Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = uncrewed aircraft system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 3661 KiB  
Article
Segmented Analysis for the Performance Optimization of a Tilt-Rotor RPAS: ProVANT-EMERGENTIa Project
by Álvaro Martínez-Blanco, Antonio Franco and Sergio Esteban
Aerospace 2025, 12(8), 666; https://doi.org/10.3390/aerospace12080666 - 26 Jul 2025
Viewed by 275
Abstract
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power [...] Read more.
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power consumption requirements, and the results highlight the accuracy of the physical characterization, which incorporates nonlinear propulsive and aerodynamic models derived from wind tunnel test campaigns. Critical segments for this nominal mission, such as the vertical take off or the transition from vertical to horizontal flight regimes, are addressed to fully understand the performance response of the aircraft. The proposed framework integrates experimental models into trajectory optimization procedures for each segment, enabling a realistic and modular analysis of energy use and aerodynamic performance. This approach provides valuable insights for both flight control design and future sizing iterations of convertible UAVs (Uncrewed Aerial Vehicles). Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

40 pages, 16671 KiB  
Article
Multi-Mode Flight Simulation and Energy-Aware Coverage Path Planning for a Lift+Cruise QuadPlane
by Akshay Mathur and Ella Atkins
Drones 2025, 9(4), 287; https://doi.org/10.3390/drones9040287 - 8 Apr 2025
Cited by 1 | Viewed by 799
Abstract
This paper describes flight planning supported by modeling, guidance, and feedback control for an electric Vertical Take-Off and Landing (eVTOL) QuadPlane small Uncrewed Aircraft System (sUAS). Five Lift+Cruise sUAS waypoint types are defined and used to construct smooth flight path geometries and acceleration [...] Read more.
This paper describes flight planning supported by modeling, guidance, and feedback control for an electric Vertical Take-Off and Landing (eVTOL) QuadPlane small Uncrewed Aircraft System (sUAS). Five Lift+Cruise sUAS waypoint types are defined and used to construct smooth flight path geometries and acceleration profiles. Novel accelerated coverage flight plan segments for hover (Lift) and coverage (Cruise) waypoint types are defined as a complement to traditional fly-over, fly-by, and Dubins path waypoint transit solutions. Carrot-chasing guidance shows a tradeoff between tracking accuracy and control stability as a function of the carrot time step. Experimentally validated aerodynamic and thrust models for vertical, forward, and hybrid flight modes are developed as a function of airspeed and angle of attack from wind tunnel data. A QuadPlane feedback controller augments classical multicopter and fixed-wing controllers with a hybrid control mode that combines multicopter and aircraft control actuators to add a controllable pitch degree of freedom at the cost of increased energy use. Multi-mode flight simulations show Cruise mode to be the most energy efficient with a relatively large turning radius constraint, while quadrotor mode enables hover and smaller radius turns. Energy efficiency analysis over QuadPlane plans with modest inter-waypoint distances indicates cruise or aircraft mode is 30% more energy efficient overall than quadrotor mode. Energy-aware coverage planner simulation results show fly-coverage (cruise) waypoints are always the most efficient given long distances between waypoints. A Pareto analysis of energy use versus area coverage is presented to analyze waypoint-type tradeoffs in case studies with closely spaced waypoints. Coverage planning and guidance methods from this paper can be applied to any Lift+Cruise aircraft configuration requiring waypoint flight mode optimization over energy and coverage metrics. Full article
Show Figures

Figure 1

18 pages, 4817 KiB  
Article
Enhancing Wildfire Detection via Trend Estimation Under Auto-Regression Errors
by Xiyuan Liu, Lingxiao Wang, Jiahao Li, Khan Raqib Mahmud and Shuo Pang
Mathematics 2025, 13(7), 1046; https://doi.org/10.3390/math13071046 - 24 Mar 2025
Viewed by 377
Abstract
In recent years, global weather changes have underscored the importance of wildfire detection, particularly through Uncrewed Aircraft System (UAS)-based smoke detection using Deep Learning (DL) approaches. Among these, object detection algorithms like You Only Look Once version 7 (YOLOv7) have gained significant popularity [...] Read more.
In recent years, global weather changes have underscored the importance of wildfire detection, particularly through Uncrewed Aircraft System (UAS)-based smoke detection using Deep Learning (DL) approaches. Among these, object detection algorithms like You Only Look Once version 7 (YOLOv7) have gained significant popularity due to their efficiency in identifying objects within images. However, these algorithms face limitations when applied to video feeds, as they treat each frame as an independent image, failing to track objects across consecutive frames. To address this issue, we propose a parametric Markov Chain Monte Carlo (MCMC) trend estimation algorithm that incorporates an Auto-Regressive (AR(p)) error assumption. We demonstrate that this MCMC algorithm achieves stationarity for the AR(p) model under specific constraints. Additionally, as a parametric method, the proposed algorithm can be applied to any time-related data, enabling the detection of underlying causes of trend changes for further analysis. Finally, we show that the proposed method can “stabilize” YOLOv7 detections, serving as an additional step to enhance the original algorithm’s performance. Full article
(This article belongs to the Special Issue Trends in Evolutionary Computation with Applications)
Show Figures

