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Abstract: Flexible capacity applications demand a large energy storage density and high breakdown
electric field strength of flexible films. Here, P(VDF-HFP) with ultra-thin Al2O3 nanosheet composite
films were designed and fabricated through an electrospinning process followed by hot-pressing
into a sandwich structure. The results show that the insulating ultra-thin Al2O3 nanosheets and the
sandwich structure can enhance the composites’ breakdown strength (by 24.8%) and energy density
(by 30.6%) compared to the P(VDF-HFP) polymer matrix. An energy storage density of 23.5 J/cm3 at
the ultrahigh breakdown strength of 740 kV/mm can be therefore realized. The insulating test and
phase-field simulation results reveal that ultra-thin nanosheets insulating buffer layers can reduce
the leakage current in composites; thus, it affects the electric field spatial distribution to enhance
breakdown strength. Our research provides a feasible method to increase the breakdown strength of
ferroelectric polymers, which is comparable to those of non-ferroelectric polymers.

Keywords: nanosheet; Al2O3; P(VDF-HFP); breakdown strength; leakage

1. Introduction

Low-cost electronic and power systems tend to use dielectric capacitive polymers
with lightweight, low-cost, and high-energy storage density [1–3]. Generally, a dielectric
material’s energy density (Ue) is determined by the electric displacement (D) upon an
applied electric field (E), which can be illustrated as Ue =

∫ 0
Dmax

EdD [4]. Therefore, im-
proved D and E can increase energy density in dielectric capacitive polymers. Moreover, a
moderate permittivity is needed to refrain from the early electric displacement saturation
at a field much lower than the breakdown electric field [1]. Generally, dielectric materials
of capacitors can be categorized as inorganics (bulk or film ceramics) and organics (poly-
mer). Inorganics can deliver a relatively higher energy efficiency and energy density [5–9].
However, their low breakdown strength and non-flexible properties limited the application
field. Organics, on the contrary, represent lower cost and easier fabrication on a large scale,
which makes them more commonly used in commercial applications.

The commercially available polymer film capacitors, i.e., biaxially oriented polypropy-
lene (BOPP) as a non-polar polymer, usually possess high breakdown strengths over
700 MV/m but low dielectric constants (under 5 for BOPP); thus, it has low energy den-
sities of 1∼2 J/cm3 [10,11]. Contrary to non-polar polymers, polar polymers such as
ferroelectric-based polymers (e.g., poly (vinylidene difluoride), PVDF) usually have high
energy density (>10). However, ferroelectric polymers’ C-F bonds have strong orientation
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polarization, which causes low breakdown strength in polymers [12]. To improve the
breakdown strength, energy storage efficiency, dielectric permittivity, and capacitive energy
density, polar polymers are extensively investigated with organic blends [13,14], multilayer
design [15,16] or inorganic fillers of different dimensions [2,17–19], such as nanoparticles
and quantum dots (0D) [20–25], nanofibers, nanorod array (one-dimensional, 1D) [26–29],
as well as nanoplates and nanosheets (two-dimensional, 2D) [30–34].

Polymer matrices with nanofillers usually have an excellent overall performance;
therefore, this strategy has been used to improve the composites’ energy storage properties.
However, the electric field distribution is inhomogeneous in some regions, such as when
electric field aggregation in the electric field direction at nanoparticles’ shoulders occurs.
When the breakdown region comes into contact with nanoparticles, it has to detour around
the nanoparticles to go forward. Consequently, the electric field breakdown strength of
the polymer matrix with nanoparticles is low [35]. For the above reasons, in our previous
study, the ferroelectric polymer matrix obtained excellent energy storage performance after
switching to nanosheets as an alternative to nanoparticles [28].

