
����������
�������

Citation: Gandhi, K.; Barzegar-Fallah,

A.; Banstola, A.; Rizwan, S.B.;

Reynolds, J.N.J. Ultrasound-

Mediated Blood–Brain Barrier

Disruption for Drug Delivery: A

Systematic Review of Protocols,

Efficacy, and Safety Outcomes from

Preclinical and Clinical Studies.

Pharmaceutics 2022, 14, 833.

https://doi.org/10.3390/

pharmaceutics14040833

Academic Editors: Jingyuan Wen and

Yuan Huang

Received: 13 March 2022

Accepted: 6 April 2022

Published: 11 April 2022

Corrected: 20 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

pharmaceutics

Systematic Review

Ultrasound-Mediated Blood–Brain Barrier Disruption for Drug
Delivery: A Systematic Review of Protocols, Efficacy, and Safety
Outcomes from Preclinical and Clinical Studies
Kushan Gandhi 1,2 , Anita Barzegar-Fallah 1,2 , Ashik Banstola 1,2 , Shakila B. Rizwan 2,3

and John N. J. Reynolds 1,2,*

1 Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin 9016, New Zealand;
ganku455@student.otago.ac.nz (K.G.); anita.fallah@postgrad.otago.ac.nz (A.B.-F.);
ashik.banstola@otago.ac.nz (A.B.)

2 Brain Health Research Centre, University of Otago, Dunedin 9016, New Zealand; shakila.rizwan@otago.ac.nz
3 School of Pharmacy, University of Otago, Dunedin 9016, New Zealand
* Correspondence: john.reynolds@otago.ac.nz; Tel.: +64-3479-5781; Fax: +64-3479-7254

Abstract: Ultrasound-mediated blood–brain barrier (BBB) disruption has garnered focus as a method
of delivering normally impenetrable drugs into the brain. Numerous studies have investigated this
approach, and a diverse set of ultrasound parameters appear to influence the efficacy and safety
of this approach. An understanding of these findings is essential for safe and reproducible BBB
disruption, as well as in identifying the limitations and gaps for further advancement of this drug
delivery approach. We aimed to collate and summarise protocols and parameters for achieving
ultrasound-mediated BBB disruption in animal and clinical studies, as well as the efficacy and safety
methods and outcomes associated with each. A systematic search of electronic databases helped in
identifying relevant, included studies. Reference lists of included studies were further screened to
identify supplemental studies for inclusion. In total, 107 articles were included in this review, and
the following parameters were identified as influencing efficacy and safety outcomes: microbubbles,
transducer frequency, peak-negative pressure, pulse characteristics, and the dosing of ultrasound
applications. Current protocols and parameters achieving ultrasound-mediated BBB disruption,
as well as their associated efficacy and safety outcomes, are identified and summarised. Greater
standardisation of protocols and parameters in future preclinical and clinical studies is required to
inform robust clinical translation.

Keywords: focused ultrasound; blood–brain barrier opening; therapeutic agent delivery; ultrasound
parameters; ultrasound safety; review

1. Introduction
1.1. The Blood–Brain Barrier and Drug Delivery

The blood–brain barrier (BBB) is a selectively permeable structure that restricts the pas-
sage of solutes from the brain’s microvasculature into its extracellular space. Anatomically,
the BBB is composed of the apical and basal membranes of the cerebrovascular endothe-
lial cells (CECs), an associated basement membrane containing embedded pericytes, and
perivascular foot-like processes of astrocytes ensheathing the abluminal capillary surface
collectively referred to as the neurovascular unit [1] (see Figure 1). The CECs express
a limited range of membrane carrier proteins and numerous membrane efflux pumps
and have a dense number of tight junctions linking them to other CECs. This combined
structural arrangement restricts the movement of most hydrophilic and high molecular
weight molecules (exceeding 400 to 500 Da) [2], inflammatory cells, and pathogens, thereby
providing a vital function in maintaining homeostasis and preventing the entry of harmful
substances into the brain. The BBB, therefore, grants a significant survival advantage, but it
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also poses a disadvantage in its inability to allow most therapeutic agents to penetrate it,
rendering 98% of small-molecule agents and 100% of large-molecule agents unable to enter
the brain parenchyma [3]. As a result, there is a significant limitation to the pharmacological
agents available in the treatment of central nervous system (CNS) conditions, including
brain malignancies, dementias, and other neurodegenerative conditions.
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Figure 1. Schematic representation of the anatomical structure of the blood–brain barrier (BBB) and
the accompanying neurovascular unit. Note the abluminal CEC surface is ensheathed by a basement
membrane embedded with pericytes. (Created with Biorender.com (accessed on 12 March 2022)).

1.2. Ultrasound-Mediated Drug Delivery and the BBB

An approach to overcoming the challenge posed by the BBB is to temporarily induce
BBB disruption, in a controlled and targeted manner, to enhance the uptake of therapeutic
agents into desired target locations in the brain. A minimally invasive strategy that has
been employed to achieve this is via the application of ultrasound. The use of transcranial
ultrasound for enhancing drug delivery in the CNS also extends beyond BBB disruption,
including in functioning as an external trigger to initiate drug release from nanoparticles [4]
at targeted areas of the BBB in diseases such as epilepsy [5]. While the use of ultrasound
in disrupting the BBB was first described in the 1950s [6], it is within the last 20 years [7]
that this technique has garnered significant research interest in improving drug delivery to
the brain. Subsequently, numerous preclinical animal studies, as well as several phase I/II
clinical trials [8–11] (ClinicalTrials.gov identifier numbers: NCT03321487, NCT03322813,
NCT02253212, NCT03608553, NCT03626896, NCT02343991, NCT02986932, NCT03712293),
assessing the feasibility of this drug delivery approach have emerged. While the exact
mechanisms underlying ultrasound-mediated BBB disruption are not yet well defined, the
mechanical bioeffects of ultrasound exposure are thought to predominate. When exposed
to ultrasound, dissolved gas bubbles within the vasculature experience a phenomenon
known as cavitation, where they experience oscillatory changes in their volume, expanding
in volume with rarefactions (low sonic pressure), and contracting with compressions (high
sonic pressure) of the ultrasound waves [7]. Gas bubbles may also experience an acoustic
radiation force, where they gain additional translational movement towards the direction
of the ultrasound beam. These effects together are thought to contribute to the observed
reduction in tight junction proteins between CECs of the BBB [12], the reduced expression
of P-glycoprotein drug efflux pumps along the CEC membrane [13–15], and the increased
formation of transcytotic vesicles across the CECs [16]. To enhance these mechanical effects
ultrasound contrast agents or microbubbles (preformed gas-filled bubbles, typically of
1 to 6 µm in diameter) are co-administered, thereby increasing the number of available
echogenic centres that can induce a mechanical effect within the cerebral vasculature, and
thus reducing the threshold of ultrasound intensity required for BBB permeabilisation.
Furthermore, magnetic resonance imaging (MRI) has been coupled with ultrasound and
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microbubbles, as a way of ensuring precise targeting [17] of the ultrasound beam to specific
regions within the brain, confining drug penetration to these foci only, e.g., tumour sites for
glioma patients.

1.3. Challenges with Ultrasound-Mediated BBB Disruption

Though numerous studies have achieved variable levels of successful ultrasound-
mediated BBB disruption, it has become clear that the extent of BBB disruption is greatly
influenced by the choice of ultrasound parameters, as well as the type and dose of microbub-
bles used alongside each sonication [18]. Unfortunately, ultrasound-mediated BBB disrup-
tion has potential adverse effects, including haemorrhagic change (ranging from sparse
erythrocyte extravasation to gross intracerebral haemorrhaging) [19], oedema [9,20–26],
inflammation [26,27], neuronal ischaemia [28,29], and tissue apoptosis [23,27,28,30–34]. The
occurrence of these adverse effects is theorised to be due to excessive mechanical activity,
where sonicated bubbles within the vasculature experience inertial, non-stable cavitation,
rapidly imploding to exert excessive endothelial force, causing the extravasation of fluid,
erythrocytes, and leucocytes into the surrounding tissue. Additionally, these effects may
contribute to direct neuronal and glial injury. This has precipitated a large body of both
preclinical and clinical studies demonstrating ultrasound-mediated BBB disruption with a
range of sonication parameters, accompanied by a diverse set of reported safety outcomes.
Ultimately, this has made selecting an appropriate sonication protocol that provides both
successful and safe BBB disruption a difficult task. Previous narrative reviews of this body
of evidence have been conducted but only broadly summarise key ultrasound-related pa-
rameters and their associated effects on the efficacy and safety of ultrasound-mediated BBB
disruption. A systematic review of such literature and a published database of individual
sonication paradigms and their consequential safety outcomes has yet to be conducted.
The results of this systematic review will aim to inform future researchers of methods,
sonication protocols, and the parameters that influence BBB disruption, as well as the safety
outcomes associated with each, across a variety of experimental models (rodents, rabbits,
sheep, pigs, non-human primates (NHPs)) and humans.

2. Materials and Methods

The systematic review was conducted according to the Preferred Reporting Items for
Systematic Reviews and Meta-analyses (PRISMA) guidelines [35,36], PRISMA’s checklist
or PRISMA Flow Diagram for systematic reviews has been completed and is available as
Table S1 in Supplementary Materials. This systematic review was not registered.

2.1. Eligibility Criteria

All studies with (i) clearly outlined sonication protocols (containing the relevant
terms below), where (ii) ultrasound was applied to the brain of in vivo animal or human
participants and where (iii) successful BBB disruption was achieved and confirmed using
a reliable method, were included within this systematic review. Additionally, included
studies had to have conducted appropriate safety assessments and reported any adverse
effects associated with each protocol achieving successful BBB disruption. Only sonication
protocols achieving confirmed BBB disruption, with corresponding safety assessments,
were included within the data collection process. Protocols where the primary aim was
applying ultrasound for cellular, viral, or gene delivery; neuromodulation; stimulation; or
tissue ablation were excluded. Studies not published in English and review papers were
also excluded.

2.2. Information Sources

This systematic review was based on searches from the following online search
databases: PubMed, Medline, and EMBASE. A complete search of databases was con-
ducted on 22 September 2021 to include any subsequent articles published within this
timeframe. Additional articles were identified from reviewing the reference lists of relevant
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articles identified via the initial database search, as well as via Google Scholar alerts from
the date of the initial search. A complete search of databases was conducted by K.G.

2.3. Search Strategy

The following MeSH terms were used to identify relevant articles:

1. ‘Ultrasound’ OR ‘focused ultrasound’ OR ‘MRI-guided ultrasound’ OR ‘MR-guided
focused ultrasound’;

2. ‘Blood brain barrier’ OR ‘BBB’;
3. ‘Disruption’ OR ‘permeabilisation’ OR ‘permeabilization’ OR ‘opening’;
4. ‘Drug delivery’.

