Reach-Scale Mapping of Surface Flow Velocities from Thermal Images Acquired by an Uncrewed Aircraft System along the Sacramento River, California, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements
2.3. UAS-Based Image Collection
2.4. Thermal Image Processing
2.5. PIV Algorithm
2.6. PIV versus ADCP Accuracy Assessment
2.7. Day-to-Day PIV Accuracy Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conaway, J.S.; Eggleston, J.R.; Legleiter, C.J.; Jones, J.W.; Kinzel, P.J.; Fulton, J.W. Remote Sensing of Streamflow in Alaska Rivers—New Technology to Improve Safety and Expand Coverage of USGS Streamgaging; Fact Sheet 2019-3024; U.S. Geological Survey: Reston, VA, USA, 2019. [CrossRef]
- Durand, M.; Gleason, C.J.; Pavelsky, T.M.; Prata de Moraes Frasson, R.; Turmon, M.; David, C.H.; Altenau, E.H.; Tebaldi, N.; Larnier, K.; Monnier, J.; et al. A Framework for Estimating Global River Discharge From the Surface Water and Ocean Topography Satellite Mission. Water Resour. Res. 2023, 59, e2021WR031614. [Google Scholar] [CrossRef]
- Fulton, J.W.; Mason, C.A.; Eggleston, J.R.; Nicotra, M.J.; Chiu, C.L.; Henneberg, M.F.; Best, H.R.; Cederberg, J.R.; Holnbeck, S.R.; Lotspeich, R.R.; et al. Near-Field Remote Sensing of Surface Velocity and River Discharge Using Radars and the Probability Concept at 10 U.S. Geological Survey Streamgages. Remote Sens. 2020, 12, 1296. [Google Scholar] [CrossRef]
- Tauro, F.; Porfiri, M.; Grimaldi, S. Surface flow measurements from drones. J. Hydrol. 2016, 540, 240–245. [Google Scholar] [CrossRef]
- Peña-Haro, S.; Carrel, M.; Lüthi, B.; Hansen, I.; Lukes, R. Robust Image-Based Streamflow Measurements for Real-Time Continuous Monitoring. Front. Water 2021, 3, 766918. [Google Scholar] [CrossRef]
- Detert, M.; Johnson, E.D.; Weitbrecht, V. Proof-of-concept for low-cost and non-contact synoptic airborne river flow measurements. Int. J. Remote Sens. 2017, 38, 2780–2807. [Google Scholar] [CrossRef]
- Jolley, M.J.; Russell, A.J.; Quinn, P.F.; Perks, M.T. Considerations When Applying Large-Scale PIV and PTV for Determining River Flow Velocity. Front. Water 2021, 3, 709269. [Google Scholar] [CrossRef]
- Fujita, I.; Muste, M.; Kruger, A. Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. J. Hydraul. Res. 1998, 36, 397–414. [Google Scholar] [CrossRef]
- Muste, M.; Fujita, I.; Hauet, A. Large-scale particle image velocimetry for measurements in riverine environments. Water Resour. Res. 2008, 44, W00D19. [Google Scholar] [CrossRef]
- Tauro, F.; Piscopia, R.; Grimaldi, S. PTV-Stream: A simplified particle tracking velocimetry framework for stream surface flow monitoring. CATENA 2019, 172, 378–386. [Google Scholar] [CrossRef]
- Fujita, I.; Watanabe, H.; Tsubaki, R. Development of a non-intrusive and efficient flow monitoring technique: The space-time image velocimetry (STIV). Int. J. River Basin Manag. 2007, 5, 105–114. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Kinzel, P.J.; Engel, F.L.; Harrison, L.R.; Hewitt, G. A two-dimensional, reach-scale implementation of space-time image velocimetry (STIV) and comparison to particle image velocimetry (PIV). Earth Surf. Process. Landf. 2024. [Google Scholar] [CrossRef]
- Thielicke, W.; Stamhuis, E.J. PIVlab—Towards User-friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB. J. Open Res. Softw. 2014, 2, e30. [Google Scholar] [CrossRef]
- Patalano, A.; García, C.M.; Rodríguez, A. Rectification of Image Velocity Results (RIVeR). Comput. Geosci. 2017, 109, 323–330. [Google Scholar] [CrossRef]