Figure 1

32 pages, 5922 KiB  
Review
Potential of Earth Observation for the German North Sea Coast—A Review
by Karina Raquel Alvarez, Felix Bachofer and Claudia Kuenzer
Remote Sens. 2025, 17(6), 1073; https://doi.org/10.3390/rs17061073 - 18 Mar 2025
Viewed by 742
Abstract
Rising sea levels, warming ocean temperatures, and other climate change impacts threaten the German North Sea coast, making monitoring of this system even more critical. This study reviews the potential of remote sensing for the German North Sea coast, analyzing 97 publications from [...] Read more.
Rising sea levels, warming ocean temperatures, and other climate change impacts threaten the German North Sea coast, making monitoring of this system even more critical. This study reviews the potential of remote sensing for the German North Sea coast, analyzing 97 publications from 2000 to 2024. Publications fell into four main research topics: coastal morphology (33), water quality (34), ecology (22), and sediment (8). More than two-thirds of these papers (69%) used satellite platforms, whereas about one third (29%) used aircrafts and very few (4%) used uncrewed aerial vehicles (UAVs). Multispectral data were the most used data type in these studies (59%), followed by synthetic aperture radar data (SAR) (23%). Studies on intertidal topography were the most numerous overall, making up one-fifth (21%) of articles. Research gaps identified in this review include coastal morphology and ecology studies over large areas, especially at scales that align with administrative or management areas such as the German Wadden Sea National Parks. Additionally, few studies utilized free, publicly available high spatial resolution imagery, such as that from Sentinel-2 or newly available very high spatial resolution satellite imagery. This review finds that remote sensing plays a notable role in monitoring the German North Sea coast at local scales, but fewer studies investigated large areas at sub-annual temporal resolution, especially for coastal morphology and ecology topics. Earth Observation, however, has the potential to fill this gap and provide critical information about impacts of coastal hazards on this region. Full article
Show Figures

Graphical abstract

44 pages, 14026 KiB  
Review
Coastal Environments: LiDAR Mapping of Copper Tailings Impacts, Particle Retention of Copper, Leaching, and Toxicity
by W. Charles Kerfoot, Gary Swain, Robert Regis, Varsha K. Raman, Colin N. Brooks, Chris Cook and Molly Reif
Remote Sens. 2025, 17(5), 922; https://doi.org/10.3390/rs17050922 - 5 Mar 2025
Viewed by 1641
Abstract
Tailings generated by mining account for the largest world-wide waste from industrial activities. As an element, copper is relatively uncommon, with low concentrations in sediments and waters, yet is very elevated around mining operations. On the Keweenaw Peninsula of Michigan, USA, jutting out [...] Read more.
Tailings generated by mining account for the largest world-wide waste from industrial activities. As an element, copper is relatively uncommon, with low concentrations in sediments and waters, yet is very elevated around mining operations. On the Keweenaw Peninsula of Michigan, USA, jutting out into Lake Superior, 140 mines extracted native copper from the Portage Lake Volcanic Series, part of an intercontinental rift system. Between 1901 and 1932, two mills at Gay (Mohawk, Wolverine) sluiced 22.7 million metric tonnes (MMT) of copper-rich tailings (stamp sands) into Grand (Big) Traverse Bay. About 10 MMT formed a beach that has migrated 7 km from the original Gay pile to the Traverse River Seawall. Another 11 MMT are moving underwater along the coastal shelf, threatening Buffalo Reef, an important lake trout and whitefish breeding ground. Here we use remote sensing techniques to document geospatial environmental impacts and initial phases of remediation. Aerial photos, multiple ALS (crewed aeroplane) LiDAR/MSS surveys, and recent UAS (uncrewed aircraft system) overflights aid comprehensive mapping efforts. Because natural beach quartz and basalt stamp sands are silicates of similar size and density, percentage stamp sand determinations utilise microscopic procedures. Studies show that stamp sand beaches contrast greatly with natural sand beaches in physical, chemical, and biological characteristics. Dispersed stamp sand particles retain copper, and release toxic levels of dissolved concentrations. Moreover, copper leaching is elevated by exposure to high DOC and low pH waters, characteristic of riparian environments. Lab and field toxicity experiments, plus benthic sampling, all confirm serious impacts of tailings on aquatic organisms, supporting stamp sand removal. Not only should mining companies end coastal discharges, we advocate that they should adopt the UNEP “Global Tailings Management Standard for the Mining Industry”. Full article
(This article belongs to the Special Issue GIS and Remote Sensing in Ocean and Coastal Ecology)
Show Figures

