Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = ultrathin ferroelectric film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 15832 KiB  
Article
A Pathway for the Integration of Novel Ferroelectric Thin Films on Non-Planar Photonic Integrated Circuits
by Enes Lievens, Kobe De Geest, Ewout Picavet, Liesbet Van Landschoot, Henk Vrielinck, Gilles Freddy Feutmba, Hannes Rijckaert, Klaartje De Buysser, Dries Van Thourhout, Peter Bienstman and Jeroen Beeckman
Micromachines 2025, 16(3), 334; https://doi.org/10.3390/mi16030334 - 13 Mar 2025
Viewed by 984
Abstract
The heterogeneous integration of ferroelectric thin films on silicon- or silicon nitride-based platforms for photonic integrated circuits plays a crucial role in the development of nanophotonic thin film modulators. For this purpose, an ultrathin seed film was recently introduced as an integration method [...] Read more.
The heterogeneous integration of ferroelectric thin films on silicon- or silicon nitride-based platforms for photonic integrated circuits plays a crucial role in the development of nanophotonic thin film modulators. For this purpose, an ultrathin seed film was recently introduced as an integration method for ferroelectric thin films such as BaTiO3 and Pb(Zr,Ti)O3. One issue with this self-orienting seed film is that for non-planarized circuits, it fails to act as a template film for the thin films. To circumvent this problem, we propose a method of planarization without the need for wafer-scale chemical mechanical polishing by using hydrogen silsesquioxane as a precursor to forming amorphous silica, in order to create an oxide cladding similar to the thermal oxide often present on silicon-based platforms. Additionally, this oxide cladding is compatible with the high annealing temperatures usually required for the deposition of these novel ferroelectric thin films (600–800 °C). The thickness of this silica film can be controlled through a dry etch process, giving rise to a versatile platform for integrating nanophotonic thin film modulators on a wider variety of substrates. Using this method, we successfully demonstrate a hybrid BaTiO3-Si ring modulator with a high Pockels coefficient of rwg=155.57±10.91 pm V−1 and a half-wave voltage-length product of VπL=2.638±0.084 V cm, confirming the integration of ferroelectric thin films on an initially non-planar substrate. Full article
(This article belongs to the Special Issue Emerging Trends in Optoelectronic Device Engineering)
Show Figures

Figure 1

11 pages, 3434 KiB  
Article
The Excellent Bending Limit of a Flexible Si-Based Hf0.5Zr0.5O2 Ferroelectric Capacitor with an Al Buffer Layer
by Xinyu Xie, Jiabin Qi, Hui Wang, Zongfang Liu, Wenhao Wu, Choonghyun Lee and Yi Zhao
Electronics 2024, 13(1), 24; https://doi.org/10.3390/electronics13010024 - 20 Dec 2023
Viewed by 1566
Abstract
Flexible Si-based Hf0.5Zr0.5O2 (HZO) ferroelectric devices exhibit numerous advantages in the internet of things (IoT) and edge computing due to their low-power operation, superior scalability, excellent CMOS compatibility, and light weight. However, limited by the brittleness of Si, [...] Read more.
Flexible Si-based Hf0.5Zr0.5O2 (HZO) ferroelectric devices exhibit numerous advantages in the internet of things (IoT) and edge computing due to their low-power operation, superior scalability, excellent CMOS compatibility, and light weight. However, limited by the brittleness of Si, defects are easily induced in ferroelectric thin films, leading to ferroelectricity degradation and a decrease in bending limit. Thus, a solution involving the addition of an ultra-thin Al buffer layer on the back of the device is proposed to enhance the bending limit and preserve ferroelectric performance. The device equipped with an Al buffer layer exhibits a 2Pr value of 29.5 μC/cm2 (25.1 μC/cm2) at an outward (inward) bending radius of 5 mm, and it experiences a decrease to 22.1 μC/cm2 (16.8 μC/cm2), even after 6000 bending cycles at a 12 mm outward (inward) radius. This outstanding performance can be attributed to the additional stress generated by the dense Al buffer layer, which is transmitted to the Si substrate and reduces the bending stress on the Si substrate. Notably, the diminished bending stress leads to a reduced crack growth in ferroelectric devices. This work will be beneficial for the development of flexible Si-based ferroelectric devices with high durability, fatigue resistance, and functional mobility. Full article
Show Figures