Two-dimensional nanosheets such as Boron Nitride (BN), clay, TiO2, NaNbO3, and
ZrO2 et al. [30–34] are usually used in nanocomposites to improve the dielectric properties
and storage density. Alumina can also be used to regulate the dielectric properties of mate-
rials [36]. However, it is rather difficult to obtain few-layer or single-layer 2D nanosheets,
and the complicated processing procedure (such as liquid-phase exfoliation) is limited in
practical applications.

Here, we demonstrate an ultra-thin 2D insulating material, Al2O3 nanosheets, which
can be achieved through a simple method with a hydrothermal process instead of a com-
plicated peeling strategy. It is revealed that the incorporation of the 2D Al2O3 nanosheets,
combined with structure modulation, can remarkably affect ferroelectric-based polymers’
electric field spatial distribution. Therefore, remarkable improvements in the breakdown
strength and energy density of composites are achieved.

2. Experiment
2.1. Preparation of Samples

Figure 1 shows the preparation process diagram of ultra-thin Al2O3 nanosheets (2D-
Al2O3) and P(VDF-HFP)/2D-Al2O3 nanocomposites. Firstly, AlCl3·6H2O, NaOH, NH3·OH
(Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) were separately placed in
deionized water in a concentration of 1 M solution(A); then the NaOH and NH3·OH
mixed solution was dropped slowly into A solution until the pH became over 8, and then
it was transferred to a reactor with Teflon lining. The reactor was placed in an oven at
200 ◦C for over 10 h; after the reaction, the reactor was cooled naturally, and the precipitate
was washed with deionized water and ethanol repeatedly. Then, the precipitate was
dried, obtaining the ultra-thin pre-nanosheet powders, which were calcined at 700 ◦C
for 1 h, obtaining ultra-thin Al2O3 nanosheets. The structure of the calcined nanosheets
is very stable because it forms a gamma phase of Al2O3 (Figure 2 XRD images of 2D-
Al2O3 nanosheets).
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Figure 2. (a) HRTEM images of 2D-Al2O3 nanosheets; (b) cross-sectional SEM images of P(VDF-
HFP)/2D-Al2O3 nanocomposites; and (c) XRD images of 2D-Al2O3 nanosheets.

Secondly, Al2O3 nanosheet powders were dispersed in N,N-dimethylformamide
(DMF) and acetone (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China). Stirring
the mixture over 12 h makes the mixture homogeneous and stable. The Al2O3 nanosheets
and P(VDF-HFP) (with 10 wt% HFP, Kynar Flex 2801, Arkema, Colombes, France) were
dispersed into N,N-dimethylformamide (DMF); the mixture was stirred over 15 h for
homogeneousness, and then the precursor sol was produced, which was used for the next
electrospinning process. The viscosity of the sol was regulated by P(VDF-HFP), and then
the sol was placed in the injector; the electrospinning process was under 1.3 kV cm−1

electric field. After electrospinning, these electrospun fibers were layered by sandwich
structure to the next hot-pressing process. The temperature of the hot-pressing process
is 200 ◦C, 30 min. The last process is reheating the composites to 240 ◦C (for 7 min) and
quenching them in 0 ◦C water. All the preparation processes are repeated more than three
times to ensure the repeatability of the process.

A series of sandwich structures in P(VDF-HFP)/2D-Al2O3 nanocomposites are pre-
pared by the electrospinning process; the trilayered nanocomposites are named “×0×”.
“×” is the volume fraction of 2D-Al2O3 nanosheets layer, and “0” is the pure P(VDF-HFP)
layer. For example, “1-0-1” refers to trilayered films: 1 vol.% 2D-Al2O3 nanosheet layers
are in the outer layer, and a pure P(VDF-HFP) layer is in the middle layer.

2.2. Characterization

The microstructure of Al2O3 nanosheets was characterized by an X-ray diffractome-
ter (XRD, D8 Advance, Bruker, Mannheim, Germany) and high-resolution transmission
electron microscopy (HRTEM, JEOL2011, JEOL, Akishima, Japan). The nanocomposites
were characterized by scanning electron microscopy (SEM, ZEISS MERLIN compact, ZEISS,
Jena, Germany).