Figure 1

28 pages, 9564 KiB  
Article
Comparison of Field and Virtual Vegetation Surveys Conducted Using Uncrewed Aircraft System (UAS) Imagery at Two Coastal Marsh Restoration Projects
by Aaron N. Schad, Molly K. Reif, Joseph H. Harwood, Christopher L. Macon, Lynde L. Dodd, Katie L. Vasquez, Kevin D. Philley, Glenn E. Dobson and Katie M. Steinmetz
Remote Sens. 2025, 17(2), 223; https://doi.org/10.3390/rs17020223 - 9 Jan 2025
Viewed by 1227
Abstract
Traditional field vegetation plot surveys are critical for monitoring ecosystem restoration performance and include visual observations to quantitatively measure plants (e.g., species composition and abundance). However, surveys can be costly, time-consuming, and only provide data at discrete locations, leaving potential data gaps across [...] Read more.
Traditional field vegetation plot surveys are critical for monitoring ecosystem restoration performance and include visual observations to quantitatively measure plants (e.g., species composition and abundance). However, surveys can be costly, time-consuming, and only provide data at discrete locations, leaving potential data gaps across a site. Uncrewed aircraft system (UAS) technology can help fill data gaps between high-to-moderate spatial resolution (e.g., 1–30 m) satellite imagery, manned airborne data, and traditional field surveys, yet it has not been thoroughly evaluated in a virtual capacity as an alternative to traditional field vegetation plot surveys. This study assessed the utility of UAS red-green-blue (RGB) and low-altitude imagery for virtually surveying vegetation plots in a web application and compared to traditional field surveys at two coastal marsh restoration sites in southeast Louisiana, USA. Separate expert botanists independently observed vegetation plots in the field vs. using UAS imagery in a web application to identify growth form, species, and coverages. Taxa richness and assemblages were compared between field and virtual vegetation plot survey results using taxa resolution (growth-form and species-level) and data collection type (RGB imagery, Anafi [low-altitude] imagery, or field data) to assess accuracy. Virtual survey results obtained using Anafi low-altitude imagery compared better to field data than those from RGB imagery, but they were dependent on growth-form or species-level resolution. There were no significant differences in taxa richness between all survey types for a growth-form level analysis. However, there were significant differences between each survey type for species-level identification. The number of species identified increased by approximately two-fold going from RGB to Anafi low-altitude imagery and another two-fold from Anafi low-altitude imagery to field data. Vegetation community assemblages were distinct between the two marsh sites, and similarity percentages were higher between Anafi low-altitude imagery and field data compared to RGB imagery. Graminoid identification mismatches explained a high amount of variance between virtual and field similarity percentages due to the challenge of discriminating between them in a virtual setting. The higher level of detail in Anafi low-altitude imagery proved advantageous for properly identifying lower abundance species. These identifications included important taxa, such as invasive species, that were overlooked when using RGB imagery. This study demonstrates the potential utility of high-resolution UAS imagery for increasing marsh vegetation monitoring efficiencies to improve ecosystem management actions and outcomes. Restoration practitioners can use these results to better understand the level of accuracy for identifying vegetation growth form, species, and coverages from UAS imagery compared to field data to effectively monitor restored marsh ecosystems. Full article
(This article belongs to the Special Issue Remote Sensing in Coastal Vegetation Monitoring)
Show Figures