Figure 1

15 pages, 5055 KiB  
Review
Impact of Structural Strain in Perovskite Epitaxial Thin Films on Their Functional Properties
by Florin Andrei, Maria Dinescu, Valentin Ion, Floriana Craciun, Ruxandra Birjega and Nicu Doinel Scarisoreanu
Crystals 2023, 13(12), 1686; https://doi.org/10.3390/cryst13121686 - 14 Dec 2023
Cited by 2 | Viewed by 2262
Abstract
The strain engineering effects induced by different means, e.g., the substrate lattice mismatch and/or chemical doping, on the functional properties of perovskite thin films have triggered interest in the use of these materials in different applications such as energy storage/generation or photonics. The [...] Read more.
The strain engineering effects induced by different means, e.g., the substrate lattice mismatch and/or chemical doping, on the functional properties of perovskite thin films have triggered interest in the use of these materials in different applications such as energy storage/generation or photonics. The effects of the film’s thickness and strain state of the structure for the lead-free perovskite ferrite-based materials (BiFeO3-BFO; Y-doped BiFeO3-BYFO; LaFeO3-LFO) on their functional properties are highlighted here. As was previously demonstrated, the dielectric properties of BFO epitaxial thin films are strongly affected by the film thickness and by the epitaxial strain induced by the lattice mismatch between substrate and film. Doping the BiFeO3 ferroelectric perovskite with rare-earth elements or inducing a high level of structural deformation into the crystalline structure of LaFeO3 thin films have allowed the tuning of functional properties of these materials, such as dielectric, optical or photocatalytic ones. These changes are presented in relation to the appearance of complex ensembles of nanoscale phase/nanodomains within the epitaxial films due to strain engineering. However, it is a challenge to maintain the same level of epitaxial strain present in ultrathin films (<10 nm) and to preserve or tune the positive effects in films of thicknesses usually higher than 30 nm. Full article
(This article belongs to the Special Issue Ferroelectric Materials)
Show Figures

Figure 1

10 pages, 7054 KiB  
Communication
Improved Breakdown Strength and Restrained Leakage Current of Sandwich Structure Ferroelectric Polymers Utilizing Ultra-Thin Al2O3 Nanosheets
by Yi Zeng, Hao Pan, Zhonghui Shen, Yang Shen and Zhifu Liu
Nanomaterials 2023, 13(21), 2836; https://doi.org/10.3390/nano13212836 - 26 Oct 2023
Cited by 3 | Viewed by 1663
Abstract
Flexible capacity applications demand a large energy storage density and high breakdown electric field strength of flexible films. Here, P(VDF-HFP) with ultra-thin Al2O3 nanosheet composite films were designed and fabricated through an electrospinning process followed by hot-pressing into a sandwich [...] Read more.
Flexible capacity applications demand a large energy storage density and high breakdown electric field strength of flexible films. Here, P(VDF-HFP) with ultra-thin Al2O3 nanosheet composite films were designed and fabricated through an electrospinning process followed by hot-pressing into a sandwich structure. The results show that the insulating ultra-thin Al2O3 nanosheets and the sandwich structure can enhance the composites’ breakdown strength (by 24.8%) and energy density (by 30.6%) compared to the P(VDF-HFP) polymer matrix. An energy storage density of 23.5 J/cm3 at the ultrahigh breakdown strength of 740 kV/mm can be therefore realized. The insulating test and phase-field simulation results reveal that ultra-thin nanosheets insulating buffer layers can reduce the leakage current in composites; thus, it affects the electric field spatial distribution to enhance breakdown strength. Our research provides a feasible method to increase the breakdown strength of ferroelectric polymers, which is comparable to those of non-ferroelectric polymers. Full article
Show Figures

Figure 1

12 pages, 3260 KiB  
Article
Wake-Up Free Ultrathin Ferroelectric Hf0.5Zr0.5O2 Films
by Anastasia Chouprik, Vitalii Mikheev, Evgeny Korostylev, Maxim Kozodaev, Sergey Zarubin, Denis Vinnik, Svetlana Gudkova and Dmitrii Negrov
Nanomaterials 2023, 13(21), 2825; https://doi.org/10.3390/nano13212825 - 25 Oct 2023
Cited by 7 | Viewed by 3474
Abstract
The development of the new generation of non-volatile high-density ferroelectric memory requires the utilization of ultrathin ferroelectric films. The most promising candidates are polycrystalline-doped HfO2 films because of their perfect compatibility with silicon technology and excellent ferroelectric properties. However, the remanent polarization [...] Read more.
The development of the new generation of non-volatile high-density ferroelectric memory requires the utilization of ultrathin ferroelectric films. The most promising candidates are polycrystalline-doped HfO2 films because of their perfect compatibility with silicon technology and excellent ferroelectric properties. However, the remanent polarization of HfO2 films is known to degrade when their thickness is reduced to a few nanometers. One of the reasons for this phenomenon is the wake-up effect, which is more pronounced in the thinner the film. For the ultrathin HfO2 films, it can be so long-lasting that degradation occurs even before the wake-up procedure is completed. In this work, an approach to suppress the wake-up in ultrathin Hf0.5Zr0.5O2 films is elucidated. By engineering internal built-in fields in an as-prepared structure, a stable ferroelectricity without a wake-up effect is induced in 4.5 nm thick Hf0.5Zr0.5O2 film. By analysis of the functional characteristics of ferroelectric structures with a different pattern of internal built-in fields and their comparison with the results of in situ piezoresponse force microscopy and synchrotron X-ray micro-diffraction, the important role of built-in fields in ferroelectricity of ultrathin Hf0.5Zr0.5O2 films as well as the origin of stable ferroelectric properties is revealed. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

