Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = two-lane roundabout

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5291 KiB  
Article
Sensitivity Analysis and Optimization of Urban Roundabout Road Design Parameters Based on CFD
by Hangyu Zhang, Sihui Dong, Shiqun Li and Shuai Zheng
Eng 2025, 6(7), 156; https://doi.org/10.3390/eng6070156 - 9 Jul 2025
Viewed by 310
Abstract
With the rapid advancement of urbanization, urban transportation systems are facing increasingly severe congestion challenges, especially at traditional roundabouts. The rapid increase in vehicles has led to a sharp increase in pressure at roundabouts. In order to alleviate the traffic pressure in the [...] Read more.
With the rapid advancement of urbanization, urban transportation systems are facing increasingly severe congestion challenges, especially at traditional roundabouts. The rapid increase in vehicles has led to a sharp increase in pressure at roundabouts. In order to alleviate the traffic pressure in the roundabout, this paper changes the road design parameters of the roundabout, uses a CFD method combined with sensitivity analysis to study the influence of different inlet angles, lane numbers, and the outer radius on the pressure, and seeks the road design parameter scheme with the optimal mitigation effect. Firstly, the full factorial experimental design method is used to select the sample points in the design sample space, and the response values of each sample matrix are obtained by CFD. Secondly, the response surface model between the road design parameters of the roundabout and the pressure in the ring is constructed. The single-factor analysis method and the multi-factor analysis method are used to analyze the influence of the road parameters on the pressure of each feature point, and then the moment-independent sensitivity analysis method based on the response surface model is used to solve the sensitivity distribution characteristics of the road design parameters of the roundabout. Finally, the Kriging surrogate model is constructed, and the NSGA-II is used to solve the multi-objective optimization problem to obtain the optimal solution set of road parameters. The results show that there are significant differences in the mechanism of action of different road geometric parameters on the pressure of each feature point of the roundabout, and it shows obvious spatial heterogeneity of parameter sensitivity. The pressure changes in the two feature points at the entrance conflict area and the inner ring weaving area are significantly correlated with the lane number parameters. There is a strong coupling relationship between the pressure of the maximum pressure extreme point in the ring and the radius parameters of the outer ring. According to the optimal scheme of road parameters, that is, when the parameter set (inlet angle/°, number of lanes, outer radius/m) meets (35.4, 5, 65), the pressures of the feature points decrease by 34.1%, 38.3%, and 20.7%, respectively, which has a significant effect on alleviating the pressure in the intersection. This study optimizes the geometric parameters of roundabouts through multidisciplinary methods, provides a data-driven congestion reduction strategy for the urban sustainable development framework, and significantly improves road traffic efficiency, which is crucial for building an efficient traffic network and promoting urban sustainable development. Full article
Show Figures

Figure 1

26 pages, 5813 KiB  
Article
Assaying Traffic Settings with Connected and Automated Mobility Channeled into Road Intersection Design
by Maria Luisa Tumminello, Nazanin Zare, Elżbieta Macioszek and Anna Granà
Smart Cities 2025, 8(3), 86; https://doi.org/10.3390/smartcities8030086 - 25 May 2025
Viewed by 1059
Abstract
This paper presents a microsimulation-driven framework to analyze the performance of connected and automated vehicles (CAVs) alongside vehicles with human drivers (VHDs), channeled towards assessing project alternatives in road intersection design. The transition to fully automated mobility is driving the development of new [...] Read more.
This paper presents a microsimulation-driven framework to analyze the performance of connected and automated vehicles (CAVs) alongside vehicles with human drivers (VHDs), channeled towards assessing project alternatives in road intersection design. The transition to fully automated mobility is driving the development of new intersection geometries and traffic configurations, influenced by increasing market entry rates (MERs) for CAVs (CAV-MERs), which were analyzed in a microsimulation environment. A suburban signalized intersection from the Polish road network was selected as a representative case study. Two alternative design hypotheses regarding the intersection’s geometric configurations were proposed. The Aimsun micro-simulator was used to hone the driving model parameters by calibrating the simulated data with reference capacity functions (RCFs) based on CAV factors derived from the Highway Capacity Manual 2022. Cross-referencing the conceptualized geometric design solutions, including a two-lane roundabout and an innovative knee-turbo roundabout, allowed the experimental results to demonstrate that CAV operation is influenced by the intersection layout and CAV-MERs. The research provides an overview of potential future traffic settings featuring CAVs and VHDs operating within various intersection designs. Additionally, the findings can support project proposals for the geometric and functional design of intersections by highlighting the potential benefits expected from smart driving. Full article
Show Figures