Graphical abstract

32 pages, 4670 KiB  
Article
Mapping River Flow from Thermal Images in Approximately Real Time: Proof of Concept on the Sacramento River, California, USA
by Carl J. Legleiter, Paul J. Kinzel, Michael Dille, Massimo Vespignani, Uland Wong, Isaac Anderson, Elizabeth Hyde, Chris Gazoorian and Jennifer M. Cramer
Remote Sens. 2024, 16(24), 4746; https://doi.org/10.3390/rs16244746 - 19 Dec 2024
Cited by 2 | Viewed by 1623
Abstract
Image velocimetry has become an effective method of mapping flow conditions in rivers, but this analysis is typically performed in a post-processing mode after data collection is complete. In this study, we evaluated the potential to infer flow velocities in approximately real time [...] Read more.
Image velocimetry has become an effective method of mapping flow conditions in rivers, but this analysis is typically performed in a post-processing mode after data collection is complete. In this study, we evaluated the potential to infer flow velocities in approximately real time as thermal images are being acquired from an uncrewed aircraft system (UAS). The sensitivity of thermal image velocimetry to environmental conditions was quantified by conducting 20 flights over four days and assessing the accuracy of image-derived velocity estimates via comparison to direct field measurements made with an acoustic Doppler current profiler (ADCP). This analysis indicated that velocity mapping was most reliable when the air was cooler than the water. We also introduced a workflow for River Velocity Measurement in Approximately Real Time (RiVMART) that involved transferring brief image sequences from the UAS to a ground station as distinct data packets. The resulting velocity fields were as accurate as those generated via post-processing. A new particle image velocimetry (PIV) algorithm based on staggered image sequences increased the number of image pairs available for a given image sequence duration and slightly improved accuracy relative to a standard PIV implementation. Direct, automated geo-referencing of image-derived velocity vectors based on information on the position and orientation of the UAS acquired during flight led to poor alignment with vectors that were geo-referenced manually by selecting ground control points from an orthophoto. This initial proof-of-concept investigation suggests that our workflow could enable highly efficient characterization of flow fields in rivers and might help support applications that require rapid response to changing conditions. Full article
Show Figures

Figure 1

20 pages, 11387 KiB  
Article
An Algorithm for Affordable Vision-Based GNSS-Denied Strapdown Celestial Navigation
by Samuel Teague and Javaan Chahl
Drones 2024, 8(11), 652; https://doi.org/10.3390/drones8110652 - 7 Nov 2024
Viewed by 55336
Abstract
Celestial navigation is rarely seen in modern Uncrewed Aerial Vehicles (UAVs). The size and weight of a stabilized imaging system, and the lack of precision, tend to be at odds with the operational requirements of the aircraft. Nonetheless, celestial navigation is one of [...] Read more.
Celestial navigation is rarely seen in modern Uncrewed Aerial Vehicles (UAVs). The size and weight of a stabilized imaging system, and the lack of precision, tend to be at odds with the operational requirements of the aircraft. Nonetheless, celestial navigation is one of the few non-emissive modalities that enables global navigation over the ocean at night in Global Navigation Satellite System (GNSS) denied environments. This study demonstrates a modular, low cost, lightweight strapdown celestial navigation solution that is utilized in conjunction with Ardupilot running on a Cube Orange to produce position estimates to within 4 km. By performing an orbit through a full rotation of compass heading and averaging the position output, we demonstrate that the biases present in a strapdown imaging system can be nullified to drastically improve the position estimate. Furthermore, an iterative method is presented which enables the geometric alignment of the camera with the Attitude and Heading Reference System (AHRS) in-flight without an external position input. The algorithm is tested using real flight data captured from a fixed wing aircraft. The results from this study offer promise for the application of low cost celestial navigation as a redundant navigation modality in affordable, lightweight drones. Full article
(This article belongs to the Special Issue Drones Navigation and Orientation)
Show Figures