8 pages, 1578 KiB  
Article
Alternating Current Field Effects in Atomically Ferroelectric Ultrathin Films
by Jinming Cao, Mengxia Liu, Zhonglei Liu, Hua Hou and Yuhong Zhao
Materials 2022, 15(7), 2506; https://doi.org/10.3390/ma15072506 - 29 Mar 2022
Cited by 6 | Viewed by 2028
Abstract
In this work, atomically K1−xNaxNbO3 thin films are taken as examples to investigate the reversible and irreversible effects in a horizon plane, i.e., the changes of domain structures, phase states, free energies, etc., under a z-axis alternating current [...] Read more.
In this work, atomically K1−xNaxNbO3 thin films are taken as examples to investigate the reversible and irreversible effects in a horizon plane, i.e., the changes of domain structures, phase states, free energies, etc., under a z-axis alternating current field via a phase-field method. The simulation results show the driving forces during the charging and discharging process, where there is a variation for the angles of the domain walls from 180° to 90° (and then an increase to 135°), which are the external electric field and domain wall evolution, respectively. As for the phase states, there is a transformation between the orthorhombic and rhombohedral phases which can’t be explained by the traditional polarization switching theory. This work provides a reasonable understanding of the alternating current field effect, which is essential in information and energy storage. Full article
(This article belongs to the Topic Perovskites for Energy Applications)
Show Figures

Graphical abstract

9 pages, 2334 KiB  
Article
Enhanced Piezoresponse and Dielectric Properties for Ba1-XSrXTiO3 Composition Ultrathin Films by the High-Throughput Method
by Nana Zhang, Di Wang, Jie Wang, Hong Fang, Bin He, Jinrui Guo, Yue Han, Peng Zhang, Chaoqun Shi, Yanan Chen, Qixiang Wang, Miaojuan Ren and Weiming Lü
Coatings 2021, 11(12), 1491; https://doi.org/10.3390/coatings11121491 - 3 Dec 2021
Cited by 3 | Viewed by 2695
Abstract
The stacked single-unit cell Ba1-xSrxTiO3 (BSTO) thin film designed by the high-throughput method is fabricated by layer-by-layer deposition by laser molecular beam epitaxy, and its ferroelectric and dielectric characteristics as a function of Sr concentration are comprehensively investigated. [...] Read more.
The stacked single-unit cell Ba1-xSrxTiO3 (BSTO) thin film designed by the high-throughput method is fabricated by layer-by-layer deposition by laser molecular beam epitaxy, and its ferroelectric and dielectric characteristics as a function of Sr concentration are comprehensively investigated. The permittivity of BSTO exhibits a monotonous increase by Sr with a plateau in the region of 14% < Sr < 85%. Meanwhile, at the low Sr doping regime, the piezoelectric response has been discovered, and the maximum piezoresponse and d33 can reach approximately 139.05 pm and 88 pm/V once an appropriate Ba/Sr ratio is formed, exhibiting a coexistence of a dielectric property and giant piezoresponse. This effective piezoelectric constant d33 value is significantly larger than the conventional chemical doping scenarios, suggesting that the intra-plane interaction is crucial for designing future promising dielectric and ferroelectric thin films via high-throughput technologies. Full article
(This article belongs to the Special Issue Ferroelectric Thin Films and Composites)
Show Figures