2.4. Study Selection

Citations identified from the searches of the three databases were collated into a
combined EndNote (X9) library and were de-duplicated as per a published protocol [37].
All unique citations were then screened for inclusion according to the eligibility criteria.
Citation screening was conducted by K.G. in the following sequence: initially by their titles,
then by their abstracts, and finally by reviewing the entire text. K.G., A.B.-F., and A.B.
independently identified additional studies from Google Scholar alerts and from reviewing
the reference list of relevant articles identified via the database search.

2.5. Data Items and Collection Process

From each included study, the following data items were extracted: (1) species of
in vivo subject; (2) type of ultrasound transducer used; (3) methods for assessing BBB dis-
ruption; (4) methods for assessing safety; (5) microbubbles used (type, dose, administration
protocol); (6) sonication parameters (frequency, peak negative pressure in situ, continuous
or pulsated delivery, sonication duration, number of sonications, interstimulus interval,
number of independent sessions, intersession interval). The extracted data items were then
tabulated (Table S2—Supplementary Materials). Additional summary tables regarding
methods used to assess BBB disruption efficacy Table 1) and safety, as well as microbub-
ble and ultrasound parameters influencing ultrasound-mediated BBB disruption are also
included in this systematic review. K.G. conducted all data extraction and collection.

3. Results
3.1. Included Studies

A total of 1480 citations were identified after the initial literature search from the three
databases (Figure 2). After de-duplication, 882 unique citations were identified and were
subsequently screened, in order, by their title and abstract, and then by a full-text review of
the remaining articles (n = 100). After completing the screening process, a total of 76 studies
were identified and included for data extraction and synthesis. An additional 31 studies
were identified and included from Google Scholar alerts and after screening reference lists
of included studies. Ultimately, a total of 107 studies were eligible for inclusion in our
qualitative comparison and analysis.
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Figure 2. Flowchart highlighting the screening and selection process for studies included within this
systematic review. (Created with Biorender.com (accessed on 12 March 2022)).

3.2. Ultrasound Devices

A range of commercial (e.g., FUS Instruments, Imasonic, Riverside Research Insti-
tute, Sonic Concepts) and in-house manufactured ultrasound devices were utilised in the
included study protocols, with the majority of these being single-element or single piezo-
electric devices. In recent times, multi-element devices have been developed to overcome
associated concerns around ultrasound attenuation and beam defocussing, providing better
transcranial transmission. These devices have been tested in preclinical animal models as
well as in many ongoing and published clinical trials. In addition, we identified a protocol
utilising two single-element transducers in tandem [38], and two that even used diagnos-
tic [39,40], imaging transducers to disrupt the BBB. A comparative figure highlighting
therapeutic ultrasound devices identified amongst included literature is shown in Figure 3.
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3.2.1. Single-Element Ultrasound Devices

While single-element devices are smaller, and more accessible for testing in preclinical
studies, their application in clinical studies has been more limited due to the attenuation
and defocussing resulting from the application of a single ultrasound beam [41]. A strategy
employed [9] to circumvent this issue has been to create a bony window in the calvaria
and apply ultrasound directly through it, thereby reducing attenuation of the ultrasound
beam at the bone interface [42]. Two animal studies directly compared this strategy with
application through intact bone, with one highlighting no difference with the use of a
260 kHz transducer in rabbits [30] and the other highlighting significant improvements
with the use of a 28 kHz transducer in pigs [23]. The SonoCloud-1®, a single-element
device manufactured by CarThera, is one such example that requires implantation via a
burr hole in the skull. Currently, this is the only implantable device we identified amongst
all included protocols, and it has demonstrated efficacy in disrupting the BBB in both
animal [20,43,44] and clinical studies [9]. Dual single-element transducers were employed
in a couple of studies [38,45] to initiate BBB disruption using a lower frequency transducer,
while a higher frequency transducer was employed in an attempt to stimulate the transport
of a therapeutic agent into the brain parenchyma.

3.2.2. Multi-Element Ultrasound Devices

Multi-element array devices confer the benefit of being able to treat multiple, separate
tissue foci simultaneously, as well as providing greater spatial coverage than single-element
devices [46]. Additionally, multi-element phased array devices confer the ability to alter the
phase and amplitude of individual transducers, correcting for aberrations to the ultrasound
beam as it surpasses more complex skull surfaces, such as the human calvaria [46,47]. An
emerging leader in this category of devices is the ExAblate® system (manufactured by
InSightec), a 1024-element phased array device, initially designed for the thermal ablation
of tissue, prior to being applied in rat [48,49], NHP [50], and clinical studies [8,10,11,51–53]
to disrupt and open the BBB. The ExAblate® system functions with a large, stereotacti-
cally positioned helmet that is coupled to an MRI system to help plan sonication targets
and monitor the procedure. A second multi-element phased array system—NaviFUS®

(produced by NaviFUS corporation)—is a 256-element phased array device that has also
demonstrated its ability to disrupt the BBB in a recent clinical trial [54]. While this de-
vice and the ExAblate® share similarities in their appearance, NaviFUS® does not require
stereotactic positioning and relies on traditional, neurosurgical, navigation to help plan
and guide ultrasound beams to sonication targets. The SonoCloud-9® (manufactured by
CarThera) is an iteration of the SonoCloud-1® and functions as an implantable grid of
nine interconnected transducer elements. As yet, no published study has employed the
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SonoCloud-9® for in vivo BBB disruption, but ongoing clinical trials exist (NCT03744026,
NCT04614493, NCT04528680).

3.2.3. Diagnostic Ultrasound Devices

Disruption of the BBB was also achieved using diagnostic ultrasound imaging devices
in mice [39,40], albeit with much broader and less well-defined tissue coverage as compared
to the prior mentioned therapeutic ultrasound devices. This is partly due to the higher
central frequencies (2–10 MHz) that diagnostic devices tend to operate with, often resulting
in greater aberration and defocussing of the penetrating ultrasound beam [39].

3.2.4. Implantable Ultrasound Devices

Nearly all identified ultrasound devices were non-implantable and usually required
precise (e.g., stereotactic, neuronavigation, MRI-guided) positioning over the cranium of
each subject prior to sonication. Implantable devices (SonoCloud® devices) are highly
portable and eliminate the need for repeat repositioning, at the cost of requiring more
invasive, surgical placement. Non-implantable devices have the advantage of being surgi-
cally non-invasive and can be repositioned for targeting multiple sites, at the cost of longer
ultrasound sessions, during which subjects are not ambulatory [55]. A recent review [55]
suggested that non-implantable, extracranial devices were not appropriate for targeting su-
perficial lesions, a claim not supported by findings from identified protocols that achieved
successful and safe BBB disruption in superficial cortical regions (e.g., primary motor
cortex [8,56], primary visual cortex [24], prefrontal cortex [10,57]) using both single-element
and multi-element phased array devices.

3.3. Methods for Assessing Successful BBB Disruption and Opening
3.3.1. MRI

The majority of identified protocols confirmed BBB disruption and its subsequent
opening via contrast-enhanced T1-weighted MRI (CE-T1 MRI). The fundamentals of CE-T1
MRI involve taking T1 images prior to sonication, administering a gadolinium contrast
agent, and then acquiring T1 images post-sonication. The molecular weight (~0.5 to
1.1 kDA) and hydrophilicity of gadolinium contrast agents make them incapable of passing
the BBB in normal circumstances. Therefore, an opening in the BBB will result in visible
extravasation of these agents into the cerebral interstitium, marked by hyperintensity on
a post-sonication T1 image (see Figure 4). MRI quantification methods used in identified
studies can be broadly summarised as follows: (1) T1 mapping to estimate the concentra-
tion and spatial distribution of the contrast agent [58,59]; (2) calculating vascular transfer
coefficients of contrast agents after dynamic contrast-enhanced T1 imaging [60]; (3) or cal-
culating changes in contrast signal enhancement [31]. The ability to observe BBB disruption
in vivo is conferred by CE-T1 MRI, without requiring postmortem histological analysis.
Multiple investigations have shown correlative relationships between the extravasation of
the MRI contrast agent and that of histological tracers [61,62] and some therapeutic agents,
including Herceptin [31], doxorubicin [63], and nanoparticles [23,38]. A few studies have
employed the use of T2/T2* weighted MRI to track the uptake of superparamagnetic iron
oxide (SPIO)-labelled drug molecules into sonicated brain parenchyma. This MRI technique
provides a more sensitive method for assessing drug uptake by allowing the real-time,
direct visualisation [23,64,65] of drug extravasation into the brain, as opposed to the use of
a proxy marker (gadolinium contrast agent). Additionally, studies have used CE-T1 MRI to
track the reversibility of BBB opening after sonication, unsurprisingly concluding that the
duration of BBB opening, and thus the reversal time, increases with the initial degree of
BBB disruption [66].
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3.3.2. Tracer Molecules

Tracer molecules, including Evans/trypan blue (67 kDa when albumin-bound), fluo-
rescein (333 Da), fluorescently labelled dextrans (3 to 2000 kDa), horseradish peroxidase
(44 kDa), and antibodies (either endogenous or exogenously administered), are molecules
incapable of surpassing the BBB and are widely administered to assess its opening. These
molecules are readily available and cheap and can be observed macroscopically (Evans
and trypan blue) or microscopically (fluorescein, dextrans, horseradish peroxidase), and
their cerebral uptake can be quantified to confirm the degree of successful BBB opening.
Additionally, tracer molecules come in various molecular weights, meaning their extrava-
sation can better delineate the size of molecular weight therapeutics that could pass the
disrupted BBB. Rodent studies [67,68] have highlighted differences in the extravasation of
variable-sized dextrans after BBB opening with equivalent parameter sonications, where
lower molecular weight dextrans (3 to 70 kDa) have significant extravasation, while higher
(500 to 2000 kDa) weight dextrans have minimal extravasation. Therefore, the use of vari-
able molecular weight tracer molecules gives an advantage over CE-T1 MRI, the latter of
which only indicates BBB opening to a potential maximum threshold equal to the molecular
weight of the injected gadolinium contrast agent. Due to the tissue analysis required for
assessing tracer uptake, these methods are almost exclusively used in preclinical, animal
studies and are harder to conduct in human trials due to the necessity of a brain biopsy.
Interestingly, one clinical trial [51] did microscopically assess fluorescein uptake into re-
sected, sonicated tumour/peritumoral tissue, reporting a 2.2-fold increase in comparison
to non-sonicated tumour tissue.

