Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = unbound permeable aggregate base

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7271 KB  
Article
Experimental Study on Vibratory Compaction Behavior of Tunneling Rock Wastes Used as Unbound Permeable Aggregate Base Materials
by Yuliang Chen, Qunding Yu, Wenqi Li, Yuanjie Xiao, Tao Yang, Zhiyong Li, Xiao Zhi and Pin Deng
Materials 2022, 15(22), 8016; https://doi.org/10.3390/ma15228016 - 14 Nov 2022
Cited by 4 | Viewed by 2417
Abstract
The tunneling rock wastes (TRW) have been increasingly generated and stockpiled in massive quantities. Recycling them for use as unbound granular pavement base/subbase materials has become an alternative featuring low carbon emission and sustainability. However, the field compaction of such large-size, open-graded materials [...] Read more.
The tunneling rock wastes (TRW) have been increasingly generated and stockpiled in massive quantities. Recycling them for use as unbound granular pavement base/subbase materials has become an alternative featuring low carbon emission and sustainability. However, the field compaction of such large-size, open-graded materials remains challenging, thus affecting post-construction deformation and long-term stability of such pavement base/subbase layers. This study conducted a series of proctor compaction and new plate vibratory compaction tests to analyze the compaction characteristics of such TRW materials. A total of six different open gradations were designed from particle packing theory. In addition, the effects of gradation and compaction methods on the compaction characteristics, particle breakage of TRW materials, and the optimal combination of vibratory parameters were investigated by normalizing the curves of achieved dry density versus degree of saturation for various combinations of gradations, compaction methods, and compaction energy levels. The post-compaction characteristics of interparticle contact, pore structure, and particle breakage were analyzed from the X-ray computed topography (XCT) scanning results of TRW specimens with different gradations. The findings showed that the gravel-to-sand ratio (G/S) based gradation design method can effectively differentiate distinct types of particle packing structures. There exists an optimal G/S range that could potentially result in the highest maximum dry density, the lowest particle breakage, and the best pore structure of compacted unbound permeable aggregate base (UPAB) materials. The achieved dry density (ρd) of UPAB materials subjected to vibratory plate compaction exhibited three distinct phases with compaction time, from which the optimal excitation frequency range was found to be 25–27 Hz and the optimal combination of vibratory parameters were determined. The normalized compaction curves of degree of saturation versus achieved dry density were found insensitive to changes in material gradations, compaction methods and energy levels, thus allowing for a more accurate evaluation and control of field compaction quality. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 7452 KB  
Article
Resilient Modulus Behavior and Prediction Models of Unbound Permeable Aggregate Base Materials Derived from Tunneling Rock Wastes
by Meng Wang, Qunding Yu, Yuanjie Xiao and Wenqi Li
Materials 2022, 15(17), 6005; https://doi.org/10.3390/ma15176005 - 31 Aug 2022
Cited by 8 | Viewed by 2424
Abstract
Tunneling rock wastes (TRWs), which are often open- or gap-graded in nature, have been increasingly recycled and reused for sustainable construction of unbound permeable aggregate base (UPAB) courses with high porosity and desired drainability. However, there is still a lack of sufficient understanding [...] Read more.
Tunneling rock wastes (TRWs), which are often open- or gap-graded in nature, have been increasingly recycled and reused for sustainable construction of unbound permeable aggregate base (UPAB) courses with high porosity and desired drainability. However, there is still a lack of sufficient understanding of long-term mechanical stability of such TRW materials subjected to repeated applications of moving wheel loads. This paper aimed to characterize and predict resilient modulus (Mr) behavior of the TRW materials used in unbound permeable aggregate base applications. To achieve this goal, five different UPAB gradations were designed based on the gravel-to-sand ratio (G/S) concept. In order to study their Mr behavior, the laboratory repeated load triaxial tests were conducted under different combinations of confining pressure and deviator stress as controlled by the levels of the shear stress ratio (SSR). The prediction accuracy of fourteen classical Mr prediction models was comparatively analyzed, from which the improved Mr prediction model incorporating gradation and stress variables was proposed for TRW-derived UPAB materials and further validated by external database accordingly. The results show that under the same G/S value and confining pressure level, the higher the SSR is, the greater the final Mr values are, and the more significant the effect of G/S on Mr is. Under the same SSR level, the increase of confining pressure alleviates the effect of G/S on Mr. There appears to exist an optimal G/S value of around 1.6–1.8 that yields the best Mr behavior of the TRW-derived UPAB materials studied. The improved Mr prediction model was verified extensively to be universally applicable. It can potentially contribute to balancing long-term mechanical stability and drainability of TRW-derived UPAB materials through gradation optimization. The findings could provide a theoretical basis and technical reference for cost-effective and sustainable applications of UPAB materials derived from TRWs. Full article
(This article belongs to the Special Issue Recycled Materials and By-Products for Pavement Construction)
Show Figures

