The Effects of Depth and Altitude on Image-Based Shark Size Measurements Using UAV Surveillance
Abstract
:1. Introduction
2. Methods
2.1. Study Site
2.2. Data Collection
2.3. Image Processing
2.4. Data Processing
3. Results
3.1. Overall Size Measurement Accuracy
3.2. Boat Height Corrected Measurement Accuracy
3.3. Correction for Total Distance between UAV and AUV
4. Discussion
4.1. The Effect of Altitude on UAV-Based Measurement Accuracy
4.2. The Effect of Depth on Measurement Accuracy
4.3. Best Methods for Accurate Size Measurement and Impacts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Doan, M.D.; Kajiura, S.M. Adult blacktip sharks (Carcharhinus limbatus) use shallow water as a refuge from great hammerheads (Sphyrna mokarran). J. Fish Biol. 2020, 96, 1530–1533. [Google Scholar] [CrossRef] [PubMed]
- Tucker, J.P.; Colefax, A.P.; Santos, I.R.; Kelaher, B.P.; Pagendam, D.E.; Butcher, P.A. White shark behaviour altered by stranded whale carcasses: Insights from drones and implications for beach management. Ocean Coast. Manag. 2021, 200, 105477. [Google Scholar] [CrossRef]
- Towner, A.V.; Kock, A.A.; Stopforth, C.; Hurwitz, D.; Elwen, S.H. Direct observation of killer whales preying on white sharks and evidence of a flight response. Ecology 2023, 104, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Colefax, A.P.; Kelaher, B.P.; Pagendam, D.E.; Butcher, P.A. Assessing White Shark (Carcharodon carcharias) Behavior Along Coastal Beaches for Conservation-Focused Shark Mitigation. Front. Mar. Sci. 2020, 7, 268. [Google Scholar] [CrossRef]
- López, N.A. Spatial and temporal characterization of a recur rent scalloped hammerhead shark Sphyrna lewini aggregation using drones. ICES J. Mar. Sci. 2023, 80, 2356–2367. [Google Scholar] [CrossRef]
- Colefax, A.P.; Butcher, P.A.; Pagendam, D.E.; Kelaher, B.P. Comparing distributions of white, bull, and tiger sharks near and away from the surf break using three tech-based methods. Ocean Coast. Manag. 2020, 198, 105366. [Google Scholar] [CrossRef]
- Anderson, J.M.; Spurgeon, E.; Stirling, B.S.; May, J.; Rex, P.T.; Hyla, B.; McCullough, S.; Thompson, M.; Lowe, C.G. High resolution acoustic telemetry reveals swim speeds and inferred field metabolic rates in juvenile white sharks (Carcharodon carcharias). PLoS ONE 2022, 17, e0268914. [Google Scholar] [CrossRef]
- Rex, P.T.; May, J.H.; Pierce, E.K.; Lowe, C.G. Patterns of overlapping habitat use of juvenile white shark and human recreational water users along southern California beaches. PLoS ONE 2023, 18, e0286575. [Google Scholar] [CrossRef]
- Séguigne, C.; Mourier, J.; Vignaud, T.; Buray, N.; Clua, É. Effects of a COVID-19 lockdown-induced pause and resumption of artificial provisioning on blacktip reef sharks (Carcharhinus melanopterus) and pink whiprays (Pateobatis fai) in French Polynesia (East-Pacific). Ethology 2022, 128, 119–130. [Google Scholar] [CrossRef]
- Gayford, J.H.; Pearse, W.D.; De La Parra Venegas, R.; Whitehead, D.A. Quantifying the behavioural consequences of shark ecotourism. Sci. Rep. 2023, 13, 12938. [Google Scholar] [CrossRef]
