Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = ultrasound-mediated blood-brain barrier disruption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 7549 KiB  
Article
Focused Ultrasound-Mediated Disruption of the Blood–Brain Barrier for AAV9 Delivery in a Mouse Model of Huntington’s Disease
by Bernie S. Owusu-Yaw, Yongzhi Zhang, Lilyan Garrett, Alvin Yao, Kai Shing, Ana Rita Batista, Miguel Sena-Esteves, Jaymin Upadhyay, Kimberly Kegel-Gleason and Nick Todd
Pharmaceutics 2024, 16(6), 710; https://doi.org/10.3390/pharmaceutics16060710 - 24 May 2024
Cited by 3 | Viewed by 2448
Abstract
Huntington’s disease (HD) is a monogenic neurodegenerative disorder caused by a cytosine–adenine–guanine (CAG) trinucleotide repeat expansion in the HTT gene. There are no cures for HD, but the genetic basis of this disorder makes gene therapy a viable approach. Adeno-associated virus (AAV)-miRNA-based therapies [...] Read more.
Huntington’s disease (HD) is a monogenic neurodegenerative disorder caused by a cytosine–adenine–guanine (CAG) trinucleotide repeat expansion in the HTT gene. There are no cures for HD, but the genetic basis of this disorder makes gene therapy a viable approach. Adeno-associated virus (AAV)-miRNA-based therapies have been demonstrated to be effective in lowering HTT mRNA; however, the blood–brain barrier (BBB) poses a significant challenge for gene delivery to the brain. Delivery strategies include direct injections into the central nervous system, which are invasive and can result in poor diffusion of viral particles through the brain parenchyma. Focused ultrasound (FUS) is an alternative approach that can be used to non-invasively deliver AAVs by temporarily disrupting the BBB. Here, we investigate FUS-mediated delivery of a single-stranded AAV9 bearing a cDNA for GFP in 2-month-old wild-type mice and the zQ175 HD mouse model at 2-, 6-, and 12-months. FUS treatment improved AAV9 delivery for all mouse groups. The delivery efficacy was similar for all WT and HD groups, with the exception of the zQ175 12-month cohort, where we observed decreased GFP expression. Astrocytosis did not increase after FUS treatment, even within the zQ175 12-month group exhibiting higher baseline levels of GFAP expression. These findings demonstrate that FUS can be used to non-invasively deliver an AAV9-based gene therapy to targeted brain regions in a mouse model of Huntington’s disease. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

16 pages, 1087 KiB  
Review
Advances in Focused Ultrasound for the Treatment of Brain Tumors
by Rohan Rao, Anjali Patel, Kunal Hanchate, Eric Robinson, Aniela Edwards, Sanjit Shah, Dominique Higgins, Kevin J. Haworth, Brandon Lucke-Wold, Daniel Pomeranz Krummel and Soma Sengupta
Tomography 2023, 9(3), 1094-1109; https://doi.org/10.3390/tomography9030090 - 29 May 2023
Cited by 12 | Viewed by 5027
Abstract
Employing the full arsenal of therapeutics to treat brain tumors is limited by the relative impermeability of the blood–brain and blood–tumor barriers. In physiologic states, the blood–brain barrier serves a protective role by passively and actively excluding neurotoxic compounds; however, this functionality limits [...] Read more.
Employing the full arsenal of therapeutics to treat brain tumors is limited by the relative impermeability of the blood–brain and blood–tumor barriers. In physiologic states, the blood–brain barrier serves a protective role by passively and actively excluding neurotoxic compounds; however, this functionality limits the penetrance of therapeutics into the tumor microenvironment. Focused ultrasound technology provides a method for overcoming the blood–brain and blood–tumor barriers through ultrasound frequency to transiently permeabilize or disrupt these barriers. Concomitant delivery of therapeutics has allowed for previously impermeable agents to reach the tumor microenvironment. This review details the advances in focused ultrasound in both preclinical models and clinical studies, with a focus on its safety profile. We then turn towards future directions in focused ultrasound-mediated therapies for brain tumors. Full article
(This article belongs to the Special Issue Current Trends in Diagnostic and Therapeutic Imaging of Brain Tumors)
Show Figures