- Eltner, A.; Sardemann, H.; Grundmann, J. Technical Note: Flow velocity and discharge measurement in rivers using terrestrial and unmanned-aerial-vehicle imagery. Hydrol. Earth Syst. Sci. 2020, 24, 1429–1445. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Kinzel, P.J. The Toolbox for River Velocimetry using Images from Aircraft (TRiVIA). River Res. Appl. 2023, 39, 1457–1468. [Google Scholar] [CrossRef]
- Ljubičić, R.; Dal Sasso, S.F.; Zindović, B. SSIMS-Flow: Image velocimetry workbench for open-channel flow rate estimation. Environ. Model. Softw. 2024, 173, 105938. [Google Scholar] [CrossRef]
- Detert, M.; Cao, L.; Albayrak, I. Airborne Image Velocimetry Measurements at the Hydropower Plant Schiffmühle on Limmat River, Switzerland. In Proceedings of the 2nd International Symposium and Exhibition on Hydro-Environment Sensors and Software, HydroSenSoft 2019, Madrid, Spain, 26 February–1 March 2019; pp. 211–217. [Google Scholar]
- Pizarro, A.; Dal Sasso, S.F.; Perks, M.T.; Manfreda, S. Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow. Hydrol. Earth Syst. Sci. 2020, 24, 5173–5185. [Google Scholar] [CrossRef]
- Strelnikova, D.; Paulus, G.; Käfer, S.; Anders, K.H.; Mayr, P.; Mader, H.; Scherling, U.; Schneeberger, R. Drone-Based Optical Measurements of Heterogeneous Surface Velocity Fields around Fish Passages at Hydropower Dams. Remote Sens. 2020, 12, 384. [Google Scholar] [CrossRef]
- Biggs, H.J.; Smith, B.; Detert, M.; Sutton, H. Surface image velocimetry: Aerial tracer particle distribution system and techniques for reducing environmental noise with coloured tracer particles. River Res. Appl. 2022, 38, 1192–1198. [Google Scholar] [CrossRef]
- Duan, J.G.; Engel, F.L.; Cadogan, A. Discharge Estimation Using Video Recordings from Small Unoccupied Aircraft Systems. J. Hydraul. Eng. 2023, 149, 04023048. [Google Scholar] [CrossRef]
- Chickadel, C.C.; Talke, S.A.; Horner-Devine, A.R.; Jessup, A.T. Infrared-Based Measurements of Velocity, Turbulent Kinetic Energy, and Dissipation at the Water Surface in a Tidal River. IEEE Geosci. Remote Sens. Lett. 2011, 8, 849–853. [Google Scholar] [CrossRef]
- Puleo, J.A.; McKenna, T.E.; Holland, K.T.; Calantoni, J. Quantifying riverine surface currents from time sequences of thermal infrared imagery. Water Resour. Res. 2012, 48, W01527. [Google Scholar] [CrossRef]
- Fujita, I.; Kosaka, Y.; Honda, M.; Yorozuya, A.; Motonaga, Y. Day and Night Measurements of Snow Melt Floods by STIV with a Far Infrared Camera. In Proceedings of the 35th IAHR World Congress, Chengdu, China, 8–13 September 2013; p. 8. [Google Scholar]
- Lin, D.; Grundmann, J.; Eltner, A. Evaluating Image Tracking Approaches for Surface Velocimetry with Thermal Tracers. Water Resour. Res. 2019, 55, 3122–3136. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Kinzel, P.J.; Nelson, J.M. Remote measurement of river discharge using thermal particle image velocimetry (PIV) and various sources of bathymetric information. J. Hydrol. 2017, 554, 490–506. [Google Scholar] [CrossRef]
- Schweitzer, S.A.; Cowen, E.A. Instantaneous River-Wide Water Surface Velocity Field Measurements at Centimeter Scales Using Infrared Quantitative Image Velocimetry. Water Resour. Res. 2021, 57, e2020WR029279. [Google Scholar] [CrossRef]
- Dugan, J.P.; Anderson, S.P.; Piotrowski, C.C.; Zuckerman, S.B. Airborne Infrared Remote Sensing of Riverine Currents. IEEE Trans. Geosci. Remote Sens. 2014, 52, 3895–3907. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Kinzel, P.J.; Laker, M.; Conaway, J.S. Moving Aircraft River Velocimetry (MARV): Framework and Proof-of-Concept on the Tanana River. Water Resour. Res. 2023, 59, e2022WR033822. [Google Scholar] [CrossRef]
- Eltner, A.; Bertalan, L.; Grundmann, J.; Perks, M.T.; Lotsari, E. Hydro-morphological mapping of river reaches using videos captured with UAS. Earth Surf. Process. Landf. 2021, 46, 2773–2787. [Google Scholar] [CrossRef]
