Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (59)

Search Parameters:
Keywords = underwater GPS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1347 KiB  
Article
Multiple Mobile Target Detection and Tracking in Small Active Sonar Array
by Avi Abu, Nikola Mišković, Neven Cukrov and Roee Diamant
Remote Sens. 2025, 17(11), 1925; https://doi.org/10.3390/rs17111925 - 1 Jun 2025
Viewed by 607
Abstract
Biodiversity monitoring requires the discovery of multi-target tracking. The main requirement is not to reduce the localization error but the continuity of the tracks: a high ratio between the duration of the track and the lifetime of the target. To this end, we [...] Read more.
Biodiversity monitoring requires the discovery of multi-target tracking. The main requirement is not to reduce the localization error but the continuity of the tracks: a high ratio between the duration of the track and the lifetime of the target. To this end, we present an algorithm for detecting and tracking mobile underwater targets that utilizes reflections from active acoustic emission of broadband signals received by a rigid hydrophone array. The method overcomes the problem of a high false alarm rate by applying a tracking approach to the sequence of received reflections. A 2D time–distance matrix is created for the reflections received from each transmitted probe signal by performing delay and sum beamforming and pulse compression. The result is filtered by a 2D constant false alarm rate (CFAR) detector to identify reflection patterns that correspond to potential targets. Closely spaced signals for multiple probe transmissions are combined into blobs to avoid multiple detections of a single target. The position and velocity are estimated using the debiased converted measurement Kalman filter. The results are analyzed for simulated scenarios and for experiments in the Adriatic Sea, where six Global Positioning System (GPS)-tagged gilt-head seabream fish were released and tracked by a dedicated autonomous float system. Compared to four recent benchmark methods, the results show favorable tracking continuity and accuracy that is robust to the choice of detection threshold. Full article
Show Figures

Figure 1

20 pages, 6268 KiB  
Article
Three-Dimensional Localization of Underwater Nodes Using Airborne Visible Light Beams
by Jaeed Bin Saif, Mohamed Younis and Fow-Sen Choa
Photonics 2025, 12(5), 503; https://doi.org/10.3390/photonics12050503 - 18 May 2025
Viewed by 340
Abstract
Localizing underwater nodes when they cannot be tethered or float on the surface presents significant challenges, primarily due to node mobility and the absence of fixed anchors with known coordinates. This paper advocates a strategy for tackling such a challenge by using visible [...] Read more.
Localizing underwater nodes when they cannot be tethered or float on the surface presents significant challenges, primarily due to node mobility and the absence of fixed anchors with known coordinates. This paper advocates a strategy for tackling such a challenge by using visible light communication (VLC) from an airborne unit. A novel localization method is proposed where VLC transmissions are made towards the water surface; each transmission is encoded with the Global Positioning System (GPS) coordinates with the incident point of the corresponding light beam. Existing techniques deal with the problem in 2D by assuming that the underwater node has a pressure sensor to measure its depth. The proposed method avoids this limitation and utilizes the intensity of VLC signals to estimate the 3D position of the underwater node. The idea is to map the light intensity at the underwater receiver for airborne light beams and devise an error optimization formulation to estimate the 3D coordinates of the underwater node. Extensive simulations validate the effectiveness of the proposed method and capture its performance across various parameters. Full article
Show Figures