- Porter, M.E.; Ruddy, B.T.; Kajiura, S.M. Volitional swimming kinematics of blacktip sharks, Carcharhinus limbatus, in the wild. Drones 2020, 4, 78. [Google Scholar] [CrossRef]
- Pirotta, V.; Hocking, D.P.; Iggleden, J.; Harcourt, R. Drone Observations of Marine Life and Human–Wildlife Interactions off Sydney, Australia. Drones 2022, 6, 75. [Google Scholar] [CrossRef]
- Engelbrecht, T.; Kock, A.; Waries, S.; O’Riain, M.J. Shark Spotters: Successfully reducing spatial overlap between white sharks (Carcharodon carcharias) and recreational water users in False Bay, South Africa. PLoS ONE 2017, 12, e0185335. [Google Scholar] [CrossRef]
- Hernández, C.; Mitchell, J.D.; Scott-Holland, T.B.; Butcher, P.A. Factors Affecting Shark Detection from Drone Patrols in Southeast Queensland, Eastern Australia. Biology 2022, 11, 1552. [Google Scholar] [CrossRef]
- Butcher, P.A.; Piddocke, T.P.; Colefax, A.P.; Hoade, B.; Peddemors, V.M.; Borg, L.; Cullis, B.R.; Butcher, P.A.; Piddocke, T.P.; Colefax, A.P.; et al. Beach safety: Can drones provide a platform for sighting sharks? Wildl. Res. 2019, 46, 701–712. [Google Scholar] [CrossRef]
- Sheridan, K.; Justin O’Riain, M.; Needham, M.D. Recreationist perceptions of lethal and non-lethal management of sharks in two of South Africa’s marine areas. Mar. Policy 2021, 132, 104633. [Google Scholar] [CrossRef]
- Musyl, M.K.; Brill, R.W.; Curran, D.S.; Fragoso, N.M.; McNaughton, L.M.; Nielsen, A.; Kikkawa, B.S.; Moyes, C.D. Postrelease survival, vertical and horizontal movements, and thermal habitats of five species of pelagic sharks in the central Pacific Ocean. Fish. Bull. 2011, 109, 341–368. [Google Scholar] [CrossRef]
- Benson, J.F.; Jorgensen, S.J.; O’Sullivan, J.B.; Winkler, C.; White, C.F.; Garcia-Rodriguez, E.; Sosa-Nishizaki, O.; Lowe, C.G. Juvenile survival, competing risks, and spatial variation in mortality risk of a marine apex predator. J. Appl. Ecol. 2018, 55, 2888–2897. [Google Scholar] [CrossRef]
- Gulak, S.J.B.; de Ron Santiago, A.J.; Carlson, J.K. Hooking mortality of scalloped hammerhead Sphyrna lewini and great hammerhead Sphyrna mokarran sharks caught on bottom longlines. Afr. J. Mar. Sci. 2015, 37, 267–273. [Google Scholar] [CrossRef]
- Mohan, J.A.; Jones, E.R.; Hendon, J.M.; Falterman, B.; Boswell, K.M.; Hoffmayer, E.R.; David Wells, R.J. Capture stress and post-release mortality of blacktip sharks in recreational charter fisheries of the Gulf of Mexico. Conserv. Physiol. 2020, 8, coaa041. [Google Scholar] [CrossRef]
- Bowlby, H.D.; Benoît, H.P.; Joyce, W.; Sulikowski, J.; Coelho, R.; Domingo, A.; Cortés, E.; Hazin, F.; Macias, D.; Biais, G.; et al. Beyond Post-release Mortality: Inferences on Recovery Periods and Natural Mortality From Electronic Tagging Data for Discarded Lamnid Sharks. Front. Mar. Sci. 2021, 8, 325. [Google Scholar] [CrossRef]
- Roskar, G.; McCallister, M.P.; Ajemian, M.J. Performance of Two Survey Gears Targeting Elasmobranchs in a Shallow, Subtropical Estuary. Mar. Coast. Fish. 2020, 12, 50–63. [Google Scholar] [CrossRef]
