Development of a Seafloor Litter Database and Application of Image Preprocessing Techniques for UAV-Based Detection of Seafloor Objects
Abstract
:1. Introduction
2. Related Work
2.1. Underwater Objects Images Databases
2.2. Underwater Images Restoration and Their Cases
3. Materials and Methods
3.1. Database
- method of data collection has to be remote sensing using UAV
- images should be taken in multiple altitudes—5 m, 10 m, 15 m
- subject of photography—marine debris (litter)
- classes—various non-degradable objects
- photography area—shallow benthic zone (photic zone) with visible litter
- annual range—during the entire year, seasonal
- time of day—from 6:00 to 20:00 (for various times of daylight)
- parameters that should be recorded—date and time, season, GPS coordinates, wind speed and direction, sun elevation, and azimuth
3.2. Preprocessing Methods
3.2.1. RoWS (Removal of Water Scattering)
3.2.2. ICM (Integrated Color Model)
3.2.3. CLAHE (Contrast-Limited Adaptive Histogram Equalization)
3.2.4. ULAP (Underwater Light Attenuation Prior)
3.2.5. GC (Gamma Correction Model)
3.2.6. MIP (Maximum Intensity Prior)
3.2.7. DCP (Dark Channel Prior)
3.2.8. RGHS (Relative Global Histogram Stretching)
3.2.9. GBdehazingRCorrection (Single Underwater Image Restoration by Blue-Green Channels Dehazing and Red Channel Correction)
3.3. Neural Networks for Detection and Classification
4. Results
4.1. New Database
4.2. Preprocessing Methods Results
4.2.1. Metrics
4.2.2. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2015, arXiv:1409.1556. Available online: http://arxiv.org/abs/1409.1556 (accessed on 15 June 2022).
- Darby, J.; Clairbaux, M.; Bennison, A.; Quinn, J.L.; Jessopp, M.J. Underwater visibility constrains the foraging behaviour of a diving pelagic seabird. Proc. R. Soc. B Biol. Sci. 2022, 289, 20220862. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Xu, H.; Zhang, B.; Sun, K.; Yang, J.; Li, B.; Li, C.; Quan, X. Model-Based Underwater Image Simulation and Learning-Based Underwater Image Enhancement Method. Information 2022, 13, 187. [Google Scholar] [CrossRef]
- Kislik, C.; Genzoli, L.; Lyons, A.; Kelly, M. Application of UAV Imagery to Detect and Quantify Submerged Filamentous Algae and Rooted Macrophytes in a Non-Wadeable River. Remote Sens. 2020, 12, 3332. [Google Scholar] [CrossRef]
- Politikos, D.V.; Fakiris, E.; Davvetas, A.; Klampanos, I.A.; Papatheodorou, G. Automatic detection of seafloor marine litter using towed camera images and deep learning. Mar. Pollut. Bull. 2021, 164, 111974. [Google Scholar] [CrossRef]
- Marin, I.; Mladenović, S.; Gotovac, S.; Zaharija, G. Deep-Feature-Based Approach to Marine Debris Classification. Appl. Sci. 2021, 11, 5644. [Google Scholar] [CrossRef]
- Ships in Satellite Imagery. Available online: https://www.kaggle.com/rhammell/ships-in-satellite-imagery (accessed on 31 March 2022).