- MacDonell, C.J.; Williams, R.D.; Maniatis, G.; Roberts, K.; Naylor, M. Consumer-grade UAV solid-state LiDAR accurately quantifies topography in a vegetated fluvial environment. Earth Surf. Process. Landf. 2023, 48, 2211–2229. [Google Scholar] [CrossRef]
- Kinzel, P.J.; Legleiter, C.J. sUAS-Based Remote Sensing of River Discharge Using Thermal Particle Image Velocimetry and Bathymetric Lidar. Remote Sens. 2019, 11, 2317. [Google Scholar] [CrossRef]
- Eltner, A.; Mader, D.; Szopos, N.; Nagy, B.; Grundmann, J.; Bertalan, L. Using Thermal and Rgb Uav Imagery to Measure Surface Flow Velocities of Rivers. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B2-2021, 717–722. [Google Scholar] [CrossRef]
- U.S. Geological Survey. USGS Water Data for the Nation: U.S. Geological Survey National Water Information System Database. 2024. Available online: https://waterdata.usgs.gov/nwis (accessed on 9 April 2024). [CrossRef]
- Legleiter, C.J.; Harrison, L.R. Evaluating the potential for efficient, UAS-based reach-scale mapping of river channel bathymetry from multispectral images. Front. Remote Sens. 2024, 5, 1305991. [Google Scholar] [CrossRef]
- Legleiter, C.J.; Kinzel, P.J. A framework to facilitate development and testing of image-based river velocimetry algorithms. Earth Surf. Process. Landf. 2024, 49, 1361–1382. [Google Scholar] [CrossRef]
- Xylem. SonTek M9 Brochure. 2024. Available online: https://www.xylem.com/siteassets/brand/sontek/resources/brochure/sontek-m9-brochure.pdf (accessed on 5 May 2024).
- Xylem. SonTek RiverSurveyor Live Software. 2024. Available online: https://www.xylem.com/en-us/products–services/software/riversurveyor-live-rsl/ (accessed on 5 May 2024).
- Parsons, D.R.; Jackson, P.R.; Czuba, J.A.; Engel, F.L.; Rhoads, B.L.; Oberg, K.A.; Best, J.L.; Mueller, D.S.; Johnson, K.K.; Riley, J.D. Velocity Mapping Toolbox (VMT): A processing and visualization suite for moving-vessel ADCP measurements. Earth Surf. Process. Landf. 2013, 38, 1244–1260. [Google Scholar] [CrossRef]
- Kinzel, P.; Legleiter, C.; Gazoorian, C. Thermal Imagery Acquired from an Uncrewed Aerial System (UAS) and Hydroacoustic Measurements of Flow Velocity Collected along the Sacramento River, California, November, 2023; U.S. Geological Survey Data Release; U.S. Geological Survey: Reston, VA, USA, 2024. [CrossRef]
- Quigley, M.; Conley, K.; Gerkey, B.P.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5. [Google Scholar]
- Legleiter, C.J.; Dille, M. A Robot Operating System (ROS) package for mapping flow fields in rivers via Particle Image Velocimetry (PIV). SoftwareX 2024, 26, 101711. [Google Scholar] [CrossRef]
- DJI. Matrice 600 Pro. 2024. Available online: https://www.dji.com/support/product/matrice600-pro (accessed on 5 May 2024).
- Infrared Cameras Inc. Mirage 640 P Series. 2024. Available online: https://infraredcameras.com/products/mirage-640-p-series (accessed on 5 May 2024).
- Drone Amplified. Ignis Application, Government Edition, Version 2.20.40. 2024. Available online: https://droneamplified.com/downloads/android/apks_for_dji/government_edition/latest/ (accessed on 10 June 2024).
- Legleiter, C.; Kinzel, P.J. Inferring Surface Flow Velocities in Sediment-Laden Alaskan Rivers from Optical Image Sequences Acquired from a Helicopter. Remote Sens. 2020, 12, 1282. [Google Scholar] [CrossRef]
- Foxglove Studio. 2024. Available online: https://foxglove.dev/download (accessed on 5 May 2024).
- The MathWorks Inc. MATLAB Version: 24.1.0.2603908 (R2024a). 2024. Available online: https://www.mathworks.com (accessed on 5 May 2024).