- Hannan, K.M.; Fogg, A.Q.; Driggers, W.B.; Hoffmayer, E.R.; Ingram, G.W.; Grace, M.A. Size selectivity and catch rates of two small coastal shark species caught on circle and J hooks in the northern Gulf of Mexico. Fish. Res. 2013, 147, 145–149. [Google Scholar] [CrossRef]
- Delacy, C.R.; Olsen, A.; Howey, L.A.; Chapman, D.D.; Brooks, E.J.; Bond, M.E. Affordable and accurate stereo-video system for measuring dimensions underwater: A case study using oceanic whitetip sharks Carcharhinus longimanus. Mar. Ecol. Prog. Ser. 2017, 574, 75–84. [Google Scholar] [CrossRef]
- Sequeira, A.M.M.; Thums, M.; Brooks, K.; Meekan, M.G. Error and bias in size estimates of whale sharks: Implications for understanding demography. R. Soc. Open Sci. 2016, 3, 150668. [Google Scholar] [CrossRef]
- Boube, T.; Azam, C.S.; Guilbert, A.; Huveneers, C.; Papastamatiou, Y.P.; Mourier, J.; Trujillo, J.E.; Femmami, N.; Kunovsky, A.; Bersani, F.; et al. First insights into the population characteristics and seasonal occurrence of the great hammerhead shark, Sphyrna mokarran (Rüppell, 1837) in the Western Tuamotu archipelago, French Polynesia. Front. Mar. Sci. 2023, 10, 1234059. [Google Scholar] [CrossRef]
- O’Connell, C.P.; Payne, M.; Payne, S.; Eller, L.J.; Shaw, J.; McGregor, A.; Rerekura, A.; Stewart, M.; Fox, A. Observations of Multiple Young-of-the-Year to Juvenile White Sharks (Carcharodon carcharias) within South-West Australian Waters and Its Implications for a Potential Nursery Area(s). J. Mar. Sci. Eng. 2023, 11, 563. [Google Scholar] [CrossRef]
- Whitehead, D.A.; Ayres, K.A.; Gayford, J.H.; Ketchum, J.T.; Galván-Magana, F.; Christiansen, F. Aerial photogrammetry of whale sharks (Rhincodon typus) in the Bay of La Paz, using an unoccupied aerial vehicle. Mar. Biol. 2022, 169, 94. [Google Scholar] [CrossRef]
- Setyawan, E.; Stevenson, B.C.; Izuan, M.; Constantine, R.; Erdmann, M.V. How Big Is That Manta Ray? A Novel and Non-Invasive Method for Measuring Reef Manta Rays Using Small Drones. Drones 2022, 6, 63. [Google Scholar] [CrossRef]
- McCauley, D.J.; Parsons, J.K.; Braman, C.A.; Anderson, J.M.; Caselle, J.E.; Critchley, E.J.; Glina, A.; Joyce, F.H.; Lowe, C.G.; Mladjov, S.; et al. Temporal and oceanographic factors differentially affect two size classes of white shark at a Southern California aggregation site. Mar. Ecol. Prog. Ser. 2024, 744, 101–114. [Google Scholar] [CrossRef]
- Tu, Y.H.; Phinn, S.; Johansen, K.; Robson, A.; Wu, D. Optimising drone flight planning for measuring horticultural tree crop structure. ISPRS J. Photogramm. Remote Sens. 2020, 160, 83–96. [Google Scholar] [CrossRef]
- Unger, D.; Hung, I.-K.; Kulhavy, D.; Zhang, Y.; Busch-Petersen, K. Accuracy of Unmanned Aerial System (Drone) Height Measurements. Int. J. Geospat. Environ. Res. 2018, 5, 6. [Google Scholar]
- Robbins, W.D.; Peddemors, V.M.; Kennelly, S.J. Assessment of Shark Sighting Rates by Aerial Beach Patrols. 2012. Available online: https://www.dpi.nsw.gov.au/ (accessed on 19 August 2022).