3.3.3. Therapeutic Agent Quantification

Another approach in assessing BBB opening is to directly assess the cerebral up-
take of normally impenetrable therapeutic agents, e.g., antibodies and chemotherapeutic
agents. This has been done by quantifying the concentration of therapeutics from tissue
homogenates via high powered liquid chromatography, liquid chromatography–mass
spectrometry, or fluorometry or by labelling therapeutic molecules with fluorescent [38,69],
radioactive, or magnetic markers [23] in order to more sensitively visualise the extent of
tissue penetration and the location of therapeutic accumulation. Ultimately, this latter
approach is the most direct method of ascertaining the clinical efficacy of ultrasound as a
novel technique for enhancing therapeutic delivery to the brain. Only one [11] identified
clinical trial reported any data on quantified therapeutic uptake after BBB disruption. More
of these investigations are required to supplement concurrent CE-T1 MRI assessments

Biorender.com
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in human trials to further validate the efficacy of this novel approach to drug delivery.
Furthermore, the timing of drug administration relative to the application of ultrasound
appears to influence drug uptake into the targeted brain region [70,71].

3.3.4. Comparing BBB Disruption between Studies

While a diverse range of reliably proven methods for assessing BBB opening exist, a
standard protocol for conducting each does not, complicating the comparative analysis
of successful BBB opening between studies. Of note amongst included studies was the
variation in dose, administration time, and route of delivery of contrast agents, tracer
dyes, exogenous antibodies, and/or therapeutic agents between studies. Investigations
have noted significant variation in the extravasation of these agents as a response to
altered administration times [37,66] relative to each sonication and to the route of chosen
delivery [72] (e.g., intravenous vs. intraperitoneal). In addition, there exists a range of MRI
parameters and quantification methods for the uptake of contrast and tracer agents utilised
between studies, further complicating the ability to perform external comparisons between
study protocols. As a result of the observed heterogeneity in specific BBB disruption
assessment protocols, the ‘Comparative Degree of Observed BBB Disruption’ column
(Table S2—Supplementary Materials) qualitatively highlights relative differences in BBB
disruption achieved between different parameters investigated within the same study, as
opposed to parameters between different studies. A comparison of methods used to assess
BBB disruption across included protocols is presented in Table 1.

Table 1. Summary of the methods used by included protocols in assessing the extent of BBB disruption.

In Vivo Subject Study and Year Published

Assessments of BBB Disruption and Opening

MRI
Tracer Molecules Quantified Therapeutic

UptakeEB TB Fl FD HRP Antibodies

Mouse

Baghirov et al., 2018 [38] X X (Polymeric
nanoparticles)

Baseri et al., 2010 [73] X X
Bing et al., 2009 [39] X
Chen et al., 2013 [74] X
Chen et al., 2014 [67] X
Choi et al., 2010 [75] X
Choi et al., 2011 [76] X
Choi et al., 2011 [60] X X
Choi et al., 2008 [77] X
Choi et al., 2010 [68] X
Englander et al., 2021 [78] X X X (Etoposide)

Jordao et al., 2013 [61] X X (Anti-endogenous
IgG and IgM)

Kinoshita et al., 2006 [31] X X X (Herceptin)
Kinoshita et al., 2006 [62] X X X (Anti-D4 IgG)
Lapin et al., 2020 [79] X
Liu et al., 2014 [80] X X X (Temozolomide)
McDannold et al., 2017 [81] X
McMahon et al., 2020 [59] X X X (Anti-albumin IgG)

Morse et al., 2022 [82] X (Fluorescently labelled,
unloaded liposomes)

Morse et al., 2019 [83] X X (Anti-albumin IgG)
Olumolade et al., 2016 [84] X
Omata et al., 2019 [85] X X
Raymond et al., 2007 [86] X X

Raymond et al., 2008 [87] X X X X (Anti-amyloid +
anti-endogenous IgG)

Samiotaki et al., 2012 [66] X

Shen et al., 2016 [69] X X (Fluorescently labelled,
unloaded liposomes)

Sierra et al., 2017 [88] X X
Vlachos et al., 2011 [72] X
Wu et al., 2014 [89] X (Liposomal doxorubicin)

Zhang, D. et al., 2020 [43] X X (Paclitaxel—free and
protein-bound)

Zhao, B. et al., 2018 [40] X
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Table 1. Cont.

In Vivo Subject Study and Year Published

Assessments of BBB Disruption and Opening

MRI
Tracer Molecules Quantified Therapeutic

UptakeEB TB Fl FD HRP Antibodies

Rat

Ali et al., 2018 [90] X X X (Doxorubicin)
Aryal et al., 2017 [15] X X
Aryal et al., 2015 [91] X X X (Doxorubicin)
Aryal et al., 2015 [70] X X X (Doxorubicin)

Aslund et al., 2017 [92] X X (Pegylated
macromolecule)

Cho et al., 2016 [14] X X
Chopra et al., 2010 [93] X

Fan et al., 2016 [64] X
X (SPIO-labelled,

doxorubicin-loaded
microbubbles)

Fan et al., 2014 [45] X X (Carmustine loaded
microbubbles)

Fan et al., 2015 [94] X X (Carmustine loaded
microbubbles)

Goutal et al., 2018 [95] X X
Han et al., 2021 [96] X
Huh et al., 2020 [97] X
Jung et al., 2019 [98] X X X (Doxorubicin)
Kobus et al., 2016 [99] X
Kovacs et al., 2017 [27] X X (Anti-albumin IgG)
Kovacs et al., 2018 [100] X
Liu et al., 2009 [65] X X
Liu et al., 2010 [101] X X X (Carmustine)
Liu et al., 2010 [102] X
Liu et al., 2008 [32] X X
Liu et al., 2010 [103] X
Marty et al., 2012 [58] X
McDannold et al., 2019 [48] X X (Carboplatin)
McDannold et al., 2020 [49] X X (Irinotecan and SN-38)
McDannold et al., 2011 [104] X X
Mcmahon et al., 2017 [26] X
Mcmahon et al., 2020 [105] X X
Mcmahon et al., 2020 [106] X
O’Reilly et al., 2017 [107] X
O’Reilly et al., 2011 [108] X
Park et al., 2017 [109] X X X (Doxorubicin)
Park et al., 2012 [71] X X X (Doxorubicin)
Shin et al., 2018 [19] X
Song et al., 2017 [110] X
Treat et al., 2007 [63] X X X (Doxorubicin)
Tsai et al., 2018 [33] X
Wei et al., 2013 [111] X X X (Temozolomide)
Wu et al., 2017 [112] X X
Yang et al., 2013 [113] X X
Yang et al., 2014 [114] X X
Yang et al., 2012 [34] X X
Yang et al., 2011 [115] X X
Yang et al., 2012 [116] X X
Zhang, Y. et al., 2016 [117] X

Rabbit

Beccaria et al., 2013 [20] X X
Chopra et al., 2010 [93] X
Hynyen et al., 2005 [28] X X
Hynyen et al., 2006 [30] X X
McDannold et al., 2006 [118] X
McDannold et al., 2007 [25] X
McDannold et al., 2008 [119] X
McDannold et al., 2008 [120] X
Mei et al., 2009 [121] X X X (Methotrexate)
Wang et al., 2009 [122] X X

Dog O’Reilly et al., 2017 [123] X
Pig Liu et al., 2011 [23] X X X (SPIO nanoparticles)

Sheep Pelekanos et al., 2018 [29] X X (Anti-endogenous
IgG)

Yoon et al., 2019 [124] X

Non-Human
Primate (NHP)

Arvantis et al., 2012 [50] X
Downs et al., 2015 [21,22] X
Goldwirt et al., 2016 [44] X X (Carboplatin)
Horodyckid et al., 2017 [56] X
Marquet et al., 2014 [125] X
Marquet et al., 2011 [24] X
McDannold et al., 2012 [126] X X
Pouliopoulos et al., 2019 [57] X
Wu et al., 2016 [127] X
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Table 1. Cont.

In Vivo Subject Study and Year Published

Assessments of BBB Disruption and Opening

MRI
Tracer Molecules Quantified Therapeutic

UptakeEB TB Fl FD HRP Antibodies

Human

Abrahao et al., 2019 [8] X
Anastasiadis et al., 2021 [51] X X
Chen et al., 2021 [54] X
Gasca-Salas et al., 2021 [52] X
Idbaidh et al., 2019 [9] X
Lipsman et al., 2018 [10] X

Mainprize et al., 2019 [11] X X (Liposomal doxorubicin
and temozolomide)

Park et al., 2020 [53] X

EB: Evans blue; TB: trypan blue; FL: fluorescein; FD: fluorescently labelled dextrans; HRP: horseradish peroxidase.

3.4. Methods of Assessing Safety Outcomes

The safety of ultrasound-mediated BBB disruption is crucial for this technology to
receive mainstream clinical adoption in the treatment of CNS disease; thus, in this review, it
was essential to only include ultrasound protocols with a corresponding safety assessment.
The techniques employed by studies to analyse safety outcomes can be broadly charac-
terised into five categories: macroscopic, histological, biochemical, electrophysiological,
and behavioural safety assessments. Histological and macroscopic assessments have un-
doubtedly been the most extensively conducted techniques amongst included literature,
as they highlight detailed changes in tissue architecture and can be readily conducted in
preclinical animal studies. When comparing safety outcomes between studies employing
different ultrasound protocols and parameters, the time of safety data acquisition is vi-
tal [17]. Studies have highlighted how MRI and histological adverse safety events may
progress or regress with the time interval from sonication to MRI acquisition [32,71] or
tissue extraction [59,88]. For this reason, we have included, when available, the timing
of MRI or histological safety data acquisition from the last sonication, for each included
protocol within this study (Table S2—Supplementary Materials). A detailed summary of
specific safety investigations employed across included studies is presented in Table 2.