Figure 1

21 pages, 1860 KiB  
Article
Nonparametric Comparative Analysis of Driver Behaviors in Signalized and Non-Signalized Roundabouts: A Study on Road Safety in Qatar
by Mohammed Abul Fahed, Pilsung Choe and Al-Harith Umlai
Appl. Sci. 2025, 15(5), 2856; https://doi.org/10.3390/app15052856 - 6 Mar 2025
Viewed by 1105
Abstract
This study investigated and compared driver behaviors at signalized and non-signalized roundabouts in Qatar, focusing on turn signal usage, lane change behavior, and correct lane usage. The primary objectives were to determine the frequency of turn signal usage, assess correct lane usage, analyze [...] Read more.
This study investigated and compared driver behaviors at signalized and non-signalized roundabouts in Qatar, focusing on turn signal usage, lane change behavior, and correct lane usage. The primary objectives were to determine the frequency of turn signal usage, assess correct lane usage, analyze lane change behavior, and compare these behaviors between the two types of roundabouts. Data were collected through a field study at selected roundabouts, where driver behaviors were observed and analyzed. The results revealed significant differences between signalized and non-signalized roundabouts. Turn signal compliance was higher in signalized roundabouts (up to 45%) compared to non-signalized roundabouts (20%). The rate of lane change in signalized roundabouts was observed to be 31%, whereas it was 14% in non-signalized roundabouts, and correct lane usage compliance was higher in signalized roundabouts (60%) compared to non-signalized roundabouts (35%). These findings suggest that traffic signals contribute to safer and more predictable driver behavior, although congestion and long waiting times in signalized roundabouts present challenges. The study recommends improving signage visibility, optimizing signal timings, enhancing road markings, and enforcing traffic regulations to address these issues. The findings can inform traffic engineers and policymakers in enhancing the safety and efficiency of roundabouts. Full article
(This article belongs to the Special Issue Road Safety in Sustainable Urban Transport)
Show Figures

Figure 1

13 pages, 3709 KiB  
Article
Comparing the Saturation Flow Rate on the Exit Lane Between Urban Multilane Roundabouts and Urban Signalized Intersections Through Field Data
by Nawaf Mohamed Alshabibi
Infrastructures 2025, 10(1), 15; https://doi.org/10.3390/infrastructures10010015 - 9 Jan 2025
Cited by 1 | Viewed by 1379
Abstract
Urban multilane roundabouts and signalized intersections are two major roadway devices used for controlling and managing traffic flow. This paper presents a comparative analysis of the saturation flow rate between urban multilane roundabouts and multilane signalized intersections using field data from the Dammam [...] Read more.
Urban multilane roundabouts and signalized intersections are two major roadway devices used for controlling and managing traffic flow. This paper presents a comparative analysis of the saturation flow rate between urban multilane roundabouts and multilane signalized intersections using field data from the Dammam Metropolitan Area (DMA) in Saudi Arabia. The data of this study were collected at four roundabouts and four signalized intersections in Dammam metropolitan area (DMA), Saudi Arabia. A total of 7028 saturation headways at the roundabouts and 2626 saturation headways at the signalized intersections were included. The results indicated that the signalized intersections had a higher saturation flow rate at the exit lane than the roundabouts at about 1046 vehicles per hour. These findings emphasize that signalized intersections outperform roundabouts in terms of the vehicular movement rate during green lights. Moreover, when the light is green, it takes 1.82 s for a car to move through the middle lane of a traffic light intersection. This study draws a unique connection between speed fluctuations in roundabouts with energy consumption, concluding how vehicles consume more energy this way. Thus, single-lane roundabouts are recommended for optimal traffic flow management in all directions. Full article
Show Figures