- Robbins, W.D.; Peddemors, V.M.; Kennelly, S.J.; Ives, M.C. Experimental Evaluation of Shark Detection Rates by Aerial Observers. PLoS ONE 2014, 9, e83456. [Google Scholar] [CrossRef] [PubMed]
- Benavides, M.T.; Fodrie, F.J.; Johnston, D.W. Shark detection probability from aerial drone surveys within a temperate estuary. J. Unmanned Veh. Syst. 2020, 8, 44–56. [Google Scholar] [CrossRef]
- Kelaher, B.P.; Colefax, A.P.; Tagliafico, A.; Bishop, M.J.; Giles, A.; Butcher, P.A. Assessing variation in assemblages of large marine fauna off ocean beaches using drones. Mar. Freshw. Res. 2019, 71, 68–77. [Google Scholar] [CrossRef]
- Monteforte, K.I.P.; Butcher, P.A.; Morris, S.G.; Kelaher, B.P. The Relative Abundance and Occurrence of Sharks off Ocean Beaches of New South Wales, Australia. Biology 2022, 11, 1456. [Google Scholar] [CrossRef]
- Alterman, M.; Schechner, Y.Y.; Perona, P.; Shamir, J. Detecting motion through dynamic refraction. IEEE Trans. Pattern Anal. Mach. Intell. 2013, 35, 245–251. [Google Scholar] [CrossRef]
- Krause, D.J.; Hinke, J.T.; Perryman, W.L.; Goebel, M.E.; LeRoi, D.J. An accurate and adaptable photogrammetric approach for estimating the mass and body condition of pinnipeds using an unmanned aerial system. PLoS ONE 2017, 12, e0187465. [Google Scholar] [CrossRef]
- Fudala, K.; Bialik, R. Breeding Colony Dynamics of Southern Elephant. Remote Sens. 2020, 12, 2964. [Google Scholar] [CrossRef]
- Ramos, E.A.; Landeo-Yauri, S.; Castelblanco-Martínez, N.; Arreola, M.R.; Quade, A.H.; Rieucau, G. Drone-based photogrammetry assessments of body size and body condition of Antillean manatees. Mamm. Biol. 2022, 102, 765–779. [Google Scholar] [CrossRef]
- Bierlich, K.C.; Schick, R.S.; Hewitt, J.; Dale, J.; Goldbogen, J.A.; Friedlaender, A.S.; Johnston, D.W. Bayesian approach for predicting photogrammetric uncertainty in morphometric measurements derived from drones. Mar. Ecol. Prog. Ser. 2021, 673, 193–210. [Google Scholar] [CrossRef]
- Anderson, J.M.; Burns, E.S.; Meese, E.N.; Farrugia, T.J.; Stirling, B.S.; White, C.F.; Logan, R.K.; O’Sullivan, J.; Winkler, C.; Lowe, C.G. Interannual Nearshore Habitat Use of Young of the Year White Sharks Off Southern California. Front. Mar. Sci. 2021, 8, 238. [Google Scholar] [CrossRef]
- Weather Data Services. Visual Crossing. Available online: https://www.visualcrossing.com/weather/weather-data-services (accessed on 4 April 2024).
- Colefax, A.P.; Butcher, P.A.; Pagendam, D.E.; Kelaher, B.P. Reliability of marine faunal detections in drone-based monitoring. Ocean Coast. Manag. 2019, 174, 108–115. [Google Scholar] [CrossRef]
- Bourke, E.; Raoult, V.; Williamson, J.E.; Gaston, T.F. Estuary Stingray (Dasyatis fluviorum) Behaviour Does Not Change in Response to Drone Altitude. Drones 2023, 7, 164. [Google Scholar] [CrossRef]
- Aubert, C.; Le Moguédec, G.; Velasco, A.; Combrink, X.; Lang, J.W.; Griffith, P.; Pacheco-Sierra, G.; Pérez, E.; Charruau, P.; Villamarín, F.; et al. Estimating Total Length of Partially Submerged Crocodylians from Drone Imagery. Drones 2024, 8, 115. [Google Scholar] [CrossRef]
- Putch, A. Linear Measurement Accuracy of DJI Drone Platforms and Photogrammetry. 2017, pp. 1–17. Available online: https://dronedeploy-www.cdn.prismic.io/dronedeploy-www%2F46e720cd-fb03-41ec-a6a3-09b424d674b8_linear+measurement+accuracy+of+dji+drone+platforms+and+cloud-based+photogrammetry-v11.pdf (accessed on 5 September 2024).