3.4.1. Macroscopic Assessments

MRI techniques, most commonly T2, T2*, and susceptibility-weighted imaging (SWI),
have been employed to detect evidence of oedematous (hyperintensities on T2) [21,22]
and haemorrhagic (hypointensities on T2* and SWI) [50] change within the sonicated
brain. Currently, the clinical application of ultrasound-mediated BBB disruption has
relied on MRI, serving as an assessment technique for confirming in vivo BBB opening
(as previously discussed). It also provides the ability to observe changes in tissue health
and to track the progression of any of these changes serially, for hours and days following
sonication [10,21,22,80]. In clinical trials, ultrasound-mediated BBB disruption has been
generally well tolerated, but MRI findings have also shown transient oedematous [8,9] and
microhaemorrhagic change [10], observed in a small subset of patients only. A few rodent
studies [27,103] also utilised T2* MRI to image the extravasation of superparamagnetic-
labelled macrophages into the sonicated tissue when assessing for an inflammatory reaction
to ultrasound-mediated BBB disruption. Thermometry is another macroscopic safety
assessment identified amongst protocols, playing a role in the monitoring of unwanted
thermogenic bioeffects from ultrasound application. Methods of thermometry included
ex vivo calvaria thermometry [29], the use of in situ thermal probes [89,98], and real-time
MR thermometry [8,10,52]. Generally, temperature elevations did not exceed 1.5 ◦C in
most studies employing in vivo thermometry [8,10,52,98]. One study investigated the
application of continuous ultrasound to induce a hyperthermic effect in mice, noting a
temperature elevation of 13 ◦C over a 10 min period of sonication [89]. Positron emission
tomography (PET) scanning has also been conducted in a handful of NHP and clinical
studies, revealing no changes in glucose uptake and metabolism [52,56] in sonicated tissue
following multiple ultrasound sessions. Direct visualisation (without imaging) of gross
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haemorrhage in brain tissue has been reported with significant BBB disruption in animal
studies [19] after applying more intense (higher pressure) ultrasound or over prolonged
sonication periods.

3.4.2. Histological Assessments

Basic histological stains, most notably haematoxylin and eosin, Cresyl violet/Luxol
fast blue, and Perl’s Prussian Blue, have been readily utilised to confirm microscopic
changes to tissue architecture, haemorrhagic change, and iron deposition. Immunola-
belling of specific proteins has allowed for the investigation of more specific histological
changes associated with ultrasound-mediated BBB disruption, including potential reac-
tive astrogliosis (glial fibrillary acid protein or GFAP), microglial activation (Iba-1), and
neurogenesis (BrdU) macrophage (CD68+) and T lymphocyte (ICAM-1, CD-4, CD-8) infil-
tration. Additionally, immunolabelling of endothelial markers (RECA-1 and CD-31) has
allowed for the screening of direct endothelial damage [14] and assessing tissue vascular
density when comparing BBB opening between sonicated tumour and normal tissue [54].
Major reported histopathological findings include a continuum of haemorrhagic change
within the brain parenchyma [19], oedema [9,20–26], neuronal ischaemia [28,29], tissue
apoptosis [23,27,28,30–34], immune cell infiltration, and gliosis. Reported histopathological
outcomes have been identified at a variety of endpoints, from immediately following [115]
to months after initial sonication [123], highlighting both the potential acuteness and
chronicity at which ultrasound-mediated BBB disruption may exert unwanted biological
effects. Histopathological assessments generally reinforce pathological findings on MRI,
but in some studies [62,92,93], they appear to highlight pathological change in the absence
of any on MRI, despite equivalent timing of data acquisition, suggesting higher sensitivity
for adverse pathological change.

3.4.3. Biochemical Assessments

Biochemical assessments, namely polymerase chain reaction, Western blotting and
enzyme-linked immunosorbent assays, have been employed in a handful of rat investi-
gations [26,27,100,105] to track changes in the expression of proinflammatory genes and
proteins following ultrasound-mediated BBB disruption. Of note, these studies have shown
an upregulation in the transcriptomic expression of proinflammatory genes related to
the NF-kB [26,27] (e.g., Ccl2, Ilα, Ilβ, Selp, Tnf, Icam1) and AkT/GSKβ pathways [27]
with larger doses of administered microbubbles. Furthermore, temporal changes in the
proteomic expression of Iba1 (activated microglia) and GFAP (reactive astrocyte marker)
have been described over a time course of 15 days [61]. Serum biochemical analysis was
employed as a safety assessment in one study, which reported an increase in fibrinogen
levels 8 days after sonication in animals exposed to the highest intensity ultrasound, likely
attributable to the corresponding histological findings [33]. These findings have generated
a link between ultrasound-mediated BBB disruption and subsequent proinflammatory
changes, and further work is required in assessing the significance and potentially deleteri-
ous effect this may have on the health of the sonicated brain.

3.4.4. Electrophysiological Assessments

Electrophysiological investigations following ultrasound-mediated BBB disruption, in-
cluding electroencephalography, electromyography, and somatosensory evoked potentials,
have been occasionally used within the identified literature, appearing in two NHP [21,56]
studies and a clinical trial [8]. One NHP study reported no abnormal electroencephalo-
graphic waveform changes, nor any to the somatosensory evoked potentials from the
median or popliteal nerves, following repeated BBB disruption of the primary motor cortex
over a 15-day period [56]. No differences in electromyographic signals from the temporalis
muscle of NHPs following repeat BBB disruption of basal ganglia structures were noted in
another investigation [21] either. In a clinical trial involving BBB disruption of the primary
motor cortex in ALS patients, electroencephalographic readings also remained unchanged
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after repeat sonications [8]. Although reassuring, these data are generated from a very small
sample size. Given the emerging role of ultrasound in the field of neuromodulation [128],
it is surprising to see the relative lack of neuro-electrophysiological analyses conducted
across current literature.

3.4.5. Physical and Behavioural Assessments

Physical and behavioural assessments have been employed to monitor safety out-
comes following ultrasound-mediated BBB disruption in a range of experimental models,
including in rodent, dog, NHP, and human studies. Adverse motor outcomes in rodents
have been assessed via rotarod and pinch grip tests, as well as via gross motor observations,
and outcomes have included periods of hypoactivity, tremor, and ataxia in rodents [33,84]
that underwent higher intensity sonications. Conversely, glioma-implanted rodents soni-
cated with similar intensity ultrasound and lower microbubble doses have exhibited no
changes in motor coordination or grip strength following ultrasound with lower intensity
ultrasound [78,90]. Other reported motor outcomes include mildly altered reaction times in
one NHP study [21] and reversible, mild upper-limb hemiplegia in another NHP study [24].
Physiological outcomes have been reported, including transient, microbubble-associated
tachycardia [78] and tachypnoea [56] in some rat and NHP studies, but these do not appear
to be corroborated by other preclinical [22] and clinical studies. Detailed neurological test-
ing following sonication in aged canines has also been conducted, yielding no changes in
neurological or mental status [123]. Additionally, long-term cognitive testing in NHPs [22]
via reward-based reaction and visual dot motion tasks has been conducted, revealing
no significant changes to cognitive decision-making abilities, but potentially eliciting a
reduction in motivation. Overall, motor and behavioural changes following BBB disruption
in preclinical models appear to be mild.

In clinical trials, physical findings most frequently included pain associated with
setting up and stabilising the patient’s head into the phased array transducer [8,10,11] or
minimal irritation from connecting the implanted transducer to its electrical supply [9]. In
one trial [9], a single patient experienced a transient facial palsy that occurred immediately
following three separate sonications, resolving within two hours after steroid adminis-
tration. Clinical trials have also incorporated neuropsychological assessments (e.g., Mini
Mental State Exam, Montreal Cognitive Assessment) to assess potential alterations in cog-
nition after BBB disruption in patients with Parkinson’s disease dementia [52], Alzheimer’s
dementia [10], and ALS [8]. In summary, the occurrence of adverse physical and be-
havioural outcomes following ultrasound-mediated BBB disruption in humans has been
infrequent and predominantly transient when present. Once again, these data are limited
due to small patient sample sizes and the lack of sham or control groups. Additionally,
significant patient neurological comorbidity in these trials makes it difficult to directly
attribute adverse events to ultrasound-mediated BBB disruption.

Table 2. Summary of safety assessments conducted by included protocols.

In Vivo
Subject

Study
Reference

Safety Assessments

Macroscopic Histological
Biochemical Electrophysiological Physical/

BehvaiouralMRI PET ∆T Gross H/E TUNEL VF LB CV PB GFAP Iba1 Other

Mouse

[38] X X
[73] X X X
[39] X
[74] X
[67] X
[75] X
[76] X
[60] X X
[77] X X
[68] X
[78] X X X
[61] X X X X (PCR + WB)
[31] X X X X
[62] X X
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Table 2. Cont.

In Vivo
Subject

Study
Reference

Safety Assessments

Macroscopic Histological
Biochemical Electrophysiological Physical/

BehvaiouralMRI PET ∆T Gross H/E TUNEL VF LB CV PB GFAP Iba1 Other

[79] X
[80] X
[81] X
[59] X X
[82] X
[83] X
[84] X X X X
[85] X X

Mouse

[86] X X X
[87] X
[66] X
[69] X
[88] X X X
[72] X X
[89] X X X
[43] X
[40] X X

Rat

[90] X X X
[15] X X
[91] X X
[70] X X
[92] X X
[14] X X X
[93] X X
[64] X
[45] X X X
[94] X
[95] X X
[96] X X X X X (AQP-4)
[97] X
[98] X X X
[99] X X X
[27] X X X X X X (ELISA, PCR, WB)
[100] X X X X X X (WB)
[65] X X X X
[101] X X
[102] X
[32] X X X
[103] X X X
[58] X
[48] X X X
[49] X X
[104] X X
[26] X X X (PCR)
[105] X X X (PCR)
[106] X X X X (ELISA)
[107] X X
[108] X X
[109] X X
[71] X X
[19] X X
[110] X X
[63] X X

[33] X X X X (Plasma
fibrinogen) X

[111] X X
[112] X X
[113] X
[114] X
[34] X X
[115] X
[116] X X
[117] X X X

Rabbit

[20] X X
[93] X X
[28] X X X
[30] X X X
[118] X
[25] X X
[119] X
[120] X
[121] X
[122] X

Dog [123] X X X X X
Pig [23] X X X

Sheep [29] X X X X X
[124] X X X X

NHP

[50] X X X
[21,22] X X (EMG) X

[44] X
[56] X X X X X X (EEG, SSEP) X
[125] X
[24] X X
[126] X X X X X X
[57] X
[127] X

Human

[8] X X X (EEG) X
[51] X X X X
[54] X X X
[52] X X X X
[9] X X
[10] X X X X
[11] X X
[53] X X

PET: positron emission tomography; ∆T: thermometry; H/E: haematoxylin and eosin; TUNEL: terminal deoxynucleotidyl
transferase dUTP nick end labelling; VF: vanadium acid fuchsin; LB: Luxol fast blue; CV: Cresyl violet; PB: Perl’s Prussian
blue; Iba1: ionized calcium-binding adaptor molecule 1; GFAP: glial fibrillary acidic protein; PCR: polymerase chain reaction;
WB: Western blotting; ELISA: enzyme-linked immunosorbent assay; EMG: electromyogram; EEG: electroencephalography;
SSEP: somatosensory evoked potentials
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3.5. Parameters Influencing Ultrasound-Mediated BBB Disruption

After an extensive review of all protocols identified amongst included studies, the
following parameter domains have been frequently investigated to assess their influence on
the efficacy and safety of ultrasound-mediated BBB disruption: microbubbles, transducer
frequency, peak negative pressure (PNP), pulsed delivery parameters (see Figure 5), the
duration of each sonication, and the dosing of ultrasound application. The transducer
frequency defines the frequency of the generated ultrasound wave, and the PNP reflects
the amplitude or intensity of the wave. Detailed parameters from each included study
are listed in Table S2 (Supplementary Materials), and a summary of the influence of each
parameter domain is listed in Tables 3 and 4.
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Figure 5. Overview of the pulsed delivery paradigm used for US delivery. (Created with Biorender.com
(accessed on 12 March 2022)).