Figure 1

17 pages, 4085 KiB  
Article
Using a Microsimulation Traffic Model and the Vehicle-Specific Power Method to Assess Turbo-Roundabouts as Environmentally Sustainable Road Design Solutions
by Apostolos Anagnostopoulos, Athanasios Galanis, Fotini Kehagia, Ioannis Politis, Athanasios Theofilatos and Panagiotis Lemonakis
Future Transp. 2025, 5(1), 4; https://doi.org/10.3390/futuretransp5010004 - 4 Jan 2025
Cited by 1 | Viewed by 1334
Abstract
The European Union’s path towards zero carbon dioxide emissions for new passenger vehicles necessitates a transitional period in which conventional vehicles coexist with zero-emission alternatives. This shift requires targeted strategies from engineers and policymakers, particularly in the area of road design, to reduce [...] Read more.
The European Union’s path towards zero carbon dioxide emissions for new passenger vehicles necessitates a transitional period in which conventional vehicles coexist with zero-emission alternatives. This shift requires targeted strategies from engineers and policymakers, particularly in the area of road design, to reduce pollution. This study aims to investigate the environmental benefits of converting a two-lane urban roundabout into a turbo-roundabout through a virtual microsimulation approach using PTV VISSIM. The simulated model was calibrated and validated with real-world daily traffic data by properly adjusting the driving behavior parameters and comparing observed and modeled traffic volumes and queues. The Vehicle-Specific Power (VSP) emission method was applied to model, calculate and illustrate emissions by analyzing vehicle trajectories for the examined scenarios. Results show a statistically significant reduction in emissions for nearly all trips, with emissions decreasing by up to 44% across the intersection and its surrounding areas, and up to 23% at the intersection itself. Emissions are largely influenced by trip duration and traffic efficiency, both of which are enhanced by the improved geometric configuration of the case study intersection. These findings highlight that turbo-roundabouts represent an effective, environmentally sustainable design solution for urban intersections. Full article
Show Figures

Figure 1

26 pages, 10525 KiB  
Article
Complex Traffic Flow Model for Analysis and Optimization of Fuel Consumption and Emissions at Large Roundabouts
by Xiao Liang, Huifang Song, Gefan Wu, Yongjie Guo and Shu Zhang
Sustainability 2024, 16(21), 9464; https://doi.org/10.3390/su16219464 - 31 Oct 2024
Cited by 2 | Viewed by 1707
Abstract
Traffic emissions pose a substantial challenge for contemporary societies, particularly at roundabouts, where high levels of vehicle interaction and the associated emission dynamics are prevalent. Building upon this, a cellular automata model was developed to simulate traffic characteristics, including fuel consumption, emissions (CO, [...] Read more.
Traffic emissions pose a substantial challenge for contemporary societies, particularly at roundabouts, where high levels of vehicle interaction and the associated emission dynamics are prevalent. Building upon this, a cellular automata model was developed to simulate traffic characteristics, including fuel consumption, emissions (CO, HC, and NOx), and vehicle speed at a large roundabout. The model examines critical parameters, such as interaction, stop-and-go behavior, density, speed, and spacing, to identify the factors influencing fuel consumption and emissions in roundabout traffic. Numerical verification confirmed the model’s effectiveness in replicating complex traffic flows at large roundabouts, while also revealing that driving behavior, particularly during lane entry, is a critical factor influencing fuel consumption and emissions. Therefore, we proposed four optimization strategies—two space-based and two behavior-based—aimed at reducing emissions and enhancing traffic efficiency. Simulation results demonstrated that the behavior-based strategies achieved reductions of up to 18.40%, 43.20%, 28.98%, and 30.02% in fuel consumption and emissions, along with an 8.88% increase in traffic efficiency. In contrast, the space-based strategies improved traffic efficiency by 10.26%, while reducing fuel consumption and emissions by 8.25%, 32.64%, 18.48%, and 18.09%. While the space-based strategies enhanced traffic efficiency more, their overall optimization effects were relatively modest. Thus, integrating these strategies can enhance roundabout traffic efficiency across varying conditions, while reducing fuel consumption and emissions. These findings can enhance our understanding of the traffic parameters affecting vehicular emissions, offering crucial insights for urban planners and policymakers to optimize roundabout design and management toward greater sustainability and environmental benefits. Full article
(This article belongs to the Special Issue Emissions and Control of Transport-Related Pollutants)
Show Figures