- Yabin, L.; Jun, Y.; Zhiyi, H. Improved Faster R-CNN Algorithm for Sea Object Detection Under Complex Sea Conditions. Int. J. Adv. Netw. Monit. Control. 2020, 5, 76–82. [Google Scholar] [CrossRef]
- Lorencin, I.; Anđelić, N.; Mrzljak, V.; Car, Z. Marine Objects Recognition Using Convolutional Neural Networks. Naše More 2019, 66, 112–120. [Google Scholar] [CrossRef]
- Lin, W.-H.; Zhong, J.-X.; Liu, S.; Li, T.; Li, G. ROIMIX: Proposal-Fusion Among Multiple Images for Underwater Object Detection. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 2588–2592. [Google Scholar] [CrossRef]
- Li, J.; Skinner, K.A.; Eustice, R.M.; Johnson-Roberson, M. WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images. IEEE Robot. Autom. Lett. 2017, 3, 387–394. [Google Scholar] [CrossRef]
- Hong, J.; Fulton, M.S.; Sattar, J. TrashCan 1.0 An Instance-Segmentation Labeled Dataset of Trash Observations. 23 July 2020. Available online: https://conservancy.umn.edu/items/6dd6a960-c44a-4510-a679-efb8c82ebfb7 (accessed on 7 May 2022).
- Sasaki, T.; Azuma, S.; Matsuda, S.; Nagayama, A.; Ogido, M.; Saito, H.; Hanafusa, Y. JAMSTEC E-library of Deep-Sea Images (J-EDI) Realizes a Virtual Journey to the Earth’s Unexplored Deep Ocean. Abstract #IN53C-1911. 2016. Available online: https://ui.adsabs.harvard.edu/abs/2016AGUFMIN53C1911S/abstract (accessed on 1 August 2022).
- Hong, J.; Fulton, M.; Sattar, J. TrashCan: A Semantically-Segmented Dataset towards Visual Detection of Marine Debris. arXiv 2020, arXiv:2007.08097. Available online: http://arxiv.org/abs/2007.08097 (accessed on 29 October 2021).
- Hong, J.; Fulton, M.; Sattar, J. A Generative Approach towards Improved Robotic Detection of Marine Litter. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 10525–10531. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; Curran Associates, Inc.: New York, NY, USA, 2012. Available online: https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html (accessed on 15 June 2022).
- Fabbri, C.; Islam, M.J.; Sattar, J. Enhancing Underwater Imagery Using Generative Adversarial Networks. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 7159–7165. [Google Scholar] [CrossRef]
- ImageNet. Available online: https://www.image-net.org/index.php (accessed on 31 March 2022).
- Martin, C.; Zhang, Q.; Zhai, D.; Zhang, X.; Duarte, C.M. Drone images of sandy beaches and anthropogenic litter along the Saudi Arabian Red Sea. Mendeley Data 2021, 1. [Google Scholar] [CrossRef]
- Martin, C.; Zhang, Q.; Zhai, D.; Zhang, X.; Duarte, C.M. Anthropogenic litter density and composition data acquired flying commercial drones on sandy beaches along the Saudi Arabian Red Sea. Data Brief 2021, 36, 107056. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Garin, O.; Monleón-Getino, T.; López-Brosa, P.; Borrell, A.; Aguilar, A.; Borja-Robalino, R.; Cardona, L.; Vighi, M. Automatic detection and quantification of floating marine macro-litter in aerial images: Introducing a novel deep learning approach connected to a web application in R. Environ. Pollut. 2021, 273, 116490. [Google Scholar] [CrossRef] [PubMed]
- The EUVP Dataset|Interactive Robotics and Vision Lab. Available online: http://irvlab.cs.umn.edu/resources/euvp-dataset (accessed on 11 March 2022).