3.5.1. Microbubbles

Five major commercially available microbubble formulations—Definity®/Luminity®,
Optison®, SonoVue®/Lumason®, Sonazoid®, and Usphere®—have been utilised in studies
investigating ultrasound-mediated BBB disruption. For reference, a comparison of these
microbubble formulations, as well as their frequency of use and typical dosing in included
studies, is included in Table 3. In addition, a handful of studies used in-house microbubbles,
some of which were drug-loaded [38,45,64,94], in an attempt to further potentiate localised
mechanical effects to move therapeutics across the BBB. Studies have also demonstrated
the potential of BBB disruption without microbubble administration [65,89]; however, this
was accomplished with a significant thermogenic effect [89] or by using higher intensity
ultrasound waves [65]. Direct comparisons of microbubble administration against no ad-
ministration have shown significant improvements in BBB disruption when microbubbles
are administered, at unifying parameters [90]. Without microbubbles, markedly higher PNP
sonications are required to achieve equitable BBB disruption, at the cost of poorer safety
outcomes [32,65]. A previous review [17] commented on the complexities of assessing
the effect of microbubbles on BBB disruption, referencing the lack of an accepted protocol
for handling and administering microbubbles, as well as the intersubjective differences
in cardiovascular function that result in variable microbubble concentrations at target
locations. While most investigations employing commercially available microbubbles have
cited adherence to manufacturer instructions on handling and preparation of microbubbles,
pre-activation vial temperature [129] and time between decanting/administration [130]
have been shown to alter the size distribution when using Definity® microbubbles. As for
the intersubject variability in cardiovascular function, this holds true for any administered

Biorender.com
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agent that relies on the cardiovascular system for transport and accumulation in specific
tissue vasculature and is a variable accounted for across the large number of studies in-
cluded in this review. According to the review of the included literature, current in vivo
evidence suggests the following microbubble-related factors influence the degree of BBB
disruption and its safety: (1) microbubble characteristics, (2) dosing, and (3) timing/method
of administration.

Microbubble Characteristics

A comparison of three commercially available microbubble formulations (SonoVue®

vs. Definity® vs. Usphere™) in rats found comparable BBB opening and safety results
between Definity® and Upshere™, while sonications with SonoVue® yielded significantly
greater BBB opening than the other two microbubble formulations, at the lowest investi-
gated ultrasound intensity [112]. More specific rodent investigations [85] sought to compare
the effect of differing microbubble gas core composition (C3F- vs. C4F10- vs. SF6-filled),
by administering equal doses of in-house microbubbles with identical shell composition
and sizes. C3F8- and C4F10-filled microbubbles yielded significantly greater BBB disruption
than SF6-filled ones, suggesting that microbubble gas composition specifically influences
the ability to induce BBB disruption. These findings correlated with additional compar-
ative findings where Sonazoid® (C4F10-filled) microbubbles yielded significantly greater
BBB disruption than comparably sized SonoVue® (SF6) microbubbles, at unifying doses,
administration timing, and ultrasound exposure parameters. The influence of microbubble
size or diameter has also been investigated across three studies that directly compared
compositionally identical, in-house microbubbles of different average diameters (1 to 2 µm
vs. 4 to 5 µm [75]; 1 to 2 µm vs. 4 to 5 µm vs. 6 to 8 µm [66,72]; 2 µm vs. 6 µm [110]).
Findings concluded that larger diameter microbubbles caused a linear increase in BBB
disruption [72], resulting in more prolonged [66] BBB opening, while only mildly elevating
the potential for tissue damage [72]. This trend was supported by another study [45]
that compared SonoVue® (2.5 µm) with in-house (1.1 µm) microbubbles of similar com-
position. Additionally, increased proinflammatory gene expression has been observed
in one study with the use of larger (4.2 µm vs. 1 to 1.5 µm) microbubbles, albeit with
differing gas compositions [105]. Based on these data, the administration of larger diameter
microbubbles appears to reduce the threshold for achieving BBB opening, requiring lower
PNP sonications. Ultimately, a range of microbubble formulations have been used for safe
ultrasound-mediated BBB disruption with an appropriate selection of sonication param-
eters, but differences in the efficacy of each microbubble formulation do appear and are
likely attributable to variations in microbubble characteristics between formulations. Thus
far, only Definity® [8,131] and SonoVue® [9,54] microbubbles have been used in clinical
trials, likely due to their FDA approval and frequent use in preclinical studies.

Microbubble Dosing

The association between microbubble dosing, BBB disruption, and subsequent safety
outcomes has been studied in numerous investigations with rodent and rabbit subjects [19,
26,33,34,40,62,63,76,79,110,113,120]. The consensus from these findings is that using escalat-
ing microbubble dose only mildly increases the disruption and opening of the BBB, an effect
that is often statistically insignificant when quantified [19,60,120]. Additionally, there seems
to be an upper threshold microbubble dose for which subsequent administration of larger
doses seems to cause BBB disruption to plateau [132] or paradoxically decrease [33,34,79]
in rodents. Aberrations in this trend were noted when a range of microbubble doses were
investigated in combination with (1) non-pulsed, unfocused ultrasound from a diagnostic,
imaging transducer [39]; and (2) pulsed ultrasound, using a focused transducer [63]. In
these studies, a significant positive correlation between microbubble dose and degree of
BBB disruption was established, albeit with extensive tissue damage at higher doses. From
available data, we can conclude that escalating microbubble dose may yield mildly elevated
BBB disruption, usually up to a certain upper threshold dose, and with some heterogeneity
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in this trend observed among a few of the identified investigations. On the other hand,
there seems to be a more consistent relationship between escalating microbubble doses
and the increased risk of adverse safety outcomes reported by these same studies. This
includes numerous reports of significant tissue damage [33,34,79], increased expression
of proinflammatory genes associated with the NF-kB pathway [26], and greater cellular
apoptosis [33,34].

Timing and Method of Microbubble Administration

In all identified protocols, microbubbles were administered via an intravenous route
and were usually administered immediately prior to or at the onset of ultrasound ap-
plication. As per the method of administration, evidence [79,108] has suggested that a
prolonged intravenous infusion across the entire sonication period yields more reproducible
and consistent, but not necessarily greater, BBB disruption when multiple cerebral foci are
targeted [126]. It is theorised these differences can be attributed to the rapidly changing
intravascular concentration of microbubbles attributed to bolus dosing, versus more stable
microbubble availability attributable to infusion dosing [17]. Conversely, one rodent study
assessed the extent of microbubble administration over 30 and 180 s infusion periods,
reporting no significant difference in the extent of BBB disruption [76]. There is also some
evidence to support that an infusion administration may yield less oedematous foci on T2
MRI, as compared to bolus administration [108]. More recent clinical trials have adopted
microbubble infusion protocols continuously throughout the applied sonications [131,133].

Table 3. Comparison of five major commercially available microbubble formulations used in studies
for ultrasound-mediated BBB disruption (information sourced from manufacturer) and typical doses.

Agent Manufacturer Shell
Composition

Gas Core
Composition

Mean Bubble
Diameter (µm)

Bubble
Concentration
(Bubbles/mL)

Use in Identified Studies

Definity®/Luminity® Lantheus Medical
Imaging Lipid C3F8 1.1–3.3 1.2 × 1010

Used in n = 42 preclinical studies
(typical doses: 10–20 µL/kg) and

n = 6 clinical studies
(typical dose: 4 µL/kg)

Optison® GE Healthcare Protein C3F8 3.0–4.5 5–8 × 108
Used in n = 14 preclinical studies
(typical doses: 50–100 µL/kg but

significantly varied in mice studies)

SonoVue®/Lumason® Bracco Diagnostics Lipid SF6 1.5–2.5 1.5–5.6 × 108

Used in n = 29 preclinical studies
(typical doses 25–150 µL/kg) and

n = 2 clinical studies
(typical dose: 100 µL/kg)

Usphere Prime® Trust
Bio-sonics Lipid C3F8 1.0 2.8 × 1010 Used in n = 1 preclinical study

Sonazoid® GE Healthcare Lipid C4F10 2.0–3.0 9 × 108 Used in n = 1 preclinical study

3.5.2. Transducer Frequency

While a range of transducer frequencies, from 28 kHz [23,102] to 10 MHz [45], have
been applied to disrupt and open the BBB, the majority of these protocols have employed
frequencies that fall within a narrower range of 0.2 to 1.5 MHz amongst in vivo subjects.
Among clinical trials, data currently exist for the application of only three ultrasound
frequencies—ExAblate® Neuro (0.22 MHz), SonoCloud-1® (1.05 MHz), and NaviFUS®

(0.5 MHz). In general, lower frequency ultrasound application (e.g., 28 kHz) has been
shown to have greater tissue penetration, but a wider tissue focus, resulting in less targeted,
ill-defined BBB disruption [102]. Conversely, higher frequency ultrasound beams tend to be
more collimated, less tissue penetrative [94], and more likely to undergo tissue attenuation,
resulting in greater beam aberration [134] and thermal energy liberation in the surrounding
tissue, especially at the bony interface of the skull. We identified four preclinical, parametric
studies that directly investigated the effect of altering the central frequency of a single-
element transducer on BBB disruption efficacy and safety outcomes [19,45,94,119].
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McDannold et al. [119] evaluated sonications of a variety of frequencies (0.26 MHz [30,118]
vs. 0.69 MHz [25,28,120] vs. 1.63 MHz [7] vs. 2.04 MHz [119]) from multiple rabbit investi-
gations. In their comparison, escalating frequencies had a higher threshold for BBB opening,
requiring more intense, higher PNP ultrasound to achieve BBB disruption. This led to the
conclusion that the threshold for successful BBB disruption was more appropriately depen-
dent on the mechanical index (MI)—a ratio of the PNP over the square root of the transducer
frequency. An estimated MI of 0.46 was identified as a threshold at which successful BBB
disruption was achieved across all tested frequencies. Following up on this work, subse-
quent investigations comparing sonications with 1 MHz vs. 10 MHz [45,94] and 0.5 MHz
vs. 1.6 MHz [19] ultrasound transducers have been conducted in rats. Findings from these
studies support the notion that significantly higher PNP sonications are required to achieve
BBB disruption with escalating frequencies, further consolidating the idea of an MI-dependent
threshold. However, an MI threshold for BBB disruption was not observed when comparing
1 MHz to 10 MHz sonications [45,94], as was observed between frequencies used in other
studies [19,119], and this may be due to the larger difference in frequencies tested between
these studies. Lower frequency sonications, both at an equivalent MI [45,94] and at equiva-
lent PNPs [19], produced a much larger area of BBB disruption, accompanied by off-target
involvement, upon gross evaluation of Evans blue extravasation. This is believed to be due to
the production of standing waves [135], enhanced reflection of ultrasound waves at the skull,
and re-penetration into the brain’s parenchyma [94].