- Oleksyn, S.; Tosetto, L.; Raoult, V.; Williamson, J.E. Drone-based tracking of the fine-scale movement of a coastal stingray (Bathytoshia brevicaudata). Remote Sens. 2021, 13, 40. [Google Scholar] [CrossRef]
- Matyja, T.; Kubik, A.; Stanik, Z. the Mems-Based Barometric Altimeter Inaccuracy and Drift Phenomenon. Sci. J. Silesian Univ. Technol. Ser. Transp. 2022, 116, 141–162. [Google Scholar] [CrossRef]
- Albéri, M.; Baldoncini, M.; Bottardi, C.; Chiarelli, E.; Fiorentini, G.; Raptis, K.G.C.; Realini, E.; Reguzzoni, M.; Rossi, L.; Sampietro, D.; et al. Accuracy of flight altitude measured with low-cost GNSS, radar and barometer sensors: Implications for airborne radiometric surveys. Sensors 2017, 17, 1889. [Google Scholar] [CrossRef]
- Ricolfe-Viala, C.; Sánchez-Salmerón, A.J. Robust metric calibration of non-linear camera lens distortion. Pattern Recognit. 2010, 43, 1688–1699. [Google Scholar] [CrossRef]
- Yahyanejad, S.; Misiorny, J.; Rinner, B. Lens distortion correction for thermal cameras to improve aerial imaging with small-scale UAVs. In Proceedings of the 2011 IEEE International Symposium on Robotic and Sensors Environments (ROSE), Montreal, QC, Canada, 17–18 September 2011; pp. 231–236. [Google Scholar] [CrossRef]
- Dallaire, X.; Buquet, J.; Roulet, P.; Parent, J.; Konen, P.; Lalonde, J.-F.; Thibault, S. Enhancing learning-based computer vision algorithms accuracy in sUAS using navigation wide-angle cameras. In Proceedings of the Artificial Intelligence and Machine Learning in Defense Applications III, Online, 13–18 September 2021; Volume 11870, pp. 12–20. [Google Scholar] [CrossRef]
- Sabbah, S.; Gray, S.M.; Hawryshyn, C.W. Radiance fluctuations induced by surface waves can enhance the appearance of underwater objects. Limnol. Oceanogr. 2012, 57, 1025–1041. [Google Scholar] [CrossRef]
- Szafarczyk, A.; Toś, C. The Use of Green Laser in LiDAR Bathymetry: State of the Art and Recent Advancements. Sensors 2023, 23, 292. [Google Scholar] [CrossRef] [PubMed]
Image | ||||||||
---|---|---|---|---|---|---|---|---|
Raw Data | ||||||||
Depth | 10 m | 20 m | 30 m | 40 m | 50 m | 60 m | 70 m | 80 m |
0 m | −4.9 ± 1.1 | −17.8 ± 0.6 | −14.6 ± 0.5 | −10.1 ± 0.6 | −9.8 ± 0.3 | −7.7 ± 0.9 | −7.4 ± 1.4 | −7.2 ± 0.9 |
1 m | −49.9 ± 3.2 | −39.3 ± 2.4 | −27.6 ± 1.8 | −22 ± 4 | −22 ± 1.7 | −24.4 ± 1.9 | −19.4 ± 1.5 | −19.6 ± 1.8 |
1.5 m | −56.8 ± 4.5 | −41.8 ± 3.2 | −29.6 ± 2.4 | −13.4 ± 2.5 | −11.4 ± 2 | −8.2 ± 4.5 | −7.5 ± 2.1 | −6.3 ± 1.6 |