For the measurements of dielectric properties, copper electrodes (2.5 mm in diameter
and 50 nm in thickness) were deposited on top of the nanocomposites as the top electrodes,
and aluminum foil was placed at the bottom electrodes. This research used an HP 4294A
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precision impedance analyzer (Agilent Technologies, Inc., Santa Clara, CA, USA) to measure
the nanocomposites’ dielectric properties at room temperature; the measurement frequency
ranged from 102 to 107 Hz. A Premier II ferroelectric test system (Radiant Technologies,
Inc., Albuquerque, NM, USA) was used to measure samples’ electric displacements-electric
field (D-E) loops at 10 Hz. Samples’ electric field breakdown strength was measured
by the Dielectric Withstand Voltage Test (Beijing Electro-Mechanical Research Institute
Supesvoltage Technique, Beijing, China); the current limitation parameter was 5 mA, and
the ramping rate was 200 V/s. Each composite film includes over 30 tested points to achieve
repeatability of properties. The defects introduced during sputtering copper electrodes
or the preparation of composites will cause low properties of composites; however, this
probability is approximately less than 5 percent.

2.3. Model of Phase-Field

This research uses a phase-field model; its phase-field variable η (r, t) is continuous.
This phase-field variable depends on time and space [35]; therefore, it can be described
as the P(VDF-HFP)/2D-Al2O3 nanocomposites’ electrostatic damage process. When the
phase-field variable is “1”, it indicates the breakdown region; when it is “0”, it indicates the
non-breakdown region. Between these two regions, there is a transition region, which is
the interface region. Because sandwich structure P(VDF-HFP)/2D-Al2O3 nanocomposites
is a dielectric inhomogeneous system, its total free energy should include the electric field,
the interface, and the phase separation synergistic contributions. It can be written as

F =
∫

V

[
fsep(η(r)) +

1
2

γ|∇η(r)|2 + felec(r)
]

dV (1)

Sandwich structure P(VDF-HFP)/2D-Al2O3 nanocomposites’ breakdown phase evo-
lution process is simulated by a modified Allen–Cahn equation:

∂η(r, t)
∂t

= −L0H( felec − fcritical)

[
∂ fsep(η)

∂η(r, t)
− γ∇2η(r, t) +

∂ felec(r)
∂η(r, t)

]
(2)

where L0 is the kinetic coefficient and relates to the P(VDF-HFP)/2D-Al2O3 nanocomposites’
interface mobility. H(f elec − f critical) is the Heaviside unit step function (H(f elec < f critical)
= 0 and H(f elec > f critical) = 1). f critical is a material constant that depends on position; it
relates to the maximal energy density of each component in the P(VDF-HFP)/2D-Al2O3
nanocomposites.

3. Results and Discussion

Here, our work introduces other nanosheets (2D-Al2O3 nanosheets) with a diameter
of less than 100 nm than has ever been reported and are used to replace nanoparticles as
the insulating fillers in nanocomposites, studying the effect of 2D-Al2O3 nanosheets on the
electric field distribution in sandwich structure P(VDF-HFP)/2D-Al2O3 nanocomposites.
Figure 2a,c show the microstructure and X-ray diffraction (XRD) of 2D-Al2O3 nanosheets
and high-resolution transmission electron microscopy (HRTEM). From Figure 2a, the
nanosheets are well crystallized with a uniform morphology, and their crystal size mainly
distributes under 100 nm.