Figure 1

19 pages, 6919 KiB  
Article
Speed Reduction Capabilities of Two-Geometry Roundabouts
by Saša Ahac, Maja Ahac, Igor Majstorović and Silvio Bašić
Appl. Sci. 2023, 13(21), 11816; https://doi.org/10.3390/app132111816 - 29 Oct 2023
Cited by 5 | Viewed by 1450
Abstract
Several types of modern roundabouts are alternatives to standard ones. They are either in use or at the development stage today. One such intersection is the two-geometry roundabout. Its circulatory roadway has an elliptical outer edge and a circular inner edge that is [...] Read more.
Several types of modern roundabouts are alternatives to standard ones. They are either in use or at the development stage today. One such intersection is the two-geometry roundabout. Its circulatory roadway has an elliptical outer edge and a circular inner edge that is defined by a circular central island resulting in variable circulatory roadway width. The investigation presented in this paper aims to determine the influence of this variable width on the design of other geometric elements and its impact on roundabouts’ speed reduction capabilities. There is not enough experimental data collected to make a comparison to other roundabout types, so this investigation is based on computer simulations and speed estimations. The investigation is conducted on 40 four-legged single-lane roundabout schemes. These were designed in the Autodesk AutoCAD 2021 software through computer simulations of vehicle movement and the resulting swept paths of a tractor with a semi-trailer generated by the Autodesk Vehicle Tracking 2020 software. The results show that truck aprons must be included in the design of two-geometry roundabouts with a major axis between 18 and 25 m to achieve appropriate circulatory roadway widths, personal car path deflection, and the resulting relative speed and speed consistency. Full article
Show Figures

Figure 1

19 pages, 10057 KiB  
Article
A Conflict-Based Safety Diagnosis of SCI Roundabouts Using a Surrogate Safety Measure Model
by Mehrzad Hasanvand, Amir Saman Abdollahzadeh Nasiri, Omid Rahmani, Khaled Shaaban and Hossein Samadi
Sustainability 2023, 15(17), 13166; https://doi.org/10.3390/su151713166 - 1 Sep 2023
Cited by 8 | Viewed by 2695
Abstract
Recently, the surrogate safety assessment model has been considered for the safety performance analysis of roundabouts. This model can perform a detailed analysis of conflicts based on the trajectory data of vehicles inside the roundabout. The Separated Central Island (SCI) roundabout, as one [...] Read more.
Recently, the surrogate safety assessment model has been considered for the safety performance analysis of roundabouts. This model can perform a detailed analysis of conflicts based on the trajectory data of vehicles inside the roundabout. The Separated Central Island (SCI) roundabout, as one of the roundabouts with distinct geometrical characteristics, holds the potential for safety evaluation using the conflict-based method. Therefore, in this study, a safety diagnosis of an SCI roundabout was conducted for the first time. In this study, a safety diagnosis procedure for SCI roundabout was first defined; for this purpose, vehicle trajectory data were obtained using an Unnamed Aerial Vehicle (UAV) and then entered into Surrogate Safety Measure Model software (SSAM 3.0). A case study was conducted on the only SCI roundabout in Iran, located in Mashhad. The parameters of Time-to-Collision (TTC), maximum speed difference of two vehicles involved in a collision (MaxΔV), and maximum speed of vehicles in collision (MaxS) were utilized to determine the type and severity of conflicts and risk analysis. The results of roundabout risk analysis showed that the severity level of conflicts is mainly of the injury type and that the lowest severity of conflicts is related to fatality. In addition, the highest frequency of injury conflicts is associated with lane-change conflict and the lowest frequency is linked to rear-end conflict. The highest and lowest frequency of damage conflicts are related to crossing and lane-change conflicts, respectively. After overall risk scoring, the severity level of conflicts is mainly related to injury type and the lowest severity of conflicts is associated with fatality; 31% of the total conflicts obtained are of the damaging type, and 69% are of the injury type. Finally, comparing the results of the conflict data with the 8-year crash data in such roundabouts confirms that in the absence of crash data in such roundabouts traffic engineers can use the roundabout analysis based on this study to predict the safety situation of such roundabouts before implementing engineering processes. Full article
Show Figures