2 m | −52.3 ± 3.1 | −24.5 ± 17.7 | −20.2 ± 2 | −18.2 ± 3.4 | −15.6 ± 3 | −11.7 ± 4 | −13.5 ± 2.7 | −11.7 ± 2.4 |
2.5 m | −57.5 ± 4.1 | −29.8 ± 4.5 | −19.4 ± 3.4 | −76.7 ± 7.5 | −20.1 ± 7.2 | −11.2 ± 7 | −21.7 ± 17.6 | −28.4 ± 28.4 |
3 m | −67.4 ± 13.6 | −43.3 ± 12 | −24.2 ± 8.4 | −18.7 ± 7.2 | −20.2 ± 8.5 | −15 ± 6.4 | −21 ± 9.2 | −14.5 ± 9.2 |
Boat Correction | ||||||||
0 m | 1.3 ± 1.1 | −11.4 ± 0.5 | −10.6 ± 0.4 | −7.8 ± 0.5 | −7.4 ± 0.3 | −6.1 ± 0.7 | −5.6 ± 1.3 | −5.8 ± 0.8 |
1 m | −29.1 ± 1.5 | −25.1 ± 1.3 | −19.7 ± 1.2 | −16.7 ± 2.9 | −16.6 ± 1.1 | −18.7 ± 1.2 | −15.1 ± 1.1 | −15.5 ± 1.3 |
1.5 m | −32.2 ± 1.9 | −26.4 ± 1.7 | −21 ± 1.5 | −10.5 ± 2 | −8.7 ± 1.7 | −6.3 ± 4.3 | −5.6 ± 1.8 | −5 ± 1.5 |
2 m | −30.2 ± 1.4 | −13.8 ± 17.4 | −14.7 ± 1.4 | −14.1 ± 2.4 | −12 ± 2.3 | −9.3 ± 3.3 | −10.7 ± 2.1 | −9.5 ± 1.9 |
2.5 m | −32.5 ± 1.8 | −19.5 ± 2.8 | −14.1 ± 2.5 | −42.5 ± 2.4 | −15.1 ± 5 | −8.7 ± 5.7 | −16.2 ± 10.2 | −19 ± 11.7 |
3 m | −36.1 ± 5.2 | −26.7 ± 6.1 | −17.1 ± 5.6 | −14.2 ± 5.1 | −15.1 ± 5.9 | −11.8 ± 4.9 | −15.8 ± 6.3 | −11.3 ± 6.9 |
Full Depth Correction | ||||||||
0 m | 1.3 ± 1.1 | −11.4 ± 0.5 | −10.6 ± 0.4 | −7.8 ± 0.5 | −7.4 ± 0.3 | −6.1 ± 0.7 | −5.6 ± 1.3 | −5.8 ± 0.8 |
1 m | −22.5 ± 1.7 | −21.4 ± 1.3 | −17.1 ± 1.2 | −14.7 ± 3 | −15 ± 1.2 | −17.3 ± 1.2 | −13.9 ± 1.1 | −14.4 ± 1.3 |
1.5 m | −22.8 ± 2.2 | −21 ± 1.8 | −17.1 ± 1.5 | −7.2 ± 2.1 | −6 ± 1.8 | −4 ± 4.4 | −3.6 ± 1.9 | −3.2 ± 1.5 |
2 m | −17.2 ± 1.7 | −5.5 ± 19.1 | −9.2 ± 1.5 | −9.8 ± 2.5 | −8.5 ± 2.4 | −6.3 ± 3.4 | −8.1 ± 2.2 | −7.3 ± 2 |
2.5 m | −16.8 ± 2.2 | −9.8 ± 3.1 | −7.1 ± 2.7 | −38.9 ± 2.6 | −10.9 ± 5.3 | −5 ± 6 | −13.2 ± 10.6 | −16.5 ± 12.1 |
3 m | −18.3 ± 6.7 | −16.1 ± 7 | −9 ± 6.1 | −7.9 ± 5.5 | −10 ± 6.2 | −7.4 ± 5.1 | −12.3 ± 6.5 | −8 ± 7.1 |
Video | ||||||||
Raw Data | ||||||||
Depth | 10 m | 20 m | 30 m | 40 m | 50 m | 60 m | 70 m | 80 m |
0 m | −28.7 ± 1.5 | −13.4 ± 0.9 | −12.3 ± 0.6 | −10 ± 1 | −8.4 ± 1 | −6.8 ± 1.1 | −6 ± 1 | −7.4 ± 0.9 |
1 m | −43.4 ± 2.7 | −23.6 ± 1.8 | −17.7 ± 1.7 | −14.3 ± 1.7 | −11.1 ± 1.9 | −10.3 ± 1.5 | −8.4 ± 1.9 | −8.7 ± 2.2 |
1.5 m | −46 ± 3 | −19.9 ± 1.7 | −14.7 ± 1.4 | −12.7 ± 1.5 | −10.9 ± 1.7 | −7.2 ± 2.1 | −6.9 ± 2.2 | −7.1 ± 2.1 |
2 m | −58.4 ± 4.5 | −27.4 ± 3.6 | −21.9 ± 2.8 | −12.3 ± 3.2 | −14.1 ± 2.5 | −11.1 ± 4.2 | −10.9 ± 2.7 | −8.9 ± 2 |
2.5 m | −53.1 ± 6.1 | −24.4 ± 5.8 | −22.1 ± 9.2 | −15.6 ± 4.4 | −14.2 ± 4.5 | −13.7 ± 4.3 | −11.8 ± 4.1 | −12.5 ± 6.3 |
