Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = two tandem cylinders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 15008 KiB  
Article
Transversal Vortex-Induced Vibration of a Circular Cylinder in Tandem with a Stationary Square Structure
by Henry Francis Annapeh and Victoria Kurushina
Appl. Mech. 2024, 5(4), 978-996; https://doi.org/10.3390/applmech5040054 - 12 Dec 2024
Viewed by 1540
Abstract
This paper considers a system with two offshore structures in tandem, where the upstream square structure is fixed and the downstream circular structure has one degree of freedom. Cylinders are subject to uniform and linearly sheared flow conditions. The dynamics of the downstream [...] Read more.
This paper considers a system with two offshore structures in tandem, where the upstream square structure is fixed and the downstream circular structure has one degree of freedom. Cylinders are subject to uniform and linearly sheared flow conditions. The dynamics of the downstream structure are investigated by using a computational fluid dynamics approach for a Reynolds number range of 1000–6500 at the centerline. The spacing ratio for the tandem structures is L/D = 6 in this work, corresponding to the wake interference regime. The effect of the shear parameter on the development of vortex-induced vibrations in the lock-in state within the downstream structure is studied, in comparison with the lock-in of an isolated circular structure. The results of this research include statistics on the displacement amplitude, drag and lift coefficients, frequency ratio, time histories and contours of vorticity. The results obtained show the maximum displacement amplitude of the isolated structure in a uniform flow at the level of 0.8 diameters during the upper branch. The investigation also shows a later development in the maximum displacement during the upper branch of the downstream structure under shear flow conditions, with the highest maximum displacement of 1.18 diameters seen for the shear parameter of 0.05. Full article
Show Figures

Figure 1

17 pages, 5368 KiB  
Article
The Suppression of Flow-Induced Vibrations for a Single and Two Tandem-Arrangement Cylinders Using Three Splitter Plates
by Zhongming Hu, Jiasong Wang, Yuankun Sun and Ke Lin
J. Mar. Sci. Eng. 2024, 12(9), 1487; https://doi.org/10.3390/jmse12091487 - 28 Aug 2024
Cited by 2 | Viewed by 1424
Abstract
Some very useful methods for suppressing the flow-induced vibration (FIV) of a single cylinder are known to potentially have a limited efficiency for tandem-arrangement cylinders. In this paper, three splitter plates uniformly attached around a cylinder with an angle of 120° are proposed [...] Read more.
Some very useful methods for suppressing the flow-induced vibration (FIV) of a single cylinder are known to potentially have a limited efficiency for tandem-arrangement cylinders. In this paper, three splitter plates uniformly attached around a cylinder with an angle of 120° are proposed to suppress the FIVs of both a single cylinder and two tandem-arrangement cylinders in a wind tunnel at Re = 4000–45,200. The splitter plates’ length to diameter ratios, L/Ds (where L is the length of the splitter plate and D is the cylinder diameter), are set from 0.1 to 0.8. The results show that the proposed method not only effectively suppresses the vortex-induced vibration (VIV) for a single cylinder, but also successfully mitigates the wake-induced galloping (WIG) for two tandem-arrangement cylinders. The vibrations of the single cylinders are effectively suppressed, consistently achieving suppression efficiencies over 95% for L/Ds = 0.2–0.8, with a notable peak efficiency of 98.4% at L/D = 0.2. For the two tandem-arrangement cylinders at S/D = 4.0 (where S is the center-to-center spacing between the two cylinders), the suppression efficiencies of the upstream cylinder exceed 96% for L/D = 0.2–0.8, with an optimal efficiency of 97.4% at L/D = 0.6. The downstream cylinder exhibits vibration only at L/Ds = 0.1, 0.2, and 0.4, resulting in suppression efficiencies of 80.3%, 67.1%, and 91.0%. The vibrations remain fully suppressed throughout the entire reduced velocity range for L/Ds = 0.6–0.8, reaching an optimal efficiency of 98.7% at L/D = 0.6. Three regimes of fs/fn characteristics can be classified for the single cylinder, and the wake structures show that shear layers develop along the front plate before attaching on the cylinder and are then offset to either side of the cylinder by the two rear splitter plates, contributing to the absence of periodic vortex shedding. Full article
(This article belongs to the Special Issue The State of the Art of Marine Risers and Pipelines)
Show Figures