Figure 1

44 pages, 38981 KiB  
Article
From Camera Image to Active Target Tracking: Modelling, Encoding and Metrical Analysis for Unmanned Underwater Vehicles
by Samuel Appleby, Giacomo Bergami and Gary Ushaw
AI 2025, 6(4), 71; https://doi.org/10.3390/ai6040071 - 7 Apr 2025
Viewed by 771
Abstract
Marine mammal monitoring, a growing field of research, is critical to cetacean conservation. Traditional ‘tagging’ attaches sensors such as GPS to such animals, though these are intrusive and susceptible to infection and, ultimately, death. A less intrusive approach exploits UUV commanded by a [...] Read more.
Marine mammal monitoring, a growing field of research, is critical to cetacean conservation. Traditional ‘tagging’ attaches sensors such as GPS to such animals, though these are intrusive and susceptible to infection and, ultimately, death. A less intrusive approach exploits UUV commanded by a human operator above ground. The development of AI for autonomous underwater vehicle navigation models training environments in simulation, providing visual and physical fidelity suitable for sim-to-real transfer. Previous solutions, including UVMS and L2D, provide only satisfactory results, due to poor environment generalisation while sensors including sonar create environmental disturbances. Though rich in features, image data suffer from high dimensionality, providing a state space too great for many machine learning tasks. Underwater environments, susceptible to image noise, further complicate this issue. We propose SWiMM2.0, coupling a Unity simulation modelling of a BLUEROV UUV with a DRL backend. A pre-processing step exploits a state-of-the-art CMVAE, reducing dimensionality while minimising data loss. Sim-to-real generalisation is validated by prior research. Custom behaviour metrics, unbiased to the naked eye and unprecedented in current ROV simulators, link our objectives ensuring successful ROV behaviour while tracking targets. Our experiments show that SAC maximises the former, achieving near-perfect behaviour while exploiting image data alone. Full article
Show Figures

Figure 1

19 pages, 1682 KiB  
Article
Underwater DVL Optimization Network (UDON): A Learning-Based DVL Velocity Optimizing Method for Underwater Navigation
by Feihu Zhang, Shaoping Zhao, Lu Li and Chun Cao
Drones 2025, 9(1), 56; https://doi.org/10.3390/drones9010056 - 15 Jan 2025
Viewed by 1227
Abstract
As the exploration of marine resources continues to deepen, the utilization of Autonomous Underwater Vehicles (AUVs) for conducting marine resource surveys and underwater environmental mapping has become a common practice. In order to successfully accomplish exploration missions, AUVs require high-precision underwater navigation information [...] Read more.
As the exploration of marine resources continues to deepen, the utilization of Autonomous Underwater Vehicles (AUVs) for conducting marine resource surveys and underwater environmental mapping has become a common practice. In order to successfully accomplish exploration missions, AUVs require high-precision underwater navigation information as support. A Strapdown Inertial Navigation System (SINS) can provide AUVs with accurate attitude and heading information, while a Doppler Velocity Log (DVL) is capable of measuring the velocity vector of the AUVs. Therefore, the integrated SINS/DVL navigation system can furnish the necessary navigational information required by an AUV. In response to the issue of DVL being susceptible to external environmental interference, leading to reduced measurement accuracy, this paper proposes an end-to-end deep-learning approach to enhance the accuracy of DVL velocity vector measurements. The utilization of the raw measurement data from an Inertial Measurement Unit (IMU), which includes gyroscopes and accelerometers, to assist the DVL in velocity vector estimation and to refine it towards the Global Positioning System (GPS) velocity vector, compensates for the external environmental interference affecting the DVL, therefore enhancing the navigation accuracy. To evaluate the proposed method, we conducted lake experiments using SINS and DVL equipment, from which the collected data were organized into a dataset for training and assessing the model. The research results show that the DVL vector predicted by our model can achieve a maximum improvement of 69.26% in terms of root mean square error and a maximum improvement of 78.62% in terms of relative trajectory error. Full article
(This article belongs to the Special Issue Advances in Autonomous Underwater Drones)
Show Figures