Figure 1

29 pages, 14521 KiB  
Article
Using Low-Cost Radar Sensors and Action Cameras to Measure Inter-Vehicle Distances in Real-World Truck Platooning
by Markus Metallinos Log, Thomas Thoresen, Maren H. R. Eitrheim, Tomas Levin and Trude Tørset
Appl. Syst. Innov. 2023, 6(3), 55; https://doi.org/10.3390/asi6030055 - 6 May 2023
Cited by 5 | Viewed by 4352
Abstract
Many modern vehicles collect inter-vehicle distance data from radar sensors as input to driver assistance systems. However, vehicle manufacturers often use proprietary algorithms to conceal the collected data, making them inaccessible to external individuals, such as researchers. Aftermarket sensors may circumvent this issue. [...] Read more.
Many modern vehicles collect inter-vehicle distance data from radar sensors as input to driver assistance systems. However, vehicle manufacturers often use proprietary algorithms to conceal the collected data, making them inaccessible to external individuals, such as researchers. Aftermarket sensors may circumvent this issue. This study investigated the use of low-cost radar sensors to determine inter-vehicle distances during real-world semi-automated truck platooning on two-way, two-lane rural roads. Radar data from the two follower trucks in a three-truck platoon were collected, synchronized and filtered. The sensors measured distance, relative velocity and signal-to-noise ratio. Dashboard camera footage was collected, coded and synchronized to the radar data, providing context about the driving situation, such as oncoming trucks, roundabouts and tunnels. The sensors had different configuration parameters, suggested by the supplier, to avoid signal interference. With parameters as chosen, sensor ranges, inferred from maximum distance measurements, were approximately 74 and 71 m. These values were almost on par with theoretical calculations. The sensors captured the preceding truck for 83–85% of the time where they had the preceding truck within range, and 95–96% of the time in tunnels. While roundabouts are problematic, the sensors are feasible for collecting inter-vehicle distance data during truck platooning. Full article
(This article belongs to the Special Issue Smart Sensors and Devices: Recent Advances and Applications)
Show Figures

Figure 1

17 pages, 5821 KiB  
Article
Comparison of Single-Lane Roundabout Entry Degree of Saturation Estimations from Analytical and Regression Models
by Ana Čudina Ivančev, Maja Ahac, Saša Ahac and Vesna Dragčević
Algorithms 2023, 16(3), 164; https://doi.org/10.3390/a16030164 - 18 Mar 2023
Cited by 6 | Viewed by 2740
Abstract
Roundabout design is an iterative process consisting of a preliminary geometry design, geometry performance checks, and the estimation of intersection functionality (based on the results of analytical or regression models). Since both roundabout geometry design procedures and traffic characteristics vary around the world, [...] Read more.
Roundabout design is an iterative process consisting of a preliminary geometry design, geometry performance checks, and the estimation of intersection functionality (based on the results of analytical or regression models). Since both roundabout geometry design procedures and traffic characteristics vary around the world, the discussion on which functionality estimation model is more appropriate is ongoing. This research aims to reduce the uncertainty in decision-making during this final roundabout design stage. Its two objectives were to analyze and compare the results of roundabout performance estimations derived from one analytical and one regression model, and to quantify the model results’ susceptibility to changes in roundabout geometric parameters. For this, 60 four-legged single-lane roundabout schemes were created, varying in size and leg alignment. Their geometric parameters resulted from the assumption of their location in a suburban environment and chosen design vehicle swept path analysis. To compare the models’ results, the degree of saturation of roundabout entries was calculated based on presumed traffic flows. The results showed that the regression model estimates higher functionality and that this difference (both between the two models and regression models applied on different schemes) is more pronounced as the outer radius and angle between the legs increase. Full article
(This article belongs to the Special Issue Scheduling: Algorithms and Applications)
Show Figures