The image of the trilayered P(VDF-HFP)/2D-Al2O3 nanocomposites’ microstructure
cross-section is shown in Figure 2b. H is the thickness of the trilayered film, which is about
12.5 µm, and h is the thickness of the P(VDF-HFP)/2D-Al2O3 layer, which is about 1.25 µm.
It shows the homogeneity of P(VDF-HFP)/2D-Al2O3 nanocomposites in different layers.
Meanwhile, the interface between layers is without structure defects, for instance, voids and
pores. The above results mean that the optimized sandwich structure preparation process
has greatly improved the quality of P(VDF-HFP)/2D-Al2O3 nanocomposites, thereby
providing a good foundation for improving the properties of dielectric and energy storage.
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Ferroelectric polymer matrix P(VDF-HFP) has a relatively high electric field breakdown
strength, while it has a good open circuit breakdown property. Hence, it has been potentially
used as a dielectric for power capacity. Aluminum oxide is a fine, favorable insulating material;
therefore, it has been commonly used in capacity polymers as a kind of dielectric filler. To
sum up, in this work, sandwich structure P(VDF-HFP)/2D-Al2O3 nanocomposites’ energy
storage properties should include the electric field, the interface, and the phase separation
between the P(VDF-HFP) and aluminum oxide synergistic contributions.

Usually, the energy storage performances are multiply determined by insulating prop-
erties, such as capacitances (Figure 3a), dielectric loss (tanδ) (Figure 3b), and breakdown
strength (Figure 4). As shown in Figure 3, the introduction of 2D-Al2O3 nanosheets into
the ferroelectric polymer matrix can maintain relatively high insulating performance but
cannot restrain the dissipation occurring at high frequency, which is mainly caused by the
resonance of the ferroelectric polymer matrix.
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Figure 4 shows the comparison of ferroelectric and energy storage performances be-
tween sandwich structure P(VDF-HFP)/2D-Al2O3 nanocomposites and the P(VDF-HFP)
matrix under their breakdown electric fields. However, due to the intrinsic electric polar-
ization of P(VDF-HFP), it only bears restricted energy density. In this work, the sandwich



Nanomaterials 2023, 13, 2836 6 of 10

structure of ×0× nanocomposites significantly enhanced the electric field strength and
electric displacement of the ferroelectric polymer matrix. It is calculated that the energy
density of ×0× nanocomposites is always higher than that of the P(VDF-HFP) polymer
under the breakdown electric field. The energy density of P(VDF-HFP) is about 18 J/cm3

at 600 kV/mm, while the energy density of 3-0-3 nanocomposites is about 23.5 J/cm3 at
over 700 kV/mm. The higher energy density of 3-0-3 nanocomposites is attributed to its
higher breakdown strength (Eb).

For a more detailed comparison between ×0× trilayered nanocomposites, P(VDF-
HFP), and other references reporting ferroelectric composites’ energy storage properties,
Figure 5 itemizes their discrepancy in the electric field breakdown strength and discharged
energy density. Obviously, all ×0× nanocomposites have outstanding properties in the
electric field breakdown strength and discharged energy density.
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Figure 5. Comparisons between (a) breakdown strength and (b) discharged energy density of ×0×
nanocomposites, P(VDF-HFP) matrix, and other nanocomposites [23,24,26,30].

The 3-0-3 nanocomposite’s electric field breakdown strength increased by 24.8% over
that of pure P(VDF-HFP) film. The discharged energy density of it is 30.6% higher than
that of the pure P(VDF-HFP) film. Both increased breakdown strength and relatively lower
energy loss of the ×0× nanocomposites cause an increase in discharged storage density.

To further study which factor affects the efficiency of ×0× nanocomposites, we com-
pare the residual polarization values of×0× nanocomposites with field strength in Figure 6.
All the nanocomposites have a low remnant displacement of <0.5 µC cm−2 until the electric
fields increase to 200 kV/mm because it did not have time to obtain a phase transforma-
tion in P(VDF-HFP) before this electric field. It also indicates that the loss is lower when
there is low residual polarization at high field strength. When the electric fields rise over
200 kV/cm, field-induced phase transformation occurs, the residual polarization values
dramatically grow, and it tends towards stability over 500 kV/cm. It can also be seen
from Figure 6 that at 200~500 kV/mm, the residual polarization values of 3-0-3 are slightly
lower than in other samples. This phenomenon is relative to the reduction in ferroelectric
loss, which corresponds to the polymer’s decreased loss when the insulating nanosheets
(2D-Al2O3) are well mixed into polymers.
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To sum up, the ×0× nanocomposites’ energy storage density is closely related to their
electric field breakdown strength. Normally, the electric field breakdown strength depends
on many parameters, and the electrical tree is one of the main causes [37,38]. Electrical
trees consist of many gas channels; these gas channels are caused by many factors, for
instance, structure defects (voids and pores), partial discharge activity, protrusions from
the electrodes, conducting particles, and so on [39]. These defects can be suppressed or
eliminated by improving the preparation process of nanocomposites. Then, the insulation
property is improved to enhance the energy storage density of ×0× nanocomposites.