Figure 1

31 pages, 14091 KiB  
Article
An Enhanced Adaptive Ensemble Kalman Filter for Autonomous Underwater Vehicle Integrated Navigation
by Zeming Liang, Shuangshuang Fan, Jiacheng Feng, Peng Yuan, Jiangjiang Xu, Xinling Wang and Dongxiao Wang
Drones 2024, 8(12), 711; https://doi.org/10.3390/drones8120711 - 28 Nov 2024
Cited by 2 | Viewed by 1688
Abstract
Autonomous Underwater Vehicles (AUVs) rely on integrated navigation systems and corresponding filtering algorithms to ensure mission success and the spatiotemporal accuracy of sampled data. Among these, the ensemble Kalman filter (EnKF) combines Monte Carlo methods with the Kalman filter, which is particularly suited [...] Read more.
Autonomous Underwater Vehicles (AUVs) rely on integrated navigation systems and corresponding filtering algorithms to ensure mission success and the spatiotemporal accuracy of sampled data. Among these, the ensemble Kalman filter (EnKF) combines Monte Carlo methods with the Kalman filter, which is particularly suited for nonlinear systems. This study proposes an enhanced adaptive EnKF algorithm to improve the smoothness and accuracy of the filtering process. Instead of the conventional Gaussian distribution, this algorithm employs a Laplace distribution to construct the system state vector and observation vector ensembles, enhancing stability against non-Gaussian noise. Additionally, the algorithm dynamically adjusts the number of vector members in the ensemble using adaptive mechanisms by specifying thresholds during filtering to adapt the requirements of real-world observational settings. Using field trial data from DVL, GPS, and electronic compass measurements, we optimize the algorithm’s parameter settings and evaluate the overall performance of the algorithm. Results indicate that the proposed adaptive EnKF achieves superior accuracy and smoothness performance. Compared to the conventional EnKF and EKF, it not only reduces the average positioning error by 30% and 44%, respectively, but also significantly improves the filtering smoothness and stability, highlighting its advantages for AUV navigation. Full article
(This article belongs to the Special Issue Advances in Autonomous Underwater Drones)
Show Figures

Figure 1

32 pages, 4267 KiB  
Review
Advancements in Sensor Fusion for Underwater SLAM: A Review on Enhanced Navigation and Environmental Perception
by Fomekong Fomekong Rachel Merveille, Baozhu Jia, Zhizun Xu and Bissih Fred
Sensors 2024, 24(23), 7490; https://doi.org/10.3390/s24237490 - 24 Nov 2024
Cited by 9 | Viewed by 4546
Abstract
Underwater simultaneous localization and mapping (SLAM) has significant challenges due to the complexities of underwater environments, marked by limited visibility, variable conditions, and restricted global positioning system (GPS) availability. This study provides a comprehensive analysis of sensor fusion techniques in underwater SLAM, highlighting [...] Read more.
Underwater simultaneous localization and mapping (SLAM) has significant challenges due to the complexities of underwater environments, marked by limited visibility, variable conditions, and restricted global positioning system (GPS) availability. This study provides a comprehensive analysis of sensor fusion techniques in underwater SLAM, highlighting the amalgamation of proprioceptive and exteroceptive sensors to improve UUV navigational accuracy and system resilience. Essential sensor applications, including inertial measurement units (IMUs), Doppler velocity logs (DVLs), cameras, sonar, and LiDAR (light detection and ranging), are examined for their contributions to navigation and perception. Fusion methodologies, such as Kalman filters, particle filters, and graph-based SLAM, are evaluated for their benefits, limitations, and computational demands. Additionally, innovative technologies like quantum sensors and AI-driven filtering techniques are examined for their potential to enhance SLAM precision and adaptability. Case studies demonstrate practical applications, analyzing the compromises between accuracy, computational requirements, and adaptability to environmental changes. This paper proceeds to emphasize future directions, stressing the need for advanced filtering and machine learning to address sensor drift, noise, and environmental unpredictability, hence improving autonomous underwater navigation through reliable sensor fusion. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

25 pages, 932 KiB  
Review
Positioning Systems for Unmanned Underwater Vehicles: A Comprehensive Review
by Christos Alexandris, Panagiotis Papageorgas and Dimitrios Piromalis
Appl. Sci. 2024, 14(21), 9671; https://doi.org/10.3390/app14219671 - 23 Oct 2024
Cited by 9 | Viewed by 5872
Abstract
Positioning systems are integral to Unmanned Underwater Vehicle (UUV) operation, enabling precise navigation and control in complex underwater environments. This paper comprehensively reviews the key technologies employed for UUV positioning, including acoustic systems, inertial navigation, Doppler velocity logs, and GPS when near the [...] Read more.
Positioning systems are integral to Unmanned Underwater Vehicle (UUV) operation, enabling precise navigation and control in complex underwater environments. This paper comprehensively reviews the key technologies employed for UUV positioning, including acoustic systems, inertial navigation, Doppler velocity logs, and GPS when near the surface. These systems are essential for seabed mapping, marine infrastructure inspection, and search and rescue operations. The review highlights recent technological advancements and examines the integration of these systems to enhance accuracy and operational efficiency. It also addresses ongoing challenges, such as communication constraints, environmental variability, and discrepancies between theoretical models and field applications. Future trends in positioning system development are discussed, with a focus on improving reliability and performance in diverse underwater conditions to support the expanding capabilities of UUVs across scientific, commercial, and rescue missions. Full article
(This article belongs to the Special Issue Application of Computer Science in Mobile Robots II)
Show Figures