Despite requiring greater PNPs to achieve BBB disruption, higher frequency sonica-
tions show mild to significantly favourable safety outcomes over lower frequency sonica-
tions, when observed 2–6 h after sonication. After applying higher frequency sonications,
McDannold et al. [119] reported a subtle reduction in microhaemorrhagic damage in tissue
sonicated with 2.04 MHz as compared to 0.26 MHz ultrasound but an increased density of
these red blood cell extravasations relative to the area of tissue region exposed to the ultra-
sound. Fan et al. [45,94] highlighted significantly greater haemorrhagic and oedematous
change on MRI, gross, and microscopic examinations in brains sonicated with frequencies
of 1 MHz than 10 MHz, both when controlling for MI [94] and PNP [45]. It is important
to note that McDannold et al. [119] and Fan et al. [45] both applied ultrasound to rabbits
and rodents via a craniotomy site, thereby reducing the potential of beam defocussing and
attenuation from transcranial application.

3.5.3. Peak Negative Pressure

The effect of PNP has been directly examined in a plethora of studies, including
in rodents [15,19,31–33,45,62,63,65,69,80,81,87,88,93,94,101,112], rabbits [20,25,28,30,118],
sheep [29,124], and even clinical trials [9]. Unfortunately, the accurate determination of PNP
remains challenging [18] as in vivo PNP is difficult to measure; instead, in vitro pressures
are measured and combined with skull attenuation coefficients to provide an estimate of
the in vivo PNP [31]. While this may impede comparisons of PNPs between studies, data
and trends from within studies can be useful in determining optimal parameters for safe
and effective BBB disruption. We found that sonication PNPs at which safe and effective
BBB disruption has been accomplished ranged from 0.2 to 0.5 MPa in most preclinical
animal studies (see Table 4), with some utilising higher PNPs safely with higher frequency
transducers (>1 MHz) [32,45,94,103]. It has been difficult to establish a narrow range of
PNPs routinely used amongst clinical trials, as in their design they each test a range of
PNPs across repeated sonications, ranging from 0.48 to 1.15 MPa [9,54], and 2.5 [10] to
60 W [52] of applied power.

General findings suggest that a threshold PNP is required for a given frequency of
applied ultrasound (threshold MI), after which BBB disruption is achieved [67,88]. There is
then a narrow therapeutic window at which a positive dose–response relationship exists,
where raising the applied PNP improves the degree of BBB disruption, without materially
impacting safety [19,25,32]. After this, continued elevations in PNP confer improvements
in BBB disruption and opening, but also worsen safety outcomes, achieving a state of
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dose-limiting toxicity [65,68,73]. Eventually, a plateau is obtained [32,63], at which further
escalations in PNP cause insignificant improvements to BBB disruption, while continuing
to worsen safety outcomes [25,32]. After surpassing the threshold PNP required for BBB
opening, and prior to this relationship plateauing, preclinical studies have identified linear
relationships with escalating PNP and the volume of BBB opening on MRI [66,72,75], the
extravasation of dextrans [67], and the uptake of therapeutic agents such as Herceptin [31].
Clinical trials in glioblastoma patients have also shown an increasing degree of BBB disrup-
tion with escalating PNP sonications [9,54], albeit with increased incidence of oedema [9].
Interestingly, one study noted that the uptake of a chemotherapeutic agent, BCNU, in-
creased as the sonication PNP was raised from 0.45 to 0.62 MPa, peaked at 0.62 MPa, but
decreased with subsequent elevations in PNP (0.98 and 1.38 MPa), despite an increase in
contrast enhancement on MRI at these higher pressures [101]. The PNP has also been shown
to influence the size [69] and molecular weight [67] of agents capable of passing through
the BBB, with current evidence suggesting that higher, and therefore less safe, PNPs are
required for transporting larger substances. Additionally, sonications of increasing PNP
have been shown to prolong the reversibility or closure time following the disruption and
opening of the BBB [65,66]. Furthermore, one study reported the effect of BBB disruption
produced with PNPs of 0.55 and 0.81 MPa on downregulating the immunohistochemical
expression of a key cerebrovascular drug-efflux pump—P-glycoprotein—for 48 and 72 h
after sonication, respectively [15]. This finding suggests that increasing the PNP of ultra-
sound may go beyond exerting mechanical effects on the BBB and may additionally cause
biochemical changes that favour drug accumulation in the brain.

The increasing presence of adverse safety events associated with escalating PNPs has
been proposed to be due to the increased frequency of inertial cavitation in microbub-
bles. These events are demonstrated by the presence of broad or wide-band acoustic
emissions from sonicated microbubbles, detected via a receiving ultrasound transducer
element [30,45,67,112]. Collectively, this monitoring process is known as passive cavitation
detection or acoustic emissions monitoring and has resulted in a paradigm shift in sonica-
tion delivery, where a dynamic power ramp technique is utilised to determine optimal PNP
as opposed to applying static PNP sonications. Here, power is incrementally escalated to
produce sonications of graduating PNP, and this power is stabilised when ultraharmonic
and subharmonic signals (indicating stable cavitation) are detected, or the power is reduced
if any wide-band emissions (indicating inertial cavitation) are detected. This variable power
ramp delivery protocol has been applied successfully to produce safe BBB disruption in
rodent [26,93], NHP [50,126], and clinical studies [10].

3.5.4. Pulse Characteristics

Amongst identified investigations, ultrasound is typically delivered in a non-continuous,
pulsed manner, with a small minority applying a continuous ultrasound scheme [40,89,121,122].
A pulsed delivery approach has been adopted as a mainstay to limit the exposure time to
ultrasound in delicate brain tissue and has been shown to significantly reduce the thermogenic
effect [89] associated with the continuous application of ultrasound. Of the four studies
that applied a continuous ultrasound paradigm, one study was able to disrupt the BBB
reproducibly, without adverse histopathological events, using a diagnostic, imaging ultrasound
transducer [40]. We identified two primary variables that have intimately influenced the
efficacy and safety of ultrasound-mediated BBB disruption: the length or duration of each
pulse, consisting of one or more excitatory cycles of acoustic pressure waves, and the pulse
repetition frequency, how frequently these series of pulses repeat (see Figure 5). Additionally,
more novel iterations in discontinuous ultrasound delivery have emerged, including the
delivery of ultrasound bursts (consisting of shorter, phasic pulses) over more commonly used
tonic pulses (consisting of a longer pulse) [59,60,83,108].
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Pulse Length

While pulse lengths as low as 0.35 µs [39] and as high as 100 ms [19,23,102] have been
used to disrupt the BBB via pulsed ultrasound, a majority of preclinical studies appear
to use pulses of 10 ms in length. In clinical studies, pulse lengths of 2 to 3 ms [8,10,11,53]
have been used with the ExAblate® Neuro device, and pulse lengths of 10 ms [54] and
23.8 ms [9] have been used with the NaviFUS® and SonoCloud-1® devices, respectively. We
identified six parametric, preclinical studies that directly investigated the efficacy and safety
outcomes of a range of pulse lengths. Escalating pulse length from 0.1 to 10 ms appeared to
consistently increase BBB disruption in all six studies; in two studies, subsequently higher
pulse length appeared to yield no significant improvements in BBB disruption efficacy,
whilst simultaneously worsening safety outcomes [7,76]. Three studies did not corroborate
this plateauing effect with sonications of pulse length >10 ms, highlighting a larger area of
BBB disruption following sonications of 50 [102] and 100 ms [19,102] pulses, respectively.
This effect may be attributable to the use of a diagnostic, imaging transducer, operating at a
lower central frequency (28 kHz), delivering higher MI (MI = 4.78) sonications in two of the
three studies by Liu et al. [23,102]. However, the transducer type and parameters utilised
by Shin et al. [19] were comparable to the two studies that did highlight a plateauing effect
with lengthening pulses >10 ms, making this previously described trend [7,18,120] less
definitive. The threshold PNP required to successfully open the BBB has been shown to
decrease with escalating pulse lengths from 0.1 to 10 ms in one study [120], likely due
to the greater cumulative effect from more prolonged ultrasound pulses. Additionally,
with sonications of pulse lengths ≥10 ms, the spatial distribution of tracers appears more
heterogeneous, with significantly greater accumulation around blood vessels and less even
parenchymal distribution than is observed with pulse lengths <10 ms [76,83]. Nonetheless,
from the currently available literature, it appears that sonications of pulse lengths ≤10 ms
appear to provide the greatest efficacy and safety benefits for ultrasound-mediated BBB
disruption, when controlling for all other parameters.

Phasic vs. Tonic Pulses

More recently, the use of rapid, short pulse sonications or phasic pulses consisting of
bursts (as opposed to more continuous tonic pulses) has been investigated for its potential
to disrupt and open the BBB more homogeneously. Benefits of phasic pulses are theorised
to occur via increased intraburst microbubble transit time, and the reduction in standing
waves afforded with shorter, phasic pulse sequences [60,108]. Reports of ultrasound-
mediated BBB disruption with phasic pulses have explored the use of pulse lengths ranging
from 2.3 to 5 µs in length. Direct comparisons between phasic and tonic pulse sequences
in mice have had mixed results, with some studies [82,83] reporting safer BBB disruption,
with improved homogeneity and improved BBB reversibility, and another [59] reporting
worse safety outcomes, with no improvements in the homogeneity or reversibility of BBB
disruption with phasic pulsed schemes. These conflicting findings may be attributable
to the differences in ultrasound frequency (1 [83] vs. 1.78 MHz [59]), microbubble type,
and administration method (30 s infusion [83] vs. bolus [59]) between these studies. All
studies thus far have exhibited a lower degree of BBB disruption with phasic pulses at
unifying parameters, suggesting this protocol may provide a more conservative opening of
the BBB. The use of phasic pulse regimens could provide safer, better-distributed delivery
of therapeutics into the CNS, but it currently requires further investigation across a broader
set of parameters for more conclusive data.