Figure 1

2 pages, 179 KiB  
Correction
Correction: Gandhi et al. Ultrasound-Mediated Blood–Brain Barrier Disruption for Drug Delivery: A Systematic Review of Protocols, Efficacy, and Safety Outcomes from Preclinical and Clinical Studies. Pharmaceutics 2022, 14, 833
by Kushan Gandhi, Anita Barzegar-Fallah, Ashik Banstola, Shakila B. Rizwan and John N. J. Reynolds
Pharmaceutics 2023, 15(1), 5; https://doi.org/10.3390/pharmaceutics15010005 - 20 Dec 2022
Cited by 3 | Viewed by 1287
Abstract
Error in Table [...] Full article
17 pages, 5608 KiB  
Article
Methylene Blue Delivery Mediated by Focused Ultrasound-Induced Blood–Brain Barrier Disruption Reduces Neural Damage and Amyloid-Beta Plaques by AQP-4 Upregulation
by Hyo Jin Choi, Mun Han, Byeongjin Jung, Yu-Ri Hong, Seulgi Shin, Sungsu Lim, Eun-Hee Lee, Yun Kyung Kim and Juyoung Park
Biomedicines 2022, 10(12), 3191; https://doi.org/10.3390/biomedicines10123191 - 8 Dec 2022
Cited by 6 | Viewed by 5093
Abstract
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease worldwide, causing progressive cognitive decline, memory impairment, and neurological deficits. Methylene blue (MB), an antioxidant, has emerged as a potential drug for the treatment of AD owing to its cognitive improvement and neuroprotective functions. [...] Read more.
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease worldwide, causing progressive cognitive decline, memory impairment, and neurological deficits. Methylene blue (MB), an antioxidant, has emerged as a potential drug for the treatment of AD owing to its cognitive improvement and neuroprotective functions. Despite the small molecular size of MB, which can cross the BBB, the therapeutic effective dosage using a BBB-permeable delivery system in a specific brain localization remains unclear. In this study, we presented magnetic resonance–guided focused ultrasound (MRgFUS) as a delivery system to enhance BBB permeability for the effective treatment of AD. MRgFUS using two ultrasound intensities (0.25 and 0.32 MPa) was used to intravenously deliver MB to the hippocampal region. Compared with treatment with 0.25 MPa FUS, treatment with 0.32 MPa FUS significantly enhanced MB brain accumulation. Deposition of amyloid-β (Aβ) plaques and neural cell damage was significantly reduced in 0.32 MPa FUS/MB-treated APP/PS1 mice. Furthermore, aquaporin-4 expression increased significantly in the 0.32 MPa FUS and 0.32 MPa FUS/MB groups without glial fibrillary acidic protein activation. The results from this study demonstrate that FUS improved MB delivery to the brain, and FUS/MB combination treatment reduced the number of Aβ plaques. This study revealed the potential of FUS-BBBD as an effective strategy to enhance the efficacy of therapeutic drugs for AD. Full article
Show Figures

Figure 1

12 pages, 1375 KiB  
Article
Regulation of P-glycoprotein and Breast Cancer Resistance Protein Expression Induced by Focused Ultrasound-Mediated Blood-Brain Barrier Disruption: A Pilot Study
by Allegra Conti, Francoise Geffroy, Hermes A. S. Kamimura, Anthony Novell, Nicolas Tournier, Sébastien Mériaux and Benoit Larrat
Int. J. Mol. Sci. 2022, 23(24), 15488; https://doi.org/10.3390/ijms232415488 - 7 Dec 2022
Cited by 11 | Viewed by 2212
Abstract
The blood-brain barrier (BBB) controls brain homeostasis; it is formed by vascular endothelial cells that are physically connected by tight junctions (TJs). The BBB expresses efflux transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), which limit the passage of substrate [...] Read more.
The blood-brain barrier (BBB) controls brain homeostasis; it is formed by vascular endothelial cells that are physically connected by tight junctions (TJs). The BBB expresses efflux transporters such as P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP), which limit the passage of substrate molecules from blood circulation to the brain. Focused ultrasound (FUS) with microbubbles can create a local and reversible detachment of the TJs. However, very little is known about the effect of FUS on the expression of efflux transporters. We investigated the in vivo effects of moderate acoustic pressures on both P-gp and BCRP expression for up to two weeks after sonication. Magnetic resonance-guided FUS was applied in the striatum of 12 rats. P-gp and BCRP expression were determined by immunohistochemistry at 1, 3, 7, and 14 days postFUS. Our results indicate that FUS-induced BBB opening is capable of (i) decreasing P-gp expression up to 3 days after sonication in both the treated and in the contralateral brain regions and is capable of (ii) overexpressing BCRP up to 7 days after FUS in the sonicated regions only. Our findings may help improve FUS-aided drug delivery strategies by considering both the mechanical effect on the TJs and the regulation of P-gp and BCRP. Full article
(This article belongs to the Special Issue Blood-Brain Barrier in CNS Injury and Repair 2022)
Show Figures