Figure 1

16 pages, 13038 KiB  
Article
Underwater Gyros Denoising Net (UGDN): A Learning-Based Gyros Denoising Method for Underwater Navigation
by Chun Cao, Can Wang, Shaoping Zhao, Tingfeng Tan, Liang Zhao and Feihu Zhang
J. Mar. Sci. Eng. 2024, 12(10), 1874; https://doi.org/10.3390/jmse12101874 - 18 Oct 2024
Cited by 2 | Viewed by 1488
Abstract
Autonomous Underwater Vehicles (AUVs) are widely used for hydrological monitoring, underwater exploration, and geological surveys. However, AUVs face limitations in underwater navigation due to the high costs associated with Strapdown Inertial Navigation System (SINS) and Doppler Velocity Log (DVL), hindering the development of [...] Read more.
Autonomous Underwater Vehicles (AUVs) are widely used for hydrological monitoring, underwater exploration, and geological surveys. However, AUVs face limitations in underwater navigation due to the high costs associated with Strapdown Inertial Navigation System (SINS) and Doppler Velocity Log (DVL), hindering the development of low-cost vehicles. Micro Electro Mechanical System Inertial Measurement Units (MEMS IMUs) are widely used in industry due to their low cost and can output acceleration and angular velocity, making them suitable as an Attitude Heading Reference System (AHRS) for low-cost vehicles. However, poorly calibrated MEMS IMUs provide an inaccurate angular velocity, leading to rapid drift in orientation. In underwater environments where AUVs cannot use GPS for position correction, this drift can have severe consequences. To address this issue, this paper proposes Underwater Gyros Denoising Net (UGDN), a method based on dilated convolutions and LSTM that learns and extracts the spatiotemporal features of IMU sequences to dynamically compensate for the gyroscope’s angular velocity measurements, reducing attitude and heading errors. In the experimental section of this paper, we deployed this method on a dataset collected from field trials and achieved significant results. The experimental results show that the accuracy of MEMS IMU data denoised by UGDN approaches that of fiber-optic SINS, and when integrated with DVL, it can serve as a low-cost underwater navigation solution. Full article
(This article belongs to the Special Issue Autonomous Marine Vehicle Operations—2nd Edition)
Show Figures

Figure 1

17 pages, 25572 KiB  
Article
The Effects of Depth and Altitude on Image-Based Shark Size Measurements Using UAV Surveillance
by Patrick T. Rex, Kevin J. Abbott, Rebecca E. Prezgay and Christopher G. Lowe
Drones 2024, 8(10), 547; https://doi.org/10.3390/drones8100547 - 2 Oct 2024
Cited by 2 | Viewed by 4542
Abstract
Drones are an ecological tool used increasingly in shark research over the past decade. Due to their high-resolution camera and GPS systems, they have been used to estimate the sizes of animals using drone-based photogrammetry. Previous studies have used drone altitude to measure [...] Read more.
Drones are an ecological tool used increasingly in shark research over the past decade. Due to their high-resolution camera and GPS systems, they have been used to estimate the sizes of animals using drone-based photogrammetry. Previous studies have used drone altitude to measure the target size accuracy of objects at the surface; however, target depth and its interaction with altitude have not been studied. We used DJI Mavic 3 video (3960 × 2160 pixel) and images (5280 × 3960 pixel) to measure an autonomous underwater vehicle of known size traveling at six progressively deeper depths to assess how sizing accuracy from a drone at 10 m to 80 m altitude is affected. Drone altitudes below 40 m and target depths below 2 m led to an underestimation of size of 76%. We provide evidence that accounting for the drone’s altitude and the target depth can significantly increase accuracy to 5% underestimation or less. Methods described in this study can be used to measure free-swimming, submerged shark size with accuracy that rivals hand-measuring methods. Full article
(This article belongs to the Section Drones in Ecology)
Show Figures