Pulse Repetition Frequency

Most sonication protocols that we identified utilised pulse repetition frequencies that
fell within a range of 1–10 Hz in preclinical and clinical studies that employed single-
element ultrasound transducers [9,54]. Clinical trials utilising the ExAblate® multi-element,
phased array device appear to utilise pulse repetition frequency of 30 to 31 Hz instead.
The effect of pulse repetition frequency on BBB disruption efficacy and safety has been
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studied in a limited fashion, by five parametric studies that investigated this relation-
ship [19,60,76,108,120]. Evidence from these studies appears to suggest a threshold pulse
repetition frequency, and therefore a minimum number of pulses over a given duration of
sonication, required to achieve successful BBB disruption [76]. After surpassing a relatively
low pulse repetition frequency threshold, the effect of escalating pulse repetition frequen-
cies has been inconsistent. Two studies reported no statistically significant improvement in
BBB disruption minutes following tonic pulsed sonications of pulse repetition frequency
1–25 Hz [76] and 0.5 to 5 Hz [120], respectively. Contrary to these findings, three stud-
ies have reported significantly improved BBB disruption with escalating pulse repetition
frequencies, both with longer, tonic pulsed sonications (pulse repetition frequency 1 to
5 Hz) [19] and with shorter, phasic pulsed sonications as part of a burst sequence (pulse
repetition frequencies 6250 to 100,000 Hz [60] and 1 to 166,666 Hz [108]). Safety outcomes
from escalating pulse repetition frequencies were either mildly improved [108] or showed
no significant differences [19,60,76,120] within hours following the last sonication. These
inconsistencies warrant further parametric study into the effect of using higher pulse
repetition frequency sonications and may help in further optimisation of safer parameters.

3.5.5. Sonication Duration

The sonication duration is another parameter that tends to affect the efficacy and safety
of ultrasound-mediated BBB disruption, as it describes the time of exposure to ultrasound
in one given application. Amongst all the study protocols we reviewed, the majority of son-
ication durations fell between 0.5 and 2 min, and this remained consistent in the protocols
of clinical studies as well. Sonication durations as low as 6 s [121,122], with non-pulsed
ultrasound, and as high as 20 min [93], with pulsed ultrasound, have also been shown to
induce sufficient BBB disruption. From parametric studies, there appears to be a positive
correlation between increasing sonication duration and the degree of BBB disruption, with
the eventual trade-off being worsening safety outcomes following exposure to excessively
long sonications both with pulsed [19,20,102] and continuous delivery ultrasound-mediated
BBB disruption [40,121]. Additional data suggest that eventually a threshold is reached,
where the effect of increasing the sonication duration saturates [93,115], and excessive tissue
damage is observed [93]. Interestingly, one investigation digressed from this trend, where
significant changes in the sonication duration resulted in mild but statistically insignificant
increases in BBB disruption, without any observed histopathological change [76]. The
authors of this study hypothesised that this was due to the fact BBB disruption saturating
potential had already been achieved using the lowest tested sonication duration of 30 s,
and this may be attributed to the higher frequency of pulsed ultrasound used, as compared
to the other parametric studies identified.

3.5.6. Dosing (Number and Frequency) of Ultrasound Applications

In this review, we divided the application of ultrasound into two categories—a son-
ication and a session. A session was defined as an application period, consisting of one
ultrasound sonication or numerous ultrasound sonications separated by an interval of
usually minutes to an hour (intersonication interval). Sessions are usually separated by
a larger interval of time, on the timescale of days to weeks apart (intersession interval).
The partition of ultrasound applications into these categories helps in understanding the
effect of cumulative ultrasound acutely (after multiple sonications) and chronically (after
multiple sessions). Ultimately, multiple sonications, and multiple sessions of ultrasound-
mediated BBB disruption over months to years, would need to be safely tolerated if this
approach is to achieve widescale clinical use for improving drug delivery in patients with
CNS malignancies, dementias, and other neurodegenerative diseases.

Ultrasound Sonications

Repeating an ultrasound sonication once (double sonication) has been shown to
significantly improve the magnitude of BBB duration and duration of BBB opening when
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compared to a single sonication [71,115] at the same target site. Additionally, the choice
of the intersonication interval may influence the penetration and uptake of drugs into
the brain, and specific drug half-lives may need to be considered when determining the
most appropriate intersonication interval [71]. Unfortunately, efficacy data from more
than repeat sonications are non-existent, as no further studies have directly compared the
effect of an equivalent single sonication against more than two repeat sonications. Other
studies, both preclinical and clinical [9,52], have tested a greater range of repeat sonications
but have not adequately reported group-specific data on BBB disruption efficacy. When
directly compared, the safety of double sonications appears to be similar to [71] or slightly
worse than [115] a single sonication. Indirect comparisons from two different studies that
utilised equivalent ultrasound parameters highlighted worsening MRI and histological
safety outcomes after increasing the number of sonications per session from two [48] to
four [49], over three weekly ultrasound sessions. Safety outcomes from other protocols
employing repeat sonications have been generally favourable, but also variable, with
some studies reporting worsening outcomes [33,93] but most reporting no differences in
healthy [84,109], aging [29], and glioma animal models [43,78] and clinical [8,11,54] studies.
Additional evidence also suggests that multiple, lower PNP/MI sonications can produce a
greater area of BBB disruption than a single, higher PNP/MI sonication, with improved
safety outcomes [103].

Ultrasound Sessions

The effect of multiple, repeat ultrasound sessions on the degree of BBB disruption
is unclear, as the few identified studies that directly compared single against multiple
ultrasound session applications did not investigate differences in the efficacy of BBB dis-
ruption between these groups [43,93]. In addition, studies that conducted multiple, repeat
sessions of ultrasound-mediated BBB disruption (Table 4) have not sought to investigate the
potential of a cumulative effect of these sessions on the long-term integrity and permeability
of the BBB. Subsequent ultrasound sessions have been shown to require sonications with
gradually escalating PNPs in order to achieve BBB disruption in animal models [93,99,100].
This is likely attributable to the general growth and the increase in skull thickness observed
in animal models [70,71,99] and has not been a finding corroborated in adult clinical tri-
als [9,53]. Adverse radiographic safety outcomes following long-term, repeat ultrasound
sessions have been generally favourable in NHP [70,84] and clinical studies [9,53]. How-
ever, transient MRI lesions (suggestive of microhaemorrhagic and oedematous change)
have developed following repeat sessions in some NHP [21,22] and human [9,10] subjects.
Long-term behavioural and clinical evaluations appear to be favourable in rodents [84],
NHPs [21,22], and humans [52]. Histopathological investigation of these NHP and human
studies has been limited, and only half of NHP [50,56,126] and no human studies inves-
tigated any histological outcomes following repeat sessions of ultrasound-mediated BBB
disruption. Adverse histological outcomes in NHPs have ranged from minimal to moderate
microhaemorrhagic change and, in one study [126], occurred despite the absence of any
MRI abnormalities. Rodent investigations [99,100] have observed worsening adverse safety
events after numerous, weekly ultrasound sessions. These include permanent structural
changes on MRI (microhaemorrhagic/oedematous lesion, enlarged ventricles), histopatho-
logical evidence of macrophage infiltration, increasing accumulation of phosphorylated
tau [100], and evidence of neurogenesis [100]. Furthermore, one study reported worsening
tissue damage after multi-session ultrasound applications coupled with liposomal doxoru-
bicin delivery in a glioma rodent model [70]. Interestingly, no tissue damage was observed
after multiple ultrasound sessions without liposomal doxorubicin co-administration [70],
suggesting that the repeat co-administration of certain chemotherapeutic drugs may either
directly damage surrounding tissue or lower the threshold for inertial cavitation-induced
ultrasound damage. These study findings, as well as the occurrence of a sparse number of
transient MRI abnormalities in NHP and clinical studies with already limited sample sizes,
highlight uncertainty around the chronic safety of ultrasound-mediated BBB disruption on
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tissue health, challenging the narrative that repeat sessions of ultrasound-mediated BBB
disruption are generally safe, as presented in prior reviews [17,18].

4. Discussion

After an extensive systematic review of currently available literature, we feel we have
comprehensively summarised the parameters used in published protocols of ultrasound-
mediated BBB disruption for enhanced drug delivery, as well as the subsequent effects on
efficacy and safety (Table S2—Supplementary Materials). We have also listed parameter
ranges at which effective BBB disruption has been conducted with the most favourable
safety outcomes (Table 4). The heterogeneity in protocols used to ultrasonically disrupt
the BBB in included studies is apparent; thus, more rigorous standardisation is required,
especially in the setting of clinical trials. In addition, we have identified several areas
related to the procedure itself, as well as the techniques used to analyse its efficacy and
safety, where the body of current knowledge is less established.

Firstly, in relation to the procedure of ultrasound-mediated BBB disruption, an emerg-
ing subset of investigations in this field have proposed the benefit of shorter, phased pulses
of ultrasound over longer, tonic pulsed schemes that have predominated thus far. The use
of phasic pulses may improve the homogeneity and safety of ultrasound-mediated BBB
disruption, at the cost of opening the BBB to a smaller degree. As a result, this ultrasound
pulse protocol may be applicable in frequent sessions of BBB disruption for the delivery of
therapeutics for less aggressive, chronic CNS conditions, but further work is required to
translate these findings beyond the subset of rodent studies currently available. Advances
in microbubbles, namely in designing and testing microbubbles with more optimal charac-
teristics (larger diameters and C3H8 or C4H10 gas filling) may also play a role in enhancing
the efficacy and safety of ultrasound-mediated BBB disruption.

Secondly, the methods used to confirm ultrasound-mediated BBB disruption have
relied upon the visualisation of proxy markers, mainly histological tracers or gadolinium-
based MRI contrast agents. While these tracers have been essential in demonstrating proof
of concept of ultrasound-mediated BBB disruption, they are ultimately not the intended
therapeutic molecules needing to be delivered into the CNS. Studies have identified that
the molecular weight, half-life, and timing of administration [70,71] influence the ability
of a drug to traverse a disrupted BBB following ultrasound, and thus more research is
required to track the uptake and transport of drug molecules not only across the BBB but to
desired target cells.