Figure 1

26 pages, 12392 KB  
Article
Discrete Element Modeling of Instability Mechanisms of Unbound Permeable Aggregate Base Materials in Triaxial Compression
by Yuanjie Xiao, Xiaoming Wang, Qunding Yu, Juanjuan Ren, Wenjun Hua, Ralina Mustafina, Fuguang Zhang, Huaiping Feng and Tongwen Zhang
Materials 2022, 15(8), 2716; https://doi.org/10.3390/ma15082716 - 7 Apr 2022
Cited by 8 | Viewed by 2439
Abstract
Unbound permeable aggregate base (UPAB) materials with strong load-transmitting skeleton yet adequate inter-connected pores are desired for use in the sponge-city initiative. However, the micro-scale fabric evolution and instability mechanism of macroscopic strength behavior of such UPAB materials still remain unclear. In this [...] Read more.
Unbound permeable aggregate base (UPAB) materials with strong load-transmitting skeleton yet adequate inter-connected pores are desired for use in the sponge-city initiative. However, the micro-scale fabric evolution and instability mechanism of macroscopic strength behavior of such UPAB materials still remain unclear. In this study, virtual monotonic triaxial compression tests were conducted by using the discrete element method (DEM) modeling approach on specimens with different gradations quantified by the parameter of gravel-to-sand ratio (G/S). The realistic aggregate particle shape and inter-particle contact behavior were properly considered in the DEM model. The micromechanical mechanisms of the shearing failure of such UPAB materials and their evolution characteristics with G/S values were disclosed from contact force chains, microstructures, and particle motion. It was found that the proportion of rotating particles in the specimens decreased and the proportion of relative sliding between particles increased as the content of fine particles decreased. The plastic yielding of the specimens originated from the failure of contact force chains and the occurrence of the relative motion between particles, while the final instability was manifested by the large-scale relative motion among particles along the failure plane (i.e., changes in the internal particle topology). By comparing the macroscopic strength, microstructure evolution, and particle motion characteristics of the specimens with different G/S values, it was found that the specimens with G/S value of 1.8 performed the best, and that the G/S value of 1.8 could be regarded as the threshold for separating floating dense and skeletal gap type packing structures. The variation of Euler angles of rotating particles was significantly reduced in the particle size range of 4.75 mm to 9.50 mm, indicating that this size range separates most of the particles from rolling and sliding. Since particle rolling and sliding behavior are directly related to shear strength, this validates the rationality of the parameter G/S for controlling and optimizing gradations from the perspective of particle movement. The findings could provide theoretical basis and technical guidance for the effective design and efficient utilization of UPAB materials. Full article
(This article belongs to the Special Issue Materials, Structure, and Modeling for Smart and Resilient Roads)
Show Figures

Figure 1

16 pages, 1421 KB  
Article
A Systematic Review of Permeable Pavements and Their Unbound Material Properties in Comparison to Traditional Subbase Materials
by Dansani Vasanthan Muttuvelu and Erik Kjems
Infrastructures 2021, 6(12), 179; https://doi.org/10.3390/infrastructures6120179 - 16 Dec 2021
Cited by 10 | Viewed by 7046
Abstract
This paper is a literature review focused on permeable pavements and especially the permeable subbase material. Run-off water from the surface is traditionally let through a drainage system, and the roads are kept dry. Due to climate changes, heavy precipitation and high-intensity rainfalls [...] Read more.
This paper is a literature review focused on permeable pavements and especially the permeable subbase material. Run-off water from the surface is traditionally let through a drainage system, and the roads are kept dry. Due to climate changes, heavy precipitation and high-intensity rainfalls are putting pressure on the infrastructure. Traditionally, water in subbase materials reduces the resilient E-moduli and the lifespan of the pavement design. Studies show that increasing saturation reduces the bearing capacity of a traditional subbase material. Unbound materials with highly grained fines and high moisture content have higher tendency to show reduced resilient E-moduli. One study was found where the E-moduli of five different coarse grained aggregates used in permeable pavements were examined through a triaxial test. It was found that the E-moduli varied from 110–371 MPa. Other studies examining the E-moduli of permeable subbases based on moisture content were not found. However, this paper discusses different experiences regarding the bearing capacity of traditional vs. permeable subbase materials. It also covers a discussion and an analysis of missing research areas that needs to be investigated for further knowledge about the usage of permeable pavements in areas with a risk of flooding. Full article
(This article belongs to the Special Issue Pavement Sustainability)
Show Figures

