figure 8b. Analyzing the variations in the two images, it can be inferred
that when environmental variables such as light intensity and turbidity, which can affect
imaging parameter estimation, remain relatively stable, the proposed video enhancement
method offers a convenient and minimally intervention-prone means of stable imaging.
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4. Conclusions and Outlook

We have successfully developed an underwater image and video enhancement method
using calculations based on Stokes linear polarized light. By estimating the scattered light
intensity in the background light region, the integration of Stokes linear polarized light
with the underwater polarized light imaging model has enhanced the traditional linear
polarized light underwater imaging model, leading to significant suppression of scattering
effects. Moreover, considering the underwater working environment, a video imaging
system requiring minimal human–machine interaction has been devised. This system
utilizes parameters calculated from the first frame for subsequent frame computations,
and it employs constraint-based evaluation metrics. Parameters are recalculated when the
evaluation metrics are not met, thereby achieving target requirements. Compared to other
research in this domain, we are the first to apply the polarization enhancement algorithm to
video sequences, yielding more stable results and providing new insights for underwater
visual applications. In the medium to low turbidity conditions, stable recovery results
have been achieved. This method effectively addresses video sequences under certain
conditions, freeing itself from the constraints of traditional frame-by-frame processing in
static models. However, its robustness weakens when interference factors like ambient light
cause significant variations in parameter estimation. The experimental results underscore
that this method excels in slowly changing lighting environments with relatively stable
turbidity conditions. It adeptly processes video sequences and yields significantly clearer
restored sequences.

Throughout this study, opportunities for enhancing and innovating this model have
emerged. Firstly, in terms of polarized light directions, enriching the optical information
that can be processed within the proposed system could involve incorporating more
polarized light information, including circularly polarized light calculations. Secondly,
in the realm of physical imaging models, some prior models have been identified that
operate without the need for background regions and priors. Integrating these methods
into the system proposed in this study could reduce human–machine interaction and
conserve computational resources. Lastly, the realm of DL offers a potential avenue for
improvement. Incorporating neural network operations in image input and processing
could aid in lower computational complexity and enhanced object resolution. This approach
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would significantly contribute to image clarity restoration. This study envisions that this
method and its various potential improvements will effectively assist underwater robots in
performing tasks in turbid environments and find applications in other areas of scattering
suppression imaging.
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