Figure 1

24 pages, 10193 KiB  
Article
The Role of Intersection Geometry in Urban Air Pollution Management
by Ammar Šarić, Suada Sulejmanović, Sanjin Albinović, Mirza Pozder and Žanesa Ljevo
Sustainability 2023, 15(6), 5234; https://doi.org/10.3390/su15065234 - 15 Mar 2023
Cited by 14 | Viewed by 3326
Abstract
Air pollution represents one of the most complex problems of humanity. Traffic contributes significantly to this by emitting large amounts of harmful gases. This problem is particularly pronounced at urban intersections due to frequent changes in vehicle movement dynamics. This paper primarily presents [...] Read more.
Air pollution represents one of the most complex problems of humanity. Traffic contributes significantly to this by emitting large amounts of harmful gases. This problem is particularly pronounced at urban intersections due to frequent changes in vehicle movement dynamics. This paper primarily presents the influence of intersection geometry on pollutant emissions levels. In addition, the influence of various traffic policies promoting greater use of public transport and zero-emission vehicles is also examined. The research combines the field part of recording existing intersections in Sarajevo, Bosnia and Herzegovina with traffic microsimulation. Detailed data on vehicles’ movements were obtained by advanced video processing using the DataFromSky tool, while the PTV Vissim 2022 and Bosch ESTM (2022) software were used to simulate traffic and estimate emissions at geometrically different intersections. The results showed that, in saturated traffic conditions, signalized intersections cause up to 50% lower emissions compared with two-lane and turbo roundabouts and that the impact of the geometric change is more significant than the impact of zero-emission vehicles. In unsaturated conditions, the differences in emissions at different intersections are negligible, with the highest reductions in pollution achieved by using zero-emission vehicles. Full article
Show Figures

Figure 1

19 pages, 5694 KiB  
Article
Analysis of Conflict Distribution Characteristics between Motor Vehicles and E-Bikes at Roundabouts
by Rui Li, Guohua Liang, Yixin Chen, Dong Zhang and Baojie Wang
Appl. Sci. 2023, 13(6), 3475; https://doi.org/10.3390/app13063475 - 9 Mar 2023
Cited by 5 | Viewed by 2990
Abstract
Roundabouts are a common traffic infrastructure, which are supposed to facilitate safe and smooth traffic flow. Electric bikes as a common traffic tool in a lot of cities in China play an important role in relieving traffic congestion due to the rapid increase [...] Read more.
Roundabouts are a common traffic infrastructure, which are supposed to facilitate safe and smooth traffic flow. Electric bikes as a common traffic tool in a lot of cities in China play an important role in relieving traffic congestion due to the rapid increase of motor vehicles on roads. However, compared with cyclists, e-bikers are more vulnerable because of their higher speed when colliding with motor vehicles. In this research, the spatial-temporal distribution characteristics of conflicts between motor vehicles and electric bikes (e-bikes) at signalized roundabouts are explored. First, the time distance method was used to identify conflicts, and the time to collision (TTC) was selected as the discrimination index we proposed for two representative conflict types. On conflict heat maps and conflict distribution during one signal cycle, we found a series of spatial-temporal conflict distribution regularities. Spatially, the proposed two representative types of conflicts were mainly distributed at exit areas and near the outermost circulatory lanes. Conflict Type 1 was mainly distributed around the outermost motor vehicle lanes, and Type 2 was mainly distributed inside the outermost vehicle lanes and behind the second stop line. In time span, both types of conflicts showed rapid increase before reaching a peak at 30 percentile green time and then decreasing gradually after that peak. Type 1 presented a sharp increasing range during 0–10 percentile green time, while the sharp increasing range for Type 2 presented during the 10–20 percentile. The conclusions developed by this article could provide a theoretical basis for improving traffic safety at roundabouts. Full article
Show Figures