Figure 1

28 pages, 19500 KiB  
Article
Empirical Evaluation and Simulation of GNSS Solutions on UAS-SfM Accuracy for Shoreline Mapping
by José A. Pilartes-Congo, Chase Simpson, Michael J. Starek, Jacob Berryhill, Christopher E. Parrish and Richard K. Slocum
Drones 2024, 8(11), 646; https://doi.org/10.3390/drones8110646 - 6 Nov 2024
Cited by 2 | Viewed by 1762 | Correction
Abstract
Uncrewed aircraft systems (UASs) and structure-from-motion/multi-view stereo (SfM/MVS) photogrammetry are efficient methods for mapping terrain at local geographic scales. Traditionally, indirect georeferencing using ground control points (GCPs) is used to georeference the UAS image locations before further processing in SfM software. However, this [...] Read more.
Uncrewed aircraft systems (UASs) and structure-from-motion/multi-view stereo (SfM/MVS) photogrammetry are efficient methods for mapping terrain at local geographic scales. Traditionally, indirect georeferencing using ground control points (GCPs) is used to georeference the UAS image locations before further processing in SfM software. However, this is a tedious practice and unsuitable for surveying remote or inaccessible areas. Direct georeferencing is a plausible alternative that requires no GCPs. It relies on global navigation satellite system (GNSS) technology to georeference the UAS image locations. This research combined field experiments and simulation to investigate GNSS-based post-processed kinematic (PPK) as a means to eliminate or reduce reliance on GCPs for shoreline mapping and charting. The study also conducted a brief comparison of real-time network (RTN) and precise point positioning (PPP) performances for the same purpose. Ancillary experiments evaluated the effects of PPK base station distance and GNSS sample rate on the accuracy of derived 3D point clouds and digital elevation models (DEMs). Vertical root mean square errors (RMSEz), scaled to the 95% confidence interval using an assumption of normally-distributed errors, were desired to be within 0.5 m to satisfy National Oceanic and Atmospheric Administration (NOAA) requirements for nautical charting. Simulations used a Monte Carlo approach and empirical tests to examine the influence of GNSS performance on the quality of derived 3D point clouds. RTN and PPK results consistently yielded RMSEz values within 10 cm, thus satisfying NOAA requirements for nautical charting. PPP did not meet the accuracy requirements but showed promising results that prompt further investigation. PPK experiments using higher GNSS sample rates did not always provide the best accuracies. GNSS performance and model accuracies were enhanced when using base stations located within 30 km of the survey site. Results without using GCPs observed a direct relationship between point cloud accuracy and GNSS performance, with R2 values reaching up to 0.97. Full article
Show Figures

Figure 1

16 pages, 12318 KiB  
Article
Digital Traffic Lights: UAS Collision Avoidance Strategy for Advanced Air Mobility Services
by Zachary McCorkendale, Logan McCorkendale, Mathias Feriew Kidane and Kamesh Namuduri
Drones 2024, 8(10), 590; https://doi.org/10.3390/drones8100590 - 17 Oct 2024
Cited by 4 | Viewed by 2029
Abstract
With the advancing development of Advanced Air Mobility (AAM), there is a collaborative effort to increase safety in the airspace. AAM is an advancing field of aviation that aims to contribute to the safe transportation of goods and people using aerial vehicles. When [...] Read more.
With the advancing development of Advanced Air Mobility (AAM), there is a collaborative effort to increase safety in the airspace. AAM is an advancing field of aviation that aims to contribute to the safe transportation of goods and people using aerial vehicles. When aerial vehicles are operating in high-density locations such as urban areas, it can become crucial to incorporate collision avoidance systems. Currently, there are available pilot advisory systems such as Traffic Collision and Avoidance Systems (TCAS) providing assistance to manned aircraft, although there are currently no collision avoidance systems for autonomous flights. Standards Organizations such as the Institute of Electrical and Electronics Engineers (IEEE), Radio Technical Commission for Aeronautics (RTCA), and General Aviation Manufacturers Association (GAMA) are working to develop cooperative autonomous flights using UAS-to-UAS Communication in structured and unstructured airspaces. This paper presents a new approach for collision avoidance strategies within structured airspace known as “digital traffic lights”. The digital traffic lights are deployed over an area of land, controlling all UAVs that enter a potential collision zone and providing specific directions to mitigate a collision in the airspace. This strategy is proven through the results demonstrated through simulation in a Cesium Environment. With the deployment of the system, collision avoidance can be achieved for autonomous flights in all airspaces. Full article
Show Figures