Figure 1

8 pages, 2068 KiB  
Communication
The Influence Mechanism of Temperature and Storage Period on Polarization Properties of Poly (Vinylidene Fluoride–Trifluoroethylene) Ultrathin Films
by Xingjia Li, Zhi Shi, Xiuli Zhang, Xiangjian Meng, Zhiqiang Huang and Dandan Zhang
Membranes 2021, 11(5), 301; https://doi.org/10.3390/membranes11050301 - 21 Apr 2021
Cited by 2 | Viewed by 2363
Abstract
The effect of testing temperature and storage period on the polarization fatigue properties of poly (vinylidene fluoride-trifluoroethylene) (P(VDF–TrFE)) ultrathin film devices were investigated. The experimental results show that, even after stored in air for 150 days, the relative remanent polarization ( [...] Read more.
The effect of testing temperature and storage period on the polarization fatigue properties of poly (vinylidene fluoride-trifluoroethylene) (P(VDF–TrFE)) ultrathin film devices were investigated. The experimental results show that, even after stored in air for 150 days, the relative remanent polarization (Pr/Pr(0)) of P(VDF–TrFE) of ultrathin films can keep at a relatively high level of 0.80 at 25 °C and 0.70 at 60 °C. To account for this result, a hydrogen fluoride (HF) formation inhibition mechanism was proposed, which correlated the testing temperature and the storage period with the microstructure of P(VDF–TrFE) molecular chain. Moreover, a theoretical model was constructed to describe the polarization fatigue evolution of P(VDF–TrFE) samples. Full article
(This article belongs to the Special Issue Application of Ferroelectric-Polymer Composites)
Show Figures

Figure 1

13 pages, 3357 KiB  
Review
Polarization Switching in 2D Nanoscale Ferroelectrics: Computer Simulation and Experimental Data Analysis
by Ekaterina Paramonova, Vladimir Bystrov, Xiangjian Meng, Hong Shen, Jianlu Wang and Vladimir Fridkin
Nanomaterials 2020, 10(9), 1841; https://doi.org/10.3390/nano10091841 - 15 Sep 2020
Cited by 6 | Viewed by 3691
Abstract
The polarization switching kinetics of nanosized ferroelectric crystals and the transition between homogeneous and domain switching in nanoscale ferroelectric films are considered. Homogeneous switching according to the Ginzburg-Landau-Devonshire (LGD) theory is possible only in two-dimensional (2D) ferroelectrics. The main condition for the applicability [...] Read more.
The polarization switching kinetics of nanosized ferroelectric crystals and the transition between homogeneous and domain switching in nanoscale ferroelectric films are considered. Homogeneous switching according to the Ginzburg-Landau-Devonshire (LGD) theory is possible only in two-dimensional (2D) ferroelectrics. The main condition for the applicability of the LGD theory in such systems is its homogeneity along the polarization switching direction. A review is given of the experimental results for two-dimensional (2D) films of a ferroelectric polymer, nanosized barium titanate nanofilms, and hafnium oxide-based films. For ultrathin 2D ferroelectric polymer films, the results are confirmed by first-principle calculations. Fitting of the transition region from homogeneous to domain switching by sigmoidal Boltzmann functions was carried out. Boltzmann function fitting data enabled us to correctly estimate the region sizes of the homogeneous switching in which the LGD theory is valid. These sizes contain several lattice constants or monolayers of a nanosized ferroelectrics. Full article
(This article belongs to the Special Issue Simulation and Modeling of Nanomaterials)
Show Figures

Figure 1

15 pages, 2544 KiB  
Article
Ferroelectricity in Si-Doped Hafnia: Probing Challenges in Absence of Screening Charges
by Umberto Celano, Andres Gomez, Paola Piedimonte, Sabine Neumayer, Liam Collins, Mihaela Popovici, Karine Florent, Sean R. C. McMitchell, Paola Favia, Chris Drijbooms, Hugo Bender, Kristof Paredis, Luca Di Piazza, Stephen Jesse, Jan Van Houdt and Paul van der Heide
Nanomaterials 2020, 10(8), 1576; https://doi.org/10.3390/nano10081576 - 11 Aug 2020
Cited by 19 | Viewed by 4517
Abstract
The ability to develop ferroelectric materials using binary oxides is critical to enable novel low-power, high-density non-volatile memory and fast switching logic. The discovery of ferroelectricity in hafnia-based thin films, has focused the hopes of the community on this class of materials to [...] Read more.
The ability to develop ferroelectric materials using binary oxides is critical to enable novel low-power, high-density non-volatile memory and fast switching logic. The discovery of ferroelectricity in hafnia-based thin films, has focused the hopes of the community on this class of materials to overcome the existing problems of perovskite-based integrated ferroelectrics. However, both the control of ferroelectricity in doped-HfO2 and the direct characterization at the nanoscale of ferroelectric phenomena, are increasingly difficult to achieve. The main limitations are imposed by the inherent intertwining of ferroelectric and dielectric properties, the role of strain, interfaces and electric field-mediated phase, and polarization changes. In this work, using Si-doped HfO2 as a material system, we performed a correlative study with four scanning probe techniques for the local sensing of intrinsic ferroelectricity on the oxide surface. Putting each technique in perspective, we demonstrated that different origins of spatially resolved contrast can be obtained, thus highlighting possible crosstalk not originated by a genuine ferroelectric response. By leveraging the strength of each method, we showed how intrinsic processes in ultrathin dielectrics, i.e., electronic leakage, existence and generation of energy states, charge trapping (de-trapping) phenomena, and electrochemical effects, can influence the sensed response. We then proceeded to initiate hysteresis loops by means of tip-induced spectroscopic cycling (i.e., “wake-up”), thus observing the onset of oxide degradation processes associated with this step. Finally, direct piezoelectric effects were studied using the high pressure resulting from the probe’s confinement, noticing the absence of a net time-invariant piezo-generated charge. Our results are critical in providing a general framework of interpretation for multiple nanoscale processes impacting ferroelectricity in doped-hafnia and strategies for sensing it. Full article
Show Figures