Figure 1

21 pages, 8929 KiB  
Article
Turbo-Roundabouts as an Instrument for Improving the Efficiency and Safety in Urban Area: An Italian Case Study
by Salvatore Leonardi and Natalia Distefano
Sustainability 2023, 15(4), 3223; https://doi.org/10.3390/su15043223 - 10 Feb 2023
Cited by 13 | Viewed by 3729
Abstract
In recent years, numerous turbo-roundabouts have been built in many European countries. To date, there are no turbo-roundabouts in Italy and even the regulations do not provide for their implementation. Turbo-roundabouts are considered the ideal alternative to multi-lane roundabouts as they have numerous [...] Read more.
In recent years, numerous turbo-roundabouts have been built in many European countries. To date, there are no turbo-roundabouts in Italy and even the regulations do not provide for their implementation. Turbo-roundabouts are considered the ideal alternative to multi-lane roundabouts as they have numerous advantages. However, they offer better operational performance only for specific traffic flow distributions. This research used the case study of an important and complex urban arterial road in eastern Sicily, Italy, to compare the operational and safety performance between multi-lane roundabouts and turbo-roundabouts. The evaluations were carried out with two simulation software: (1) AIMSUN Next 20.0.1 (operational performance); (2) SSAM 3.0 (safety performance). The results show that at medium/low traffic volumes, multi-lane roundabouts are significantly superior to turbo-roundabouts in terms of operational performance. At high traffic volumes, the operational performance of turbo-roundabouts improves significantly. As regards the safety parameters, for turbo-roundabouts there is always an increase in the TTC and PET, a reduction in maximum speeds and decelerations. There is also a significant decrease in conflict points. Ultimately, the safety and efficiency performance of turbo-roundabouts should: (1) Encourage administrations to replace the multi-lane roundabouts (illegal in Italy) with turbo-roundabouts; (2) encourage Italian legislators to revise intersection design legislation to include turbo-roundabouts among possible design solutions. Full article
Show Figures

Figure 1

30 pages, 6795 KiB  
Article
Simulation-Based Analysis of “What-If” Scenarios with Connected and Automated Vehicles Navigating Roundabouts
by Maria Luisa Tumminello, Elżbieta Macioszek, Anna Granà and Tullio Giuffrè
Sensors 2022, 22(17), 6670; https://doi.org/10.3390/s22176670 - 3 Sep 2022
Cited by 15 | Viewed by 3157
Abstract
Despite the potential of connected and automated vehicles (CAVs), there are still many open questions on how road capacity can be influenced and what methods can be used to assess its expected benefits in the progressive transition towards fully cooperative driving. This paper [...] Read more.
Despite the potential of connected and automated vehicles (CAVs), there are still many open questions on how road capacity can be influenced and what methods can be used to assess its expected benefits in the progressive transition towards fully cooperative driving. This paper contributes to a better understanding of the benefits of CAV technologies by investigating mobility-related issues of automated vehicles operating with a cooperative adaptive cruise control system on roundabout efficiency using microscopic traffic simulation. The availability of the adjustment factors for CAVs provided by the 2022 Highway Capacity Manual allowed to adjust the entry capacity equations to reflect the presence of CAVs on roundabouts. Two mechanisms of entry maneuver based on the entry lane type were examined to compare the capacity target values with the simulated capacities. The microscopic traffic simulator Aimsun Next has been of great help in building the “what-if” traffic scenarios that we analysed to endorse hypothesis on the model parameters which affect the CAVs’ capabilities to increase roundabouts’ throughput. The results highlighted that the increasing penetration rates of CAVs have greater impacts on the operational performances of roundabouts, and provided a synthetic insight to assess the potential benefits of CAVs from an efficiency perspective. Full article
Show Figures

Figure 1

18 pages, 4335 KiB  
Article
MPC Tracking Controller Parameters Impacts in Roundabouts
by Hang Cao and Mate Zoldy
Mathematics 2021, 9(12), 1394; https://doi.org/10.3390/math9121394 - 16 Jun 2021
Cited by 18 | Viewed by 2546
Abstract
The work is proposed to design a controller of the form known as the roundabout scenario trajectory tracking problem. The road condition is a four-leg, single-lane roundabout; the reference path is given. Due to the decision choice of exits, the MPC tracking controller [...] Read more.
The work is proposed to design a controller of the form known as the roundabout scenario trajectory tracking problem. The road condition is a four-leg, single-lane roundabout; the reference path is given. Due to the decision choice of exits, the MPC tracking controller is used to test the effect of weight parameter and target speed on the performance of the tracking controller. Two sets of test cases are proposed to make the experimental comparison, see the relationship between the control parameters and road conditions (different curvature path), and also see how the weight parameters Q and R and sample time affect the tracking performance. Our work, MPC controller utilization in a roundabout, plays an essential role with the increasing autonomy of vehicles. Full article
(This article belongs to the Section C2: Dynamical Systems)
Show Figures

Figure 1

Back to TopTop