- Naseer, A.; Baro, E.N.; Khan, S.D.; Vila, Y. A Novel Detection Refinement Technique for Accurate Identification of Nephrops norvegicus Burrows in Underwater Imagery. Sensors 2022, 22, 4441. [Google Scholar] [CrossRef]
- Alsakar, Y.M.; Sakr, N.A.; El-Sappagh, S.; Abuhmed, T.; Elmogy, M. Underwater Image Restoration and Enhancement: A Comprehensive Review of Recent Trends, Challenges, and Applications. Preprints 2023, 2023070585. [Google Scholar] [CrossRef]
- Song, W.; Liu, Y.; Huang, D.; Zhang, B.; Shen, Z.; Xu, H. From shallow sea to deep sea: Research progress in underwater image restoration. Front. Mar. Sci. 2023, 10, 1163831. [Google Scholar] [CrossRef]
- Yang, M.; Hu, J.; Li, C.; Rohde, G.; Du, Y.; Hu, K. An In-Depth Survey of Underwater Image Enhancement and Restoration. IEEE Access 2019, 7, 123638–123657. [Google Scholar] [CrossRef]
- Wang, Y.; Song, W.; Fortino, G.; Qi, L.-Z.; Zhang, W.; Liotta, A. An Experimental-Based Review of Image Enhancement and Image Restoration Methods for Underwater Imaging. IEEE Access 2019, 7, 140233–140251. [Google Scholar] [CrossRef]
- Liu, C.; Meng, W. Removal of water scattering. In Proceedings of the 2010 2nd International Conference on Computer Engineering and Technology, Chengdu, China, 16–18 April 2010; pp. V2-35–V2-39. [Google Scholar] [CrossRef]
- Point Operations—Contrast Stretching. Available online: https://homepages.inf.ed.ac.uk/rbf/HIPR2/stretch.htm (accessed on 28 June 2024).
- Iqbal, K.; Salam, R.A.; Osman, A.; Talib, A.Z. Underwater Image Enhancement Using an Integrated Colour Model. IAENG Int. J. Comput. Sci. 2007, 34, IJCS_34_2_1. [Google Scholar]
- Pizer, S.M.; Johnston, R.E.; Ericksen, J.P.; Yankaskas, B.C.; Muller, K.E. Contrast-limited adaptive histogram equalization: Speed and effectiveness. In Proceedings of the [1990] Proceedings of the First Conference on Visualization in Biomedical Computing, Atlanta, GA, USA, 22–25 May 1990; pp. 337–345. [Google Scholar] [CrossRef]
- Mustafa, W.; Kader, M. A Review of Histogram Equalization Techniques in Image Enhancement Application. J. Phys. Conf. Ser. 2018, 1019, 012026. [Google Scholar] [CrossRef]
- Song, W.; Wang, Y.; Huang, D.; Tjondronegoro, D. A Rapid Scene Depth Estimation Model Based on Underwater Light Attenuation Prior for Underwater Image Restoration. In Advances in Multimedia Information Processing—PCM 2018; Hong, R., Cheng, W.-H., Yamasaki, T., Wang, M., Ngo, C.-W., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 11164, pp. 678–688. ISBN 978-3-030-00775-1. [Google Scholar] [CrossRef]
- Xiang, W.; Yang, P.; Wang, S.; Xu, B.; Liu, H. China Underwater image enhancement based on red channel weighted compensation and gamma correction model. Opto-Electron. Adv. 2018, 1, 18002401–18002409. [Google Scholar] [CrossRef]
- Hu, D.; Tan, J.; Zhang, L.; Ge, X.; Liu, J. Image deblurring via enhanced local maximum intensity prior. Signal Process. Image Commun. 2021, 96, 116311. [Google Scholar] [CrossRef]
- Song, Y.; Luo, H.; Hui, B.; Chang, Z. An improved image dehazing and enhancing method using dark channel prior. In Proceedings of the 27th Chinese Control and Decision Conference (2015 CCDC), Qingdao, China, 23–25 May 2015; pp. 5840–5845. [Google Scholar] [CrossRef]
- Huang, D.; Wang, Y.; Song, W.; Sequeira, J.; Mavromatis, S. Shallow-Water Image Enhancement Using Relative Global Histogram Stretching Based on Adaptive Parameter Acquisition. In MultiMedia Modeling; Schoeffmann, K., Chalidabhongse, T.H., Ngo, C.W., Aramvith, S., O’Connor, N.E., Ho, Y.-S., Gabbouj, M., Elgammal, A., Eds.; Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2018; Volume 10704, pp. 453–465. ISBN 978-3-319-73602-0. [Google Scholar] [CrossRef]
- Li, C.; Quo, J.; Pang, Y.; Chen, S.; Wang, J. Single underwater image restoration by blue-green channels dehazing and red channel correction. In Proceedings of the 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 1731–1735. [Google Scholar] [CrossRef]
- ultralytics/ultralytics/cfg/default.yaml at main ultralytics/ultralytics. GitHub. Available online: https://github.com/ultralytics/ultralytics/blob/main/ultralytics/cfg/default.yaml (accessed on 22 August 2024).