Figure 1

33 pages, 2752 KiB  
Article
Hyperspectral Image Transects during Transient Events in Rivers (HITTER): Framework Development and Application to a Tracer Experiment on the Missouri River, USA
by Carl J. Legleiter, Victoria M. Scholl, Brandon J. Sansom and Matthew A. Burgess
Remote Sens. 2024, 16(19), 3743; https://doi.org/10.3390/rs16193743 - 9 Oct 2024
Viewed by 1907
Abstract
Rivers convey a broad range of materials, such as sediment, nutrients, and contaminants. Much of this transport can occur during or immediately after an episodic, pulsed event like a flood or an oil spill. Understanding the flow processes that influence the motion of [...] Read more.
Rivers convey a broad range of materials, such as sediment, nutrients, and contaminants. Much of this transport can occur during or immediately after an episodic, pulsed event like a flood or an oil spill. Understanding the flow processes that influence the motion of these substances is important for managing water resources and conserving aquatic ecosystems. This study introduces a new remote sensing framework for characterizing dynamic phenomena at the scale of a channel cross-section: Hyperspectral Image Transects during Transient Events in Rivers (HITTER). We present a workflow that uses repeated hyperspectral scan lines acquired from a hovering uncrewed aircraft system (UAS) to quantify how a water attribute of interest varies laterally across the river and evolves over time. Data from a tracer experiment on the Missouri River are used to illustrate the components of the end-to-end processing chain we used to quantify the passage of a visible dye. The framework is intended to be flexible and could be applied in a number of different contexts. The results of this initial proof-of-concept investigation suggest that HITTER could potentially provide insight regarding the dispersion of a range of materials in rivers, which would facilitate ecological and geomorphic studies and help inform management. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

20 pages, 5600 KiB  
Article
Spatial Analysis of Advanced Air Mobility in Rural Healthcare Logistics
by Raj Bridgelall
Information 2024, 15(7), 397; https://doi.org/10.3390/info15070397 - 10 Jul 2024
Viewed by 2041
Abstract
The transportation of patients in emergency medical situations, particularly in rural areas, often faces significant challenges due to long travel distances and limited access to healthcare facilities. These challenges can result in critical delays in medical care, adversely affecting patient outcomes. Addressing this [...] Read more.
The transportation of patients in emergency medical situations, particularly in rural areas, often faces significant challenges due to long travel distances and limited access to healthcare facilities. These challenges can result in critical delays in medical care, adversely affecting patient outcomes. Addressing this issue is essential for improving survival rates and health outcomes in underserved regions. This study explored the potential of advanced air mobility to enhance emergency medical services by reducing patient transport times through the strategic placement of vertiports. Using North Dakota as a case study, the research developed a GIS-based optimization workflow to identify optimal vertiport locations that maximize time savings. The study highlighted the benefits of strategic vertiport placement at existing airports and hospital heliports to minimize community disruption and leverage underutilized infrastructure. A key finding was that the optimized mixed-mode routes could reduce patient transport times by up to 21.8 min compared with drive-only routes, significantly impacting emergency response efficiency. Additionally, the study revealed that more than 45% of the populated areas experienced reduced ground travel times due to the integration of vertiports, highlighting the strategic importance of vertiport placement in optimizing emergency medical services. The research also demonstrated the replicability of the GIS-based optimization model for other regions, offering valuable insights for policymakers and stakeholders in enhancing EMS through advanced air mobility solutions. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: "Information Processes")
Show Figures

Figure 1

17 pages, 5481 KiB  
Article
Reach-Scale Mapping of Surface Flow Velocities from Thermal Images Acquired by an Uncrewed Aircraft System along the Sacramento River, California, USA
by Paul J. Kinzel, Carl J. Legleiter and Christopher L. Gazoorian
Water 2024, 16(13), 1870; https://doi.org/10.3390/w16131870 - 29 Jun 2024
Cited by 3 | Viewed by 1707
Abstract
An innovative payload containing a sensitive mid-wave infrared camera was flown on an uncrewed aircraft system (UAS) to acquire thermal imagery along a reach of the Sacramento River, California, USA. The imagery was used as input for an ensemble particle image velocimetry (PIV) [...] Read more.
An innovative payload containing a sensitive mid-wave infrared camera was flown on an uncrewed aircraft system (UAS) to acquire thermal imagery along a reach of the Sacramento River, California, USA. The imagery was used as input for an ensemble particle image velocimetry (PIV) algorithm to produce near-continuous maps of surface flow velocity along a reach approximately 1 km in length. To assess the accuracy of PIV velocity estimates, in situ measurements of flow velocity were obtained with an acoustic Doppler current profiler (ADCP). ADCP measurements were collected along pre-planned cross-section lines within the area covered by the imagery. The PIV velocities showed good agreement with the depth-averaged velocity measured by the ADCP, with R2 values ranging from 0.59–0.97 across eight transects. Velocity maps derived from the thermal image sequences acquired on consecutive days during a period of steady flow were compared. These maps showed consistent spatial patterns of velocity vector magnitude and orientation, indicating that the technique is repeatable and robust. PIV of thermal imagery can yield velocity estimates in situations where natural water-surface textures or tracers are either insufficient or absent in visible imagery. Future work could be directed toward defining optimal environmental conditions, as well as limitations for mapping flow velocities based on thermal images acquired via UAS. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