Figure 1

16 pages, 3629 KiB  
Article
Molecular Imaging of Ultrasound-Mediated Blood-Brain Barrier Disruption in a Mouse Orthotopic Glioblastoma Model
by Chiara Bastiancich, Samantha Fernandez, Florian Correard, Anthony Novell, Benoit Larrat, Benjamin Guillet and Marie-Anne Estève
Pharmaceutics 2022, 14(10), 2227; https://doi.org/10.3390/pharmaceutics14102227 - 19 Oct 2022
Cited by 4 | Viewed by 3506
Abstract
Glioblastoma (GBM) is an aggressive and malignant primary brain tumor. The blood-brain barrier (BBB) limits the therapeutic options available to tackle this incurable tumor. Transient disruption of the BBB by focused ultrasound (FUS) is a promising and safe approach to increase the brain [...] Read more.
Glioblastoma (GBM) is an aggressive and malignant primary brain tumor. The blood-brain barrier (BBB) limits the therapeutic options available to tackle this incurable tumor. Transient disruption of the BBB by focused ultrasound (FUS) is a promising and safe approach to increase the brain and tumor concentration of drugs administered systemically. Non-invasive, sensitive, and reliable imaging approaches are required to better understand the impact of FUS on the BBB and brain microenvironment. In this study, nuclear imaging (SPECT/CT and PET/CT) was used to quantify neuroinflammation 48 h post-FUS and estimate the influence of FUS on BBB opening and tumor growth in vivo. BBB disruptions were performed on healthy and GBM-bearing mice (U-87 MG xenograft orthotopic model). The BBB recovery kinetics were followed and quantified by [99mTc]Tc-DTPA SPECT/CT imaging at 0.5 h, 3 h and 24 h post-FUS. The absence of neuroinflammation was confirmed by [18F]FDG PET/CT imaging 48 h post-FUS. The presence of the tumor and its growth were evaluated by [68Ga]Ga-RGD2 PET/CT imaging and post-mortem histological analysis, showing that tumor growth was not influenced by FUS. In conclusion, molecular imaging can be used to evaluate the time frame for systemic treatment combined with transient BBB opening and to test its efficacy over time. Full article
Show Figures

Figure 1

25 pages, 5991 KiB  
Article
Perfluorocarbon Nanodroplets as Potential Nanocarriers for Brain Delivery Assisted by Focused Ultrasound-Mediated Blood–Brain Barrier Disruption
by Charlotte Bérard, Stéphane Desgranges, Noé Dumas, Anthony Novell, Benoit Larrat, Mourad Hamimed, Nicolas Taulier, Marie-Anne Estève, Florian Correard and Christiane Contino-Pépin
Pharmaceutics 2022, 14(7), 1498; https://doi.org/10.3390/pharmaceutics14071498 - 19 Jul 2022
Cited by 20 | Viewed by 3924
Abstract
The management of brain diseases remains a challenge, particularly because of the difficulty for drugs to cross the blood–brain barrier. Among strategies developed to improve drug delivery, nano-sized emulsions (i.e., nanoemulsions), employed as nanocarriers, have been described. Moreover, focused ultrasound-mediated blood–brain barrier disruption [...] Read more.
The management of brain diseases remains a challenge, particularly because of the difficulty for drugs to cross the blood–brain barrier. Among strategies developed to improve drug delivery, nano-sized emulsions (i.e., nanoemulsions), employed as nanocarriers, have been described. Moreover, focused ultrasound-mediated blood–brain barrier disruption using microbubbles is an attractive method to overcome this barrier, showing promising results in clinical trials. Therefore, nanoemulsions combined with this technology represent a real opportunity to bypass the constraints imposed by the blood–brain barrier and improve the treatment of brain diseases. In this work, a stable freeze-dried emulsion of perfluorooctyl bromide nanodroplets stabilized with home-made fluorinated surfactants able to carry hydrophobic agents is developed. This formulation is biocompatible and droplets composing the emulsion are internalized in multiple cell lines. After intravenous administration in mice, droplets are eliminated from the bloodstream in 24 h (blood half-life (t1/2) = 3.11 h) and no long-term toxicity is expected since they are completely excreted from mice’ bodies after 72 h. In addition, intracerebral accumulation of tagged droplets is safely and significantly increased after focused ultrasound-mediated blood–brain barrier disruption. Thus, the proposed nanoemulsion appears as a promising nanocarrier for a successful focused ultrasound-mediated brain delivery of hydrophobic agents. Full article
Show Figures