Here, the ×0× structure is designed to restrain the nanocomposites’ breakdown effect,
which is evidenced by measuring the leakage current at high field strengths (Figure 7).
When the field strength is above 200 kV/mm, field-induced phase transformation occurs,
and the leakage current of pure P(VDF-HFP) is gradually higher than 2 × 10−6 A/cm2.
When a small volume ratio of 2D-Al2O3 nanosheets is added into pure P(VDF-HFP),
a noteworthy feature of ×0× nanocomposites is that the leakage current values tend
to decrease, which indicates that the good insulation feature of ×0× nanocomposites
come from the 2D-Al2O3 nanosheets and the sandwich structure synergistic contributions.
In previous research studies, large contents of dielectric nanoparticles were mixed into
polymer matrices with the aim of increasing the polarization or breakdown strength [40].
Nevertheless, nanocomposites’ energy storage properties decreased by the large contents
of nanoparticles exceeding the permeation threshold [41]. The interesting thing in this
work is that when changing the spatial distribution of nanosheets to the interfacial region,
the content of nanosheets will be much lower than the percolation threshold, while the
nanocomposites keep good properties.
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In addition to the insulating test, we also conducted a simulation of the×0× nanocom-
posites’ spatial distribution of the electric field. As shown in Figure 8, it provides a deeper
understanding of the origin of suppressed leakage in nanocomposites. Nanocomposites’
microstructure significantly impacts the breakdown strength and breakdown path [35].
The charge carriers will have a longer scattering path when they encounter nanosheets; the
enhanced electrical performance of nanocomposites is related to those scattered charges
and homocharges (which are generated at the electrodes) [42,43]. The function of the ho-
mocharge is to block the further charge injection; therefore, the voltage is increased [43,44].
The simulation results revealed that 2D-Al2O3 nanosheets block the flow of electric current
between the electrodes. Because of their large isolating interfacial areas that create a steric
hindrance effect against the growth of electrical trees, the ×0× nanocomposite layers near
the electrode act as buffer layers to bear the electric field. This leads to not only high
breakdown strengths but also the suppression of leakage current density (i.e., conduction
loss) at high fields. These two improvements synergistically contribute to the high energy
performance of these nanocomposites.
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4. Conclusions

In summary, this work demonstrates the feasibility of designing ultra-thin insulating
nanosheets and artificial sandwich structures for high-performance dielectric materials.
P(VDF-HFP) as a polar polymer with a small addition (1–7 vol%) of 2D-Al2O3 nanosheets
as the buffer layers could dramatically increase the electric field breakdown strength by
24.8%, which is about 740 kV/mm, while the energy density is improved by 30.6%, which
is about 23.5 J/cm3 in P(VDF-HFP)/2D-Al2O3 nanocomposite (with 3 vol.% nanosheets).
This work not only proposes new choices for modulating energy storage properties in polar
composites but also demonstrates the potential of polar polymer dielectrics to realize high
electric breakdown strength comparable to those of non-polar polymers, given that a wide
variety of nanosheets are available for nanostructure modulating. The further directions
of the research are to explore the mechanism effect of different nanosheets and multilayer
structures on P(VDF-HFP) nanocomposite.
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