Figure 1

17 pages, 9121 KiB  
Article
A Proposed Method for Assessing the Spatio-Temporal Distribution of Carcharhinus melanopterus (Quoy and Gaimard, 1824) in Shallow Waters Using a UAV: A Study Conducted in Koh Tao, Thailand
by Andrea Di Tommaso, Sureerat Sailar, Francesco Luigi Leonetti, Emilio Sperone and Gianni Giglio
Diversity 2024, 16(10), 606; https://doi.org/10.3390/d16100606 - 1 Oct 2024
Cited by 1 | Viewed by 1176
Abstract
In this study, we propose a method for assessing the temporal and spatial distribution of Carcharhinus melanopterus in shallow waters using unmanned aerial vehicles (UAVs). Aerial surveys were conducted in Tien Og Bay (Koh Tao, Thailand) thrice daily (morning, afternoon, evening) along a [...] Read more.
In this study, we propose a method for assessing the temporal and spatial distribution of Carcharhinus melanopterus in shallow waters using unmanned aerial vehicles (UAVs). Aerial surveys were conducted in Tien Og Bay (Koh Tao, Thailand) thrice daily (morning, afternoon, evening) along a 360 m transect at a 30 m altitude. Environmental factors, including cloudiness, sea conditions, wind, tide, and anthropogenic disturbance, were recorded for each time slot. We developed a Python/AppleScript application to facilitate individual counting, correlating sightings with GPS data and measuring pixel-based length. Abundance varied significantly across time slots (p < 0.001), with a strong morning preference, and was influenced by tide (p = 0.040), favoring low tide. Additionally, abundance related to anthropogenic disturbance (p = 0.048), being higher when anthropogenic activity was absent. Spatial distribution analysis indicated time-related, sector-based abundance differences (p < 0.001). Pixel-based length was converted to Total Length, identifying juveniles. They exhibited a strong sector preference (p < 0.001) irrespective of the time of day. Juvenile abundance remained relatively stable throughout the day, constituting 94.1% of afternoon observations. Between 2020 and 2022, an underwater video survey was conducted to determine the sex ratio of the individuals. Only females and juveniles were sighted in the bay. Full article
(This article belongs to the Special Issue Shark Ecology)
Show Figures

Figure 1

22 pages, 10596 KiB  
Article
Development of a Seafloor Litter Database and Application of Image Preprocessing Techniques for UAV-Based Detection of Seafloor Objects
by Ivan Biliškov and Vladan Papić
Electronics 2024, 13(17), 3524; https://doi.org/10.3390/electronics13173524 - 5 Sep 2024
Cited by 2 | Viewed by 3951
Abstract
Marine litter poses a significant global threat to marine ecosystems, primarily driven by poor waste management, inadequate infrastructure, and irresponsible human activities. This research investigates the application of image preprocessing techniques and deep learning algorithms for the detection of seafloor objects, specifically marine [...] Read more.
Marine litter poses a significant global threat to marine ecosystems, primarily driven by poor waste management, inadequate infrastructure, and irresponsible human activities. This research investigates the application of image preprocessing techniques and deep learning algorithms for the detection of seafloor objects, specifically marine debris, using unmanned aerial vehicles (UAVs). The primary objective is to develop non-invasive methods for detecting marine litter to mitigate environmental impacts and support the health of marine ecosystems. Data was collected remotely via UAVs, resulting in a novel database of over 5000 images and 12,000 objects categorized into 31 classes, with metadata such as GPS location, wind speed, and solar parameters. Various image preprocessing methods were employed to enhance underwater object detection, with the Removal of Water Scattering (RoWS) method demonstrating superior performance. The proposed deep neural network architecture significantly improved detection precision compared to existing models. The findings indicate that appropriate databases and preprocessing methods substantially enhance the accuracy and precision of underwater object detection algorithms. Full article
(This article belongs to the Special Issue Artificial Intelligence in Image Processing and Computer Vision)
Show Figures