Figure 1

32 pages, 2338 KiB  
Systematic Review
Ultrasound-Mediated Blood–Brain Barrier Disruption for Drug Delivery: A Systematic Review of Protocols, Efficacy, and Safety Outcomes from Preclinical and Clinical Studies
by Kushan Gandhi, Anita Barzegar-Fallah, Ashik Banstola, Shakila B. Rizwan and John N. J. Reynolds
Pharmaceutics 2022, 14(4), 833; https://doi.org/10.3390/pharmaceutics14040833 - 11 Apr 2022
Cited by 56 | Viewed by 5387 | Correction
Abstract
Ultrasound-mediated blood–brain barrier (BBB) disruption has garnered focus as a method of delivering normally impenetrable drugs into the brain. Numerous studies have investigated this approach, and a diverse set of ultrasound parameters appear to influence the efficacy and safety of this approach. An [...] Read more.
Ultrasound-mediated blood–brain barrier (BBB) disruption has garnered focus as a method of delivering normally impenetrable drugs into the brain. Numerous studies have investigated this approach, and a diverse set of ultrasound parameters appear to influence the efficacy and safety of this approach. An understanding of these findings is essential for safe and reproducible BBB disruption, as well as in identifying the limitations and gaps for further advancement of this drug delivery approach. We aimed to collate and summarise protocols and parameters for achieving ultrasound-mediated BBB disruption in animal and clinical studies, as well as the efficacy and safety methods and outcomes associated with each. A systematic search of electronic databases helped in identifying relevant, included studies. Reference lists of included studies were further screened to identify supplemental studies for inclusion. In total, 107 articles were included in this review, and the following parameters were identified as influencing efficacy and safety outcomes: microbubbles, transducer frequency, peak-negative pressure, pulse characteristics, and the dosing of ultrasound applications. Current protocols and parameters achieving ultrasound-mediated BBB disruption, as well as their associated efficacy and safety outcomes, are identified and summarised. Greater standardisation of protocols and parameters in future preclinical and clinical studies is required to inform robust clinical translation. Full article
(This article belongs to the Special Issue Strategies to Enhance Drug Permeability across Biological Barriers)
Show Figures

Graphical abstract

30 pages, 2670 KiB  
Review
Recent Advances on Ultrasound Contrast Agents for Blood-Brain Barrier Opening with Focused Ultrasound
by Ambre Dauba, Anthony Delalande, Hermes A. S. Kamimura, Allegra Conti, Benoit Larrat, Nicolas Tsapis and Anthony Novell
Pharmaceutics 2020, 12(11), 1125; https://doi.org/10.3390/pharmaceutics12111125 - 21 Nov 2020
Cited by 58 | Viewed by 6564
Abstract
The blood-brain barrier is the primary obstacle to efficient intracerebral drug delivery. Focused ultrasound, in conjunction with microbubbles, is a targeted and non-invasive way to disrupt the blood-brain barrier. Many commercially available ultrasound contrast agents and agents specifically designed for therapeutic purposes have [...] Read more.
The blood-brain barrier is the primary obstacle to efficient intracerebral drug delivery. Focused ultrasound, in conjunction with microbubbles, is a targeted and non-invasive way to disrupt the blood-brain barrier. Many commercially available ultrasound contrast agents and agents specifically designed for therapeutic purposes have been investigated in ultrasound-mediated blood-brain barrier opening studies. The new generation of sono-sensitive agents, such as liquid-core droplets, can also potentially disrupt the blood-brain barrier after their ultrasound-induced vaporization. In this review, we describe the different compositions of agents used for ultrasound-mediated blood-brain barrier opening in recent studies, and we discuss the challenges of the past five years related to the optimal formulation of agents. Full article
(This article belongs to the Special Issue Advances in Physics Methods for Drug Delivery)
Show Figures