- Training, Validation, Test Split for Machine Learning Datasets. Available online: https://encord.com/blog/train-val-test-split/ (accessed on 22 August 2024).
Location | GPS Location |
---|---|
Kaštel Lukšić, Croatia | 43.550427, 16.366794 |
Kaštel Kambelovac, Croatia | 43.548128, 16.385065 |
Kaštel Gomilica, Croatia | 43.546852, 16.397127 |
Kaštel Sućurac, Croatia | 43.543966, 16.412761 |
Vranjic, Croatia | 43.531615, 16.465627 |
beach Žnjan, Split, Croatia | 43.500656, 16.482890 |
Stobreč, Croatia | 43.500646, 16.515163 |
Podstrana, Croatia | 43.472911, 16.569938 |
Lokva Rogoznica, Croatia | 43.406480, 16.787435 |
Model | Precision | Recall | F1-Score |
---|---|---|---|
RoWS | 81.22% | 44.80% | 57.74% |
None | 77.42% | 44.94% | 56.87% |
ICM | 73.78% | 44.99% | 55.89% |
CLAHE | 77.89% | 43.33% | 55.68% |
RoWS__ULAP | 75.04% | 42.10% | 53.94% |
CLAHE__GC | 73.60% | 42.34% | 53.75% |
CLAHE__ICM | 66.15% | 40.21% | 50.01% |
CLAHE__MIP | 66.15% | 40.21% | 50.01% |
ULAP | 72.69% | 37.65% | 49.61% |
DCP__MIP | 75.99% | 35.34% | 48.24% |
GC__ICM | 65.81% | 37.42% | 47.71% |
GC__RGHS | 65.81% | 37.42% | 47.71% |
None no transfer | 65.06% | 31.88% | 42.79% |
GBdehazingRCorrection__RoWS | 76.56% | 29.66% | 42.75% |
GBdehazingRCorrection__UDCP | 76.56% | 29.66% | 42.75% |
Class | Objects | Precision | Recall | F1-Score |
---|---|---|---|---|
Fragments | 3757 | 79% | 54% | 64% |
Constructional material | 3465 | 90% | 25% | 39% |
Tires | 1140 | 87% | 70% | 78% |
Cans | 1002 | 84% | 50% | 63% |
Bottles | 768 | 75% | 43% | 54% |
Cloth | 390 | 65% | 39% | 49% |
Bags | 262 | 80% | 46% | 59% |
Caps and lids | 104 | 78% | 33% | 47% |
Cups | 74 | 67% | 14% | 24% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biliškov, I.; Papić, V. Development of a Seafloor Litter Database and Application of Image Preprocessing Techniques for UAV-Based Detection of Seafloor Objects. Electronics 2024, 13, 3524. https://doi.org/10.3390/electronics13173524
Biliškov I, Papić V. Development of a Seafloor Litter Database and Application of Image Preprocessing Techniques for UAV-Based Detection of Seafloor Objects. Electronics. 2024; 13(17):3524. https://doi.org/10.3390/electronics13173524
Chicago/Turabian StyleBiliškov, Ivan, and Vladan Papić. 2024. "Development of a Seafloor Litter Database and Application of Image Preprocessing Techniques for UAV-Based Detection of Seafloor Objects" Electronics 13, no. 17: 3524. https://doi.org/10.3390/electronics13173524