Figure 1

23 pages, 4290 KiB  
Article
A Method for Recognition and Coordinate Reference of Autonomous Underwater Vehicles to Inspected Objects of Industrial Subsea Structures Using Stereo Images
by Valery Bobkov and Alexey Kudryashov
J. Mar. Sci. Eng. 2024, 12(9), 1514; https://doi.org/10.3390/jmse12091514 - 2 Sep 2024
Viewed by 1046
Abstract
To date, the development of unmanned technologies using autonomous underwater vehicles (AUVs) has become an urgent demand for solving the problem of inspecting industrial subsea structures. A key issue here is the precise localization of AUVs relative to underwater objects. However, the impossibility [...] Read more.
To date, the development of unmanned technologies using autonomous underwater vehicles (AUVs) has become an urgent demand for solving the problem of inspecting industrial subsea structures. A key issue here is the precise localization of AUVs relative to underwater objects. However, the impossibility of using GPS and the presence of various interferences associated with the dynamics of the underwater environment do not allow high-precision navigation based solely on a standard suite of AUV navigation tools (sonars, etc.). An alternative technology involves the processing of optical images that, at short distances, can provide higher accuracy of AUV navigation compared to the technology of acoustic measurement processing. Although there have been results in this direction, further development of methods for extracting spatial information about objects from images recorded by a camera is necessary in the task of calculating the exact mutual position of the AUV and the object. In this study, in the context of the problem of subsea production system inspection, we propose a technology to recognize underwater objects and provide coordinate references to the AUV based on stereo-image processing. Its distinctive features are the use of a non-standard technique to generate a geometric model of an object from its views (foreshortening) taken from positions of a pre-made overview trajectory, the use of various characteristic geometric elements when recognizing objects, and the original algorithms for comparing visual data of the inspection trajectory with an a priori model of the object. The results of experiments on virtual scenes and with real data showed the effectiveness of the proposed technology. Full article
(This article belongs to the Special Issue Autonomous Marine Vehicle Operations—2nd Edition)
Show Figures

Figure 1

23 pages, 3816 KiB  
Article
Integration of Deep Sequence Learning-Based Virtual GPS Model and EKF for AUV Navigation
by Peng-Fei Lv, Jun-Yi Lv, Zhi-Chao Hong and Li-Xin Xu
Drones 2024, 8(9), 441; https://doi.org/10.3390/drones8090441 - 29 Aug 2024
Cited by 4 | Viewed by 1350
Abstract
To address the issue of increasing navigation errors in low-cost autonomous underwater vehicles (AUVs) operating without assisted positioning underwater, this paper proposes a Virtual GPS Model (VGPSM) based on deep sequence learning. This model is integrated with an Extended Kalman Filter (EKF) to [...] Read more.
To address the issue of increasing navigation errors in low-cost autonomous underwater vehicles (AUVs) operating without assisted positioning underwater, this paper proposes a Virtual GPS Model (VGPSM) based on deep sequence learning. This model is integrated with an Extended Kalman Filter (EKF) to provide a high-precision navigation solution for AUVs. The VGPSM leverages the time-series characteristics of data from sensors such as the Attitude and Heading Reference System (AHRS) and the Doppler Velocity Log (DVL) while the AUV is on the surface. It learns the relationship between these sensor data and GPS data by utilizing a hybrid model of Long Short-Term Memory (LSTM) and Bidirectional Long Short-Term Memory (Bi-LSTM), which are well-suited for processing and predicting time-series data. This approach constructs a virtual GPS model that generates virtual GPS displacements updated at the same frequency as the real GPS data. When the AUV navigates underwater, the virtual GPS displacements generated using the VGPSM in real-time are used as measurements to assist the EKF in state estimation, thereby enhancing the accuracy and robustness of underwater navigation. The effectiveness of the proposed method is validated through a series of experiments under various conditions. The experimental results demonstrate that the proposed method significantly reduces cumulative errors, with navigation accuracy improvements ranging from 29.2% to 69.56% compared to the standard EKF, indicating strong adaptability and robustness. Full article
Show Figures