Graphical abstract

22 pages, 7141 KiB  
Article
Effects of Focused-Ultrasound-and-Microbubble-Induced Blood-Brain Barrier Disruption on Drug Transport under Liposome-Mediated Delivery in Brain Tumour: A Pilot Numerical Simulation Study
by Wenbo Zhan
Pharmaceutics 2020, 12(1), 69; https://doi.org/10.3390/pharmaceutics12010069 - 15 Jan 2020
Cited by 11 | Viewed by 5001
Abstract
Focused ultrasound (FUS) coupled with microbubbles (MB) has been found to be a promising approach to disrupt the blood-brain barrier (BBB). However, how this disruption affects drug transport remains unclear. In this study, drug transport in combination therapy of liposomes and FUS-MB-induced BBB [...] Read more.
Focused ultrasound (FUS) coupled with microbubbles (MB) has been found to be a promising approach to disrupt the blood-brain barrier (BBB). However, how this disruption affects drug transport remains unclear. In this study, drug transport in combination therapy of liposomes and FUS-MB-induced BBB disruption (BBBD) was investigated based on a multiphysics model. A realistic 3D brain tumour model extracted from MR images was applied. The results demonstrated the advantage of liposomes compared to free doxorubicin injection in further improving treatment when the BBB is opened under the same delivery conditions using burst sonication. This improvement was mainly due to the BBBD-enhanced transvascular transport of free doxorubicin and the sustainable supply of the drug by long-circulating liposomes. Treatment efficacy can be improved in different ways. Disrupting the BBB simultaneously with liposome bolus injection enables more free drug molecules to cross the vessel wall, while prolonging the BBBD duration could accelerate liposome transvascular transport for more effective drug release. However, the drug release rate needs to be well controlled to balance the trade-off among drug release, transvascular exchange and elimination. The results obtained in this study could provide suggestions for the future optimisation of this FUS-MB–liposome combination therapy against brain cancer. Full article
(This article belongs to the Special Issue Biocompatible Materials in Drug Delivery System in Oncology)
Show Figures

Graphical abstract

27 pages, 1878 KiB  
Review
Cell and Gene Therapies for Mucopolysaccharidoses: Base Editing and Therapeutic Delivery to the CNS
by Chloe L. Christensen, Rhea E. Ashmead and Francis Y. M. Choy
Diseases 2019, 7(3), 47; https://doi.org/10.3390/diseases7030047 - 26 Jun 2019
Cited by 11 | Viewed by 6405
Abstract
Although individually uncommon, rare diseases collectively account for a considerable proportion of disease impact worldwide. A group of rare genetic diseases called the mucopolysaccharidoses (MPSs) are characterized by accumulation of partially degraded glycosaminoglycans cellularly. MPS results in varied systemic symptoms and in some [...] Read more.
Although individually uncommon, rare diseases collectively account for a considerable proportion of disease impact worldwide. A group of rare genetic diseases called the mucopolysaccharidoses (MPSs) are characterized by accumulation of partially degraded glycosaminoglycans cellularly. MPS results in varied systemic symptoms and in some forms of the disease, neurodegeneration. Lack of treatment options for MPS with neurological involvement necessitates new avenues of therapeutic investigation. Cell and gene therapies provide putative alternatives and when coupled with genome editing technologies may provide long term or curative treatment. Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing technology and, more recently, advances in genome editing research, have allowed for the addition of base editors to the repertoire of CRISPR-based editing tools. The latest versions of base editors are highly efficient on-targeting deoxyribonucleic acid (DNA) editors. Here, we describe a number of putative guide ribonucleic acid (RNA) designs for precision correction of known causative mutations for 10 of the MPSs. In this review, we discuss advances in base editing technologies and current techniques for delivery of cell and gene therapies to the site of global degeneration in patients with severe neurological forms of MPS, the central nervous system, including ultrasound-mediated blood-brain barrier disruption. Full article
(This article belongs to the Collection Lysosomal Storage Diseases)
Show Figures

Figure 1

Back to TopTop