Thirdly, the type of safety assessments conducted throughout the investigations we
identified have overwhelmingly focused on structural alterations in sonicated neural
tissue, both at gross and microscopic anatomical levels (e.g., haemorrhagic, cellular, and
oedematous change). This has created a gap in our understanding of the physiological
changes that follow ultrasound-mediated BBB disruption and, of note, the possibility of
long-term inflammatory changes persisting after the passing of cerebrovascular contents
through the BBB. Current proteomic and transcriptomic analyses seem to suggest an
upregulation of proinflammatory genes following ultrasound-mediated BBB disruption, but
the effect of this, if any, on neural tissue functioning remains to be seen. Electrophysiological
changes following parameters used for ultrasound-mediated BBB disruption is another
understudied area, particularly as neuromodulation and stimulation is an emerging area
of therapeutic ultrasound research [128]. Surprisingly, none of the studies we identified
sought to assess the impact of ultrasound delivery on the cranial bone and surrounding
soft-tissue structures (skin, connective tissue, galea), even though most protocols involve
ultrasound application transcranially, and the cranium remains the first point of tissue
contact with the ultrasound beam.

After reviewing studies that repeatedly disrupted the BBB over chronic testing pe-
riods, we feel there is insufficient evidence to suggest that ultrasound can be frequently
and chronically applied without exhibiting some degree of damage. NHP and human
studies trialling chronic sessions of ultrasound-mediated BBB disruption have reported
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the presence of some adverse events, mainly transient MRI, and behavioural/clinical ab-
normalities. Conversely, rodent studies have highlighted permanent MRI and histological
adverse changes from chronic exposure. While these differences in safety outcomes may be
attributable to interstudy protocol variability, or anatomical differences between humans,
NHPs, and rodents, a definitive suggestion of repeatably safe ultrasound-mediated BBB
disruption is difficult to make given the limited and conflicting dataset. While some adverse
events, whether transient or permanent, may be an acceptable risk when treating advanced
CNS conditions, the prevalence and long-term impact of any adverse event on pre-existing
neurological morbidity are currently not known in humans. Additionally, current NHP
and clinical evidence is limited, both by small sample sizes (n<10 in most studies) and the
sparsity of histological and biochemical safety analyses. Pharmacological strategies such as
dexamethasone administration in an attempt to attenuate inflammatory response follow-
ing ultrasound-mediated BBB disruption may also play an important role in the clinical
adoption of this technique in treating chronic CNS conditions [106] and therefore represent
another area of further research. Emerging evidence on the benefit of real-time imaging
techniques such as Doppler [136] and photoacoustic imaging [136,137] may provide further
technological advances in the clinical confirmation of ultrasound-mediated BBB opening
without the need for MRI.

5. Conclusions

Greater standardisation of protocols and parameters used in preclinical and clinical
studies investigating ultrasound-mediated BBB disruption is required for advancing clinical
translation. Future studies should strive to further characterise the efficacy of ultrasound-
mediated BBB disruption. This should focus on not only the opening of the BBB to MRI con-
trast agents, but also the delivery of intended drug molecules and their subsequent benefit in
outcomes related to CNS conditions (e.g., reduced tumour progression and improved survival
rates with high-grade cancers, reduced cognitive decline in dementia). Currently, numerous,
larger clinical trials involving CNS cancer [138] (NCT04440358, NCT04528680, NCT04614493,
NCT03744026, NCT04804709) and dementia (NCT04118764) patients are ongoing. The data
from these trials will hopefully provide greater clarity to our overall understanding of the
long-term safety, tolerability, and efficacy of cumulative ultrasound-mediated BBB disruption
and enhanced drug delivery in patients with advanced CNS conditions.

Table 4. Summary of safe and effective parameters used in identified studies and reported relation-
ships between parameter escalation and BBB disruption efficacy and safety outcomes.

Parameter Safe and Effective
Parameters Commonly Used Parameters Compared Reported Effects on BBBD

(Efficacy Outcomes) Reported Safety Outcomes

Transducer Frequency
Preclinical: 0.20–1.50 MHz

Clinical: 0.22, 0.50, and
1.05 MHz

0.26, 0.69, 1.63, 2.04 MHz
[119] Increasing frequency: greater

PNP required to achieve
BBBD [19,45,94,119]; smaller
foci/area of BBBD [19,45,94]

Increasing frequency: increased
density of microhaemorrhagic

activity [119]; decreased
haemorrhagic [19,45,94] and

oedematous activity [45]

1 and 10 MHz
[45,94]

0.5 and 1.6 MHz
[19]

PNP

Preclinical: 0.2–0.5 MPa with
<1 MHz transducers

Clinical: 0.48–1.15 MPa and
2.5–60 W power

0.30, 0.46, 0.61, 0.75, 0.98 MPa
[73]

Increasing PNP: increasing
BBBD after surpassing

threshold PNP [9,15,45,65,73];
eventual saturation point in
BBBD [32]; prolonged BBB
opening [65,66]; prolonged

P-glycoprotein
downregulation [15]

Increasing PNP: increased
haemorrhagic [15,19,65,66,73,93]

and microhaemorrhagic
change [73,93]; neuropil loss;

neuronal loss [73,93] and
necrosis [93]; evidence of
apoptosis [45]; cerebral

oedema [9,45];
hypoactivity/ataxia/tremor [33]

0.55, 0.81 MPa
[15]

0.27, 0.39, 0.59, 0.78 MPa
[93]

0.3, 0.5, 1.0, 1.5, 2.0, 2.5,
4.5 MPa
[45,94]

1.1, 1.9, 2.45, and 3.5 MPa
[65]
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Table 4. Cont.

Parameter Safe and Effective
Parameters Commonly Used Parameters Compared Reported Effects on BBBD

(Efficacy Outcomes) Reported Safety Outcomes

0.45, 0.62, 0.98, 1.32 MPa
[101]

0.55, 0.78, 1.1, 1.9, 2.45, 3.47,
4.9 MPa

[32]

PNP

Preclinical: 0.2–0.5 MPa with
<1 MHz transducers

Clinical: 0.48–1.15 MPa and
2.5–60 W power

0.2, 0.3, 0.6, 1.5 MPa
[19]

0.30, 0.51, 0.89 MPa
[33]

0.4, 0.5 0.8, 1.1, 1.4, 2.3,
3.1 MPa

[28]

0.2, 0.4, 0.5, 0.8, 1.1, 1.8 MPa
[25]

0.78, 0.90, 1.03, 1.15 MPa [9]

PL
Preclinical: 10 ms

Clinical: 2–3, 10, and 23.6 ms

0.1, 0.2, 1.0, 2.0, 10, 20, 30 ms
[76]

Increasing PL: increasing
BBBD with PL 0.1–10 ms;

statistically non-significant
increase in BBBD after

PL > 10 ms [7,76]; decreased
PNP threshold

(PL = 0.1–10 ms) [120];
heterogeneous distribution of

BBBD/greater perivascular
accumulation of tracer [76]

Increasing PL: no
microhaemorrhagic change with
PL ≤ 10 ms [19,120]; significant

haemorrhagic change with
PL = 100 ms [19,23]; evidence of
apoptosis with PL = 100 ms [23]

1, 10, 100 ms
[19]

10, 100 ms
[7]

0.1, 1, 10 ms
[120]

30, 100 ms
[23]

10, 50 and 100 ms
[102]

PRF
Preclinical: 1–10 Hz

Clinical: 1–10 Hz and
30–31 Hz

0.1, 1, 1, 10, 25 Hz[76]

Increasing PRF: no BBBD
with PRF = 0.1 Hz [76];

inconsistent improvements in
BBBD with tonic pulsed
sequences, some being

statistically significant [19]
and others not [76,120];

improvements in BBBD with
rapid, phasic pulses [60,108]

Increasing PRF: no increase in
adverse safety outcomes, via

MRI [108] and
histology [19,60,76,108,120]

0.5, 1, 2, 5 Hz
[120]

1, 2, 5 Hz
[19]

1, 1667, 3333, 16,667,
166,667 Hz

[108]

6250, 25,000, 100,000 Hz
[60]

SD
Preclinical: 30–120 sClinical:

30–120 s; 150–270 s in
one study

30, 660 s
[76]

Increasing SD: improved
BBBD with pulsed [19,93,102]

and continuously [40,121]
applied US; plateauing effect
thereafter [93,115]; one study
reported no improvement in

BBBD [76]

Increasing SD: minimal change in
adverse safety outcomes with

small increases, and significantly
worsening safety outcomes

with excessive
increases [19,40,93,102,121]; no
increase in histopathological
outcomes in one study [76]

240, 360, 480, 600 s
[102]

30, 60, 120, 300 s
[19]

30, 180, 300, 600, 1200 s
[93]

60, 120, 180, 240 s[40]

6, 8 and 10 s
[121]

Dosing (Number and
Frequency) of

Sonications

Preclinical:
1–13 sonications/session

(ISI = 5 min)
Clinical:

1–8 sonications/session (ISI
not stated)

ISIs are listed within brackets

1, 2 (10 min), 2 (120 min)
sonications

[71] Increasing sonication #:
increase in BBBD [71,115];

improved doxorubicin uptake
with shorter ISI [71]

Increasing sonication #: no [71] or
mild [115] histopathological
change (increased neuropil

vacuolation)
1, 2 (20 min), 2 (40 min)

sonications
[115]



Pharmaceutics 2022, 14, 833 26 of 32

Table 4. Cont.

Parameter Safe and Effective
Parameters Commonly Used Parameters Compared Reported Effects on BBBD

(Efficacy Outcomes) Reported Safety Outcomes

Dosing (Number and
Frequency) of Sessions

Preclinical: 1–27
Clinical: 1–10 sessions

Intersession intervals are listed
within brackets

2–10, 2–6 sessions (biweekly
and monthly)

[84]

Increasing session #: higher
PNP sonications required to
achieve similar BBBD, but
likely due to animal model
growth [84] as not observed
in developed adult clinical

trials [9,11]

Increasing session #: no adverse
safety outcomes [53,123]; transient

MRI changes [9,21,22]; cortical
atrophy, ventricular dilation, and

lesion formation on MRI [100];
increased phosphorylated tau

deposition [100]; increased
neurogenesis [100] no change in

motor and behavioural outcomes
in rodents [84]; increased tissue

damage and macrophage
infiltration with doxorubicin

co-delivery [70,91]; increasing
number of apoptotic cells

(significantly larger microbubble
dose) [33]; mild increase in white

matter vacuolation and mild
neuronal injury (significantly
larger microbubble dose) [43]

1, 8 (3 days) sessions
[43]

1, 4 (weekly) sessions
[123]

1, 6 (weekly) sessions
[100]

1, 3 (weekly) sessions
[93]

1, 3 (weekly) sessions
[70,91]

1, 2 (2 days), 3 (2 days)
sessions

[33]

3 (monthly), 6 (monthly)
sessions

[53]

4–27 (varying intersession
intervals) sessions

[21,22]

1–10 (monthly) sessions
[9]

US: ultrasound; BBBD: blood–brain barrier disruption; PL: pulse length; PRF: pulse repetition frequency; SD: sonication
duration; ISI: intersonication interval.
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