Figure 1

20 pages, 3776 KiB  
Article
An Integrated Navigation Method Aided by Position Correction Model and Velocity Model for AUVs
by Pengfei Lv, Junyi Lv, Zhichao Hong and Lixin Xu
Sensors 2024, 24(16), 5396; https://doi.org/10.3390/s24165396 - 21 Aug 2024
Cited by 1 | Viewed by 4009
Abstract
When autonomous underwater vehicles (AUVs) perform underwater tasks, the absence of GPS position assistance can lead to a decrease in the accuracy of traditional navigation systems, such as the extended Kalman filter (EKF), due to the accumulation of errors. To enhance the navigation [...] Read more.
When autonomous underwater vehicles (AUVs) perform underwater tasks, the absence of GPS position assistance can lead to a decrease in the accuracy of traditional navigation systems, such as the extended Kalman filter (EKF), due to the accumulation of errors. To enhance the navigation accuracy of AUVs in the absence of position assistance, this paper proposes an innovative navigation method that integrates a position correction model and a velocity model. Specifically, a velocity model is developed using a dynamic model and the Optimal Pruning Extreme Learning Machine (OP-ELM) method. This velocity model is trained online to provide velocity outputs during the intervals when the Doppler Velocity Log (DVL) is not updating, ensuring more consistent and reliable velocity estimation. Additionally, a position correction model (PCM) is constructed, based on a hybrid gated recurrent neural network (HGRNN). This model is specifically designed to correct the AUV’s navigation position when GPS data are unavailable underwater. The HGRNN utilizes historical navigation data and patterns learned during training to predict and adjust the AUV’s estimated position, thereby reducing the drift caused by the lack of real-time position updates. Experimental results demonstrate that the proposed VM-PCM-EKF algorithm can significantly improve the positioning accuracy of the navigation system, with a maximum accuracy improvement of 87.2% compared to conventional EKF algorithms. This method not only improves the reliability and accuracy of AUV missions but also opens up new possibilities for more complex and extended underwater operations. Full article
(This article belongs to the Topic Multi-Sensor Integrated Navigation Systems)
Show Figures

Figure 1

19 pages, 3733 KiB  
Article
CORAL—Catamaran for Underwater Exploration: Development of a Multipurpose Unmanned Surface Vessel for Environmental Studies
by Luca Cocchi, Filippo Muccini, Marina Locritani, Leonardo Spinelli and Michele Cocco
Sensors 2024, 24(14), 4544; https://doi.org/10.3390/s24144544 - 13 Jul 2024
Viewed by 4081
Abstract
CORAL (Catamaran fOr UndeRwAter expLoration) is a compact, unmanned catamaran-type vehicle designed and developed to assist the scientific community in exploring marine areas such as inshore regions that are not easily accessible by traditional vessels. This vehicle can operate in different modalities: completely [...] Read more.
CORAL (Catamaran fOr UndeRwAter expLoration) is a compact, unmanned catamaran-type vehicle designed and developed to assist the scientific community in exploring marine areas such as inshore regions that are not easily accessible by traditional vessels. This vehicle can operate in different modalities: completely autonomous, semi-autonomous, or remotely assisted by the operator, thus accommodating various investigative scenarios. CORAL is characterized by compact dimensions, a very low draft and a total electric propulsion system. The vehicle is equipped with a single echo-sounder, a 450 kHz Side Scan Sonar, an Inertial Navigation System assisted by a GPS receiver and a pair of high-definition cameras for recording both above and below the water surface. Here, we present results from two investigations: the first conducted in the tourist harbour in Pozzuoli Gulf and the second in the Riomaggiore-Manarola marine area within the Cinque Terre territory (Italy). Both surveys yielded promising results regarding the potentiality of CORAL to collect fine-scale submarine elements such as anthropic objects, sedimentary features, and seagrass meadow spots. These capabilities characterize the CORAL system as a highly efficient investigation tool for depicting shallow bedforms, reconstructing coastal dynamics and erosion processes and monitoring the evolution of biological habitats. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Figure 1

Back to TopTop