3 m | NA | −59.9 ± 33.1 | −32.2 ± 15.4 | −17.1 ± 21.2 | −21.4 ± 8.1 | −17.2 ± 7.2 | −14.4 ± 15.6 | −21 ± 18.8 |
Boat Correction | ||||||||
0 m | −14.9 ± 1 | −8.1 ± 0.7 | −8 ± 0.5 | −7 ± 0.9 | −5.7 ± 0.9 | −4.4 ± 0.9 | −4.1 ± 0.9 | −5.3 ± 0.8 |
1 m | −23.6 ± 1.4 | −15.7 ± 1.2 | −12.1 ± 1.3 | −10.5 ± 1.4 | −8 ± 1.5 | −7.4 ± 1.3 | −6.2 ± 1.7 | −5.6 ± 3.6 |
1.5 m | −24.9 ± 1.5 | −13.1 ± 1.2 | −9.9 ± 1.1 | −9.3 ± 1.2 | −7.9 ± 1.5 | −4.7 ± 1.8 | −4.8 ± 1.9 | −5 ± 1.9 |
2 m | −30.8 ± 1.9 | −18.2 ± 2.3 | −15.1 ± 2 | −8.9 ± 2.6 | −10.4 ± 2 | −8 ± 3.4 | −10.6 ± 5.6 | −6.6 ± 1.7 |
2.5 m | −28.3 ± 2.8 | −16 ± 3.8 | −15 ± 5.6 | −11.4 ± 3.5 | −10.4 ± 3.5 | −10.1 ± 3.4 | −8.9 ± 3.4 | −9.4 ± 4.7 |
3 m | NA | −32.8 ± 11 | −20.8 ± 8.7 | −10.6 ± 12.9 | −15.5 ± 5.6 | −12.5 ± 5.3 | −9.2 ± 15.3 | −14.1 ± 13.5 |
Full Depth Correction | ||||||||
0 m | −14.9 ± 1 | −8.1 ± 0.7 | −8 ± 0.5 | −7 ± 0.9 | −5.7 ± 0.9 | −4.4 ± 0.9 | −4.1 ± 0.9 | −5.3 ± 0.8 |
1 m | −16.5 ± 1.6 | −11.6 ± 1.3 | −9.3 ± 1.3 | −8.3 ± 1.4 | −6.2 ± 1.6 | −5.9 ± 1.3 | −4.9 ± 1.7 | −4.5 ± 3.7 |
1.5 m | −14.5 ± 1.8 | −6.8 ± 1.3 | −5.5 ± 1.2 | −5.9 ± 1.2 | −5.1 ± 1.5 | −2.4 ± 1.9 | −2.8 ± 2 | −3.3 ± 1.9 |
2 m | −17.9 ± 2.3 | −10.3 ± 2.5 | −9.6 ± 2.1 | −4.4 ± 2.7 | −6.9 ± 2.1 | −5 ± 3.5 | −8 ± 5.7 | −4.3 ± 1.8 |
2.5 m | −11.7 ± 3.4 | −5.9 ± 4.3 | −8 ± 6 | −6 ± 3.7 | −6 ± 3.7 | −6.4 ± 3.5 | −5.7 ± 3.5 | −6.6 ± 4.9 |
3 m | NA | −23 ± 12.6 | −13.1 ± 9.5 | −4 ± 13.8 | −10.5 ± 5.9 | −8.2 ± 5.6 | −5.4 ± 16 | −10.9 ± 14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rex, P.T.; Abbott, K.J.; Prezgay, R.E.; Lowe, C.G. The Effects of Depth and Altitude on Image-Based Shark Size Measurements Using UAV Surveillance. Drones 2024, 8, 547. https://doi.org/10.3390/drones8100547
Rex PT, Abbott KJ, Prezgay RE, Lowe CG. The Effects of Depth and Altitude on Image-Based Shark Size Measurements Using UAV Surveillance. Drones. 2024; 8(10):547. https://doi.org/10.3390/drones8100547
Chicago/Turabian StyleRex, Patrick T., Kevin J. Abbott, Rebecca E. Prezgay, and Christopher G. Lowe. 2024. "The Effects of Depth and Altitude on Image-Based Shark Size Measurements Using UAV Surveillance" Drones 8, no. 10: 547. https://doi.org/10.3390/drones8100547
APA StyleRex, P. T., Abbott, K. J., Prezgay, R. E., & Lowe, C. G. (2024). The Effects of Depth and Altitude on Image-Based Shark Size Measurements Using UAV Surveillance. Drones, 8(10), 547. https://doi.org/10.3390/drones8100547