25 pages, 6183 KiB  
Article
UAV Multi-Dynamic Target Interception: A Hybrid Intelligent Method Using Deep Reinforcement Learning and Fuzzy Logic
by Bingze Xia, Iraj Mantegh and Wenfang Xie
Drones 2024, 8(6), 226; https://doi.org/10.3390/drones8060226 - 29 May 2024
Cited by 6 | Viewed by 2684
Abstract
With the rapid development of Artificial Intelligence, AI-enabled Uncrewed Aerial Vehicles have garnered extensive attention since they offer an accessible and cost-effective solution for executing tasks in unknown or complex environments. However, developing secure and effective AI-based algorithms that empower agents to learn, [...] Read more.
With the rapid development of Artificial Intelligence, AI-enabled Uncrewed Aerial Vehicles have garnered extensive attention since they offer an accessible and cost-effective solution for executing tasks in unknown or complex environments. However, developing secure and effective AI-based algorithms that empower agents to learn, adapt, and make precise decisions in dynamic situations continues to be an intriguing area of study. This paper proposes a hybrid intelligent control framework that integrates an enhanced Soft Actor–Critic method with a fuzzy inference system, incorporating pre-defined expert experience to streamline the learning process. Additionally, several practical algorithms and approaches within this control system are developed. With the synergy of these innovations, the proposed method achieves effective real-time path planning in unpredictable environments under a model-free setting. Crucially, it addresses two significant challenges in RL: dynamic-environment problems and multi-target problems. Diverse scenarios incorporating actual UAV dynamics were designed and simulated to validate the performance in tracking multiple mobile intruder aircraft. A comprehensive analysis and comparison of methods relying solely on RL and other influencing factors, as well as a controller feasibility assessment for real-world flight tests, are conducted, highlighting the advantages of the proposed hybrid architecture. Overall, this research advances the development of AI-driven approaches for UAV safe autonomous navigation under demanding airspace conditions and provides a viable learning-based control solution for different types of robots. Full article
Show Figures

Figure 1

17 pages, 2573 KiB  
Review
Remote Sensing and Machine Learning for Safer Railways: A Review
by Wesam Helmi, Raj Bridgelall and Taraneh Askarzadeh
Appl. Sci. 2024, 14(9), 3573; https://doi.org/10.3390/app14093573 - 24 Apr 2024
Cited by 9 | Viewed by 2675
Abstract
Regular railway inspections are crucial for maintaining their safety and efficiency. However, traditional inspection methods are complex and expensive. Consequently, there has been a significant shift toward combining remote sensing (RS) and machine learning (ML) techniques to enhance the efficiency and accuracy of [...] Read more.
Regular railway inspections are crucial for maintaining their safety and efficiency. However, traditional inspection methods are complex and expensive. Consequently, there has been a significant shift toward combining remote sensing (RS) and machine learning (ML) techniques to enhance the efficiency and accuracy of railway defect monitoring while reducing costs. The advantages of RS-ML techniques include their ability to automate and refine inspection processes and address challenges such as image quality and methodological limitations. However, the integration of RS and ML in railway monitoring is an emerging field, with diverse methodologies and outcomes that the research has not yet synthesized. To fill this gap, this study conducted a systematic literature review (SLR) to consolidate the existing research on RS-ML applications in railway inspection. The SLR meticulously compiled and analyzed relevant studies, evaluating the evolution of research trends, methodological approaches, and the geographic distribution of contributions. The findings showed a notable increase in relevant research activity over the last five years, highlighting the growing interest in this realm. The key methodological patterns emphasize the predominance of approaches based on convolutional neural networks, a variant of artificial neural networks, in achieving high levels of precision. These findings serve as a foundational resource for academics, researchers, and practitioners in the fields of computer science, engineering, and transportation to help guide future research directions and foster the development of more efficient, accurate, and cost-effective railway inspection methods. Full article
Show Figures

Figure 1

Back to TopTop