- Willman, C.; Scott, B.; Stone, R.; Richardson, D. Quantitative metrics for comparison of in-cylinder velocity fields using particle image velocimetry. Exp. Fluids 2020, 61, 62. [Google Scholar] [CrossRef]
- Smart, G.M.; Biggs, H.J. Remote gauging of open channel flow: Estimation of depth averaged velocity from surface velocity and turbulence. In Proceedings of the River Flow 2020, Delft, The Netherlands, 7–10 July 2020; pp. 1–10. [Google Scholar]
- Biggs, H.; Smart, G.; Doyle, M.; Eickelberg, N.; Aberle, J.; Randall, M.; Detert, M. Surface Velocity to Depth-Averaged Velocity—A Review of Methods to Estimate Alpha and Remaining Challenges. Water 2023, 15, 3711. [Google Scholar] [CrossRef]
- Rantz, S.; Others, A. Measurement and Computation of Streamflow: Volume 1. Measurement of Stage and Discharge. U.S. Geol. Surv. Water Supply Pap. 1982, 2175, 284. [Google Scholar] [CrossRef]
- Zuiderveld, K. Contrast Limited Adaptive Histograph Equalization. In Graphic Gems IV; Academic Press Professional: Cambridge, MA, USA, 1994; pp. 474–485. [Google Scholar]
- Steel, E.A.; Beechie, T.J.; Torgersen, C.E.; Fullerton, A.H. Envisioning, Quantifying, and Managing Thermal Regimes on River Networks. BioScience 2017, 67, 506–522. [Google Scholar] [CrossRef]
- Harvey, M.C.; Hare, D.K.; Hackman, A.; Davenport, G.; Haynes, A.B.; Helton, A.; Lane, J.W.; Briggs, M.A. Evaluation of Stream and Wetland Restoration Using UAS-Based Thermal Infrared Mapping. Water 2019, 11, 1568. [Google Scholar] [CrossRef]
Model | ICI Mirage 640 P-Series [45] |
Lens | 11.2 mm |
Detector | Cooled Indium Antimonide |
Pixel dimensions on focal array | 15 μm |
Number of pixels | 640 × 512 |
Wavelength range | 3–5 μm |
Noise-equivalent temperature difference | <0.012 °C at 30 °C |
Bits per pixel | 14 |
Camera dimensions | 111 × 96 × 131 mm |
Camera weight | <765 g (without lens) |
Power | 12 V |
XS | Obs. vs Pred. | Norm. | Norm. | Slope | Intercept | n |
---|---|---|---|---|---|---|
RMSE | Bias | |||||
9 November 2023 | ||||||
900 | 0.94 | 0.12 | 0.10 | 1.16 | −0.04 | 14 |
1050 | 0.95 | 0.05 | 0.02 | 0.96 | 0.04 | 19 |
1200 | 0.87 | 0.15 | 0.11 | 1.03 | 0.05 | 17 |
1350 | 0.96 | 0.06 | 0.04 | 1.05 | −0.01 | 22 |
1500 | 0.86 | 0.14 | 0.11 | 1.28 | −0.16 | 25 |
1650 | 0.59 | 0.20 | 0.18 | 1.37 | −0.20 | 23 |
1800 | 0.68 | 0.19 | 0.16 | 1.27 | −0.11 | 22 |
1950 | 0.68 | 0.23 | 0.01 | 2.25 | −1.34 | 17 |
10 November 2023 | ||||||
900 | 0.75 | 0.14 | 0.04 | 1.02 | 0.01 | 16 |
1050 | 0.97 | 0.04 | 0.00 | 1.00 | 0.00 | 18 |
1200 | 0.94 | 0.11 | 0.04 | 1.14 | −0.06 | 20 |
1350 | 0.72 | 0.09 | −0.02 | 0.84 | 0.10 | 20 |
1500 | 0.77 | 0.17 | 0.14 | 1.18 | −0.04 | 22 |
1650 | 0.83 | 0.18 | 0.18 | 1.43 | −0.25 | 23 |
1800 | 0.60 | 0.17 | 0.14 | 1.04 | 0.11 | 21 |
1950 | 0.86 | 0.09 | 0.06 | 1.36 | −0.33 | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kinzel, P.J.; Legleiter, C.J.; Gazoorian, C.L. Reach-Scale Mapping of Surface Flow Velocities from Thermal Images Acquired by an Uncrewed Aircraft System along the Sacramento River, California, USA. Water 2024, 16, 1870. https://doi.org/10.3390/w16131870
Kinzel PJ, Legleiter CJ, Gazoorian CL. Reach-Scale Mapping of Surface Flow Velocities from Thermal Images Acquired by an Uncrewed Aircraft System along the Sacramento River, California, USA. Water. 2024; 16(13):1870. https://doi.org/10.3390/w16131870
Chicago/Turabian StyleKinzel, Paul J., Carl J. Legleiter, and Christopher L. Gazoorian. 2024. "Reach-Scale Mapping of Surface Flow Velocities from Thermal Images Acquired by an Uncrewed Aircraft System along the Sacramento River, California, USA" Water 16, no. 13: 1870. https://doi.org/10.3390/w16131870
APA StyleKinzel, P. J., Legleiter, C. J., & Gazoorian, C. L. (2024). Reach-Scale Mapping of Surface Flow Velocities from Thermal Images Acquired by an Uncrewed Aircraft System along the Sacramento River, California, USA. Water, 16(13), 1870. https://doi.org/10.3390/w16131870