Graphical abstract

11 pages, 4364 KiB  
Article
Modeling of Structure Effect for Ferroelectric Capacitor Based on Poly(vinylidene fluoride-trifluoroethylene) Ultrathin Films
by Long Li, Xiuli Zhang, Hongzhen Chen, Xiaohui Sun, Haidong Yuan and Haisheng Xu
Polymers 2018, 10(1), 6; https://doi.org/10.3390/polym10010006 - 22 Dec 2017
Cited by 8 | Viewed by 4574
Abstract
The characteristics of ferroelectric capacitors with poly(vinylidene fluoride-trifluoroethlene) (P(VDF-TrFE)) films have been studied at different structures of cell electrodes. It is suggested that the effect of electrode structures could induce changes of performance. Remarkably, cells with line electrodes display a better polarization and [...] Read more.
The characteristics of ferroelectric capacitors with poly(vinylidene fluoride-trifluoroethlene) (P(VDF-TrFE)) films have been studied at different structures of cell electrodes. It is suggested that the effect of electrode structures could induce changes of performance. Remarkably, cells with line electrodes display a better polarization and fatigue resistance than those with flat electrodes. For P(VDF-TrFE) ultrathin films with different electrode structures, the models of charge compensation mechanism for depolarization field and domain fatigue decomposition are used to explain the effect of electrode structure. Furthermore, the driving voltage based on normal speed-functionality is designed, and the testing results show that the line electrode structure could induce a robust switching, which is determined by the free charges concentration in active layer. These findings provide an effective route to design the optimum structure for a ferroelectric capacitor based on P(VDF-TrFE) copolymer ultrathin film. Full article
(This article belongs to the Special Issue Fluorinated Polymers)
Show Figures

Figure 1

67 pages, 2629 KiB  
Review
Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review
by Jianyi Liu, Weijin Chen, Biao Wang and Yue Zheng
Materials 2014, 7(9), 6502-6568; https://doi.org/10.3390/ma7096502 - 12 Sep 2014
Cited by 19 | Viewed by 17934
Abstract
This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite [...] Read more.
This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc.) that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads. Full article
(This article belongs to the Special Issue Ultra Thin Ferroic Materials)
Show Figures

Figure 1

109 pages, 3965 KiB  
Review
Ultrathin Ferroelectric Films: Growth, Characterization, Physics and Applications
by Ying Wang, Weijin Chen, Biao Wang and Yue Zheng
Materials 2014, 7(9), 6377-6485; https://doi.org/10.3390/ma7096377 - 11 Sep 2014
Cited by 70 | Viewed by 23727
Abstract
Ultrathin ferroelectric films are of increasing interests these years, owing to the need of device miniaturization and their wide spectrum of appealing properties. Recent advanced deposition methods and characterization techniques have largely broadened the scope of experimental researches of ultrathin ferroelectric films, pushing [...] Read more.
Ultrathin ferroelectric films are of increasing interests these years, owing to the need of device miniaturization and their wide spectrum of appealing properties. Recent advanced deposition methods and characterization techniques have largely broadened the scope of experimental researches of ultrathin ferroelectric films, pushing intensive property study and promising device applications. This review aims to cover state-of-the-art experimental works of ultrathin ferroelectric films, with a comprehensive survey of growth methods, characterization techniques, important phenomena and properties, as well as device applications. The strongest emphasis is on those aspects intimately related to the unique phenomena and physics of ultrathin ferroelectric films. Prospects and challenges of this field also have been highlighted. Full article
(This article belongs to the Special Issue Ultra Thin Ferroic Materials)
Show Figures

Figure 1

Back to TopTop