Figure 1

29 pages, 15512 KB  
Article
Evaluating Gyratory Compaction Characteristics of Unbound Permeable Aggregate Base Materials from Meso-Scale Particle Movement Measured by Smart Sensing Technology
by Yuanjie Xiao, Meng Wang, Xiaoming Wang, Juanjuan Ren, Weidong Wang and Xiaobin Chen
Materials 2021, 14(15), 4287; https://doi.org/10.3390/ma14154287 - 31 Jul 2021
Cited by 18 | Viewed by 2954
Abstract
The quality of compaction of unbound aggregate materials with permeable gradation plays a vital role in their field performance; however, there are currently few unanimously accepted techniques or quality control criteria available for ensuring adequate compaction of such materials in either laboratory or [...] Read more.
The quality of compaction of unbound aggregate materials with permeable gradation plays a vital role in their field performance; however, there are currently few unanimously accepted techniques or quality control criteria available for ensuring adequate compaction of such materials in either laboratory or field applications. This paper presented testing results of a laboratory gyratory compaction study where the combinations of gyratory parameters were properly designed using the orthogonal array theory. Innovative real-time particle motion sensors were employed to record particle movement characteristics during the compaction process and provide a meso-scale explanation about compaction mechanisms. Particle abrasion and breakage were also quantified from particle shape digitized from the three-dimensional (3D) laser scanner before and after compaction. The optimal combination of gyratory parameters that yields the best compaction performance was determined from the orthogonal testing results with the relative importance of major influencing parameters ranked accordingly. Meso-scale particle movement at the upper center and center side positions of the specimen are promising indicators of compaction quality. The gyratory compaction process can be consistently divided into three distinct stages according to both macro-scale performance indicators and meso-scale particle movement characteristics. A statistically significant bi-linear relationship was found to exist between relative breakage index and maximum abrasion depth, whereas the quality of compaction and the extent of particle breakage appear to be positively correlated, thus necessitating the cost-effective balance between them. The results of this study could provide technical insights and guidance to field compaction of unbound permeable aggregates. Full article
(This article belongs to the Special Issue Materials, Structure, and Modeling for Smart and Resilient Roads)
Show Figures

Figure 1

11 pages, 2291 KB  
Article
Effect of Compaction and Hydraulic Gradient on Subbase Layer Permeability
by Vilius Filotenkovas and Audrius Vaitkus
Coatings 2019, 9(10), 641; https://doi.org/10.3390/coatings9100641 - 3 Oct 2019
Cited by 3 | Viewed by 3701
Abstract
In order to prevent or at least reduce the deformation of road surface, it is necessary to ensure adequate water permeability of the structural layers and control of groundwater level. In geotechnical engineering, the water permeability of the mineral aggregates or soils is [...] Read more.
In order to prevent or at least reduce the deformation of road surface, it is necessary to ensure adequate water permeability of the structural layers and control of groundwater level. In geotechnical engineering, the water permeability of the mineral aggregates or soils is determined using a constant head water permeability apparatus. In order to assess the suitability of the results, it is necessary to take into account particle size distribution of the test object and perform the test at different hydraulic ramps. The aim of this research is to define and clarify unbound mineral aggregate mixtures hydraulic gradient and compaction level of road layer impact on water permeability. The following properties have been determined during the tests: particle size distribution, particle density, Proctor density, optimum water quantity, water permeability under different compaction and hydraulic slopes. Based on the results of the research, low-dustiness non-bonded mineral materials are recommended for frost resistant layers. For the water-permeability coefficient test, it is recommended that the test layer should be compacted to a design compaction ratio and the hydraulic gradient should not be higher than 1.0. Other conclusions and recommendations for further research and for improvement of water permeability functionality in the road pavement are presented. Full article
(This article belongs to the Collection Pavement Surface Coatings)
Show Figures

Figure 1

Back to TopTop