Figure 1

21 pages, 7824 KiB  
Article
POD Analysis of the Wake of Two Tandem Square Cylinders
by Jingcheng Hao, Siva Ramalingam, Md. Mahbub Alam, Shunlin Tang and Yu Zhou
Fluids 2024, 9(9), 196; https://doi.org/10.3390/fluids9090196 - 26 Aug 2024
Viewed by 1583
Abstract
This study aims to investigate the wake of two tandem square cylinders based on the Proper Orthogonal Decomposition (POD) analyses of the PIV and hotwire data. The cylinder centre-to-centre spacing ratio L/w examined is from 1.2 to 4.2, covering the four [...] Read more.
This study aims to investigate the wake of two tandem square cylinders based on the Proper Orthogonal Decomposition (POD) analyses of the PIV and hotwire data. The cylinder centre-to-centre spacing ratio L/w examined is from 1.2 to 4.2, covering the four flow regimes, i.e., extended body, reattachment, transition and co-shedding. The Reynolds number examined was 1.3 × 104. A novel Proper Orthogonal Decomposition (POD) technique (hereafter referred to as PODHW) is developed to analyse data from single point hotwire measurements, offering a new perspective compared to the conventional POD analysis (PODPIV) based on Particle Image Velocimetry (PIV) data. A key finding is the identification of two distinct states, reattachment and co-shedding, within the transition flow regime at L/w = 2.8, which PODPIV fails to capture due to the limited duration of the PIV data obtained. This study confirms, for the first time, the existence of these states as proposed by Zhou et al. (2024), highlighting the advantage of using PODHW for capturing intermittent flow phenomena. Furthermore, the analysis reveals how the predominant coherent structures contribute to the total fluctuating velocity energy in each individual regime. Other aspects of the flow are also discussed, including the Strouhal numbers, the contribution to the total fluctuating energy of the flow from the first four POD modes, and a comparison between different regimes. Full article
Show Figures

Figure 1

24 pages, 42313 KiB  
Article
On the Spanwise Periodicity within the Gap between Two Different-Sized Tandem Circular Cylinders at Re = 3900
by Di Zhang, Dongfang Liang, Jun Deng, Yakun Liu and Jialiang Xie
J. Mar. Sci. Eng. 2024, 12(6), 866; https://doi.org/10.3390/jmse12060866 - 23 May 2024
Cited by 2 | Viewed by 1111
Abstract
Although the spanwise periodicity within the gap between two tandem circular cylinders has been observed by some researchers, there is a lack of systematic research on the properties of this periodicity. For the spanwise periodicity within the gap, this study aims to ascertain [...] Read more.
Although the spanwise periodicity within the gap between two tandem circular cylinders has been observed by some researchers, there is a lack of systematic research on the properties of this periodicity. For the spanwise periodicity within the gap, this study aims to ascertain its characteristics, its influences on the flow field, and its variation trend with increasing spacing ratio. By numerically simulating the flow around two tandem circular cylinders with a diameter ratio of d/D = 0.6 and seventeen spacing ratios (L/D = 1.00~6.00) at Re = 3900, this study shows four flow regimes: Reattachment Flow (L/D = 1.00~3.15), Bi-stable Flow (L/D = 3.24), Intermittent Lock-in Co-shedding (L/D = 3.30~3.50), and Subharmonic Lock-in Co-shedding (L/D = 4.00~6.00). Further, depending on the spanwise periodicity length of the time-averaged flow structures (i.e., Pz) within the gap, Reattachment Flow is, for the first time, subdivided into three new sub-flow regimes: Small-scale Periodic Reattachment (L/D = 1.00~1.50, Pz/D = (0, 4]), Large-scale Periodic Reattachment (L/D = 2.00~2.25, Pz/D > 4) and Non-periodic Reattachment (L/D = 2.50~3.15, no spanwise periodicity). The formation mechanisms are elaborated by analyzing the combined effect of both the L/D value and the spanwise-averaged time-averaged reattachment angle of the downstream cylinder. Moreover, this study proves that the newly defined Small-scale Periodic Reattachment and Large-scale Periodic Reattachment are responsible for the pronounced asymmetry of the flow along the transverse direction within the gap. In addition, detailed flow properties and statistical parameters are provided for each flow regime, such as velocity, vorticity, force coefficient, separation/reattachment angle, Strouhal number, and Q-criterion. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 6501 KiB  
Article
Wake Structures and Hydrodynamic Characteristics of Flows around Two Near-Wall Cylinders in Tandem and Parallel Arrangements
by Xing Chang, Pandeng Yin, Jianjian Xin, Fulong Shi and Ling Wan
J. Mar. Sci. Eng. 2024, 12(5), 832; https://doi.org/10.3390/jmse12050832 - 16 May 2024
Cited by 3 | Viewed by 1980
Abstract
To clarify the hydrodynamic interference characteristics of flows around multiple cylinders under the wall effect, the two-dimensional (2D) flows around the near-wall single, two tandem and parallel cylinders are simulated under different gap ratios (0.15 ≤ G/D ≤ 3.0) and spacing [...] Read more.
To clarify the hydrodynamic interference characteristics of flows around multiple cylinders under the wall effect, the two-dimensional (2D) flows around the near-wall single, two tandem and parallel cylinders are simulated under different gap ratios (0.15 ≤ G/D ≤ 3.0) and spacing ratios (1.5 ≤ T/D ≤ 4.0) at a Reynolds number of Re = 6300. We also examine the wake patterns, the force coefficients, and the vortex-shedding frequency with emphases on the wall effect and effects of the two-cylinder interference. A critical wall gap of G/D = 0.6 is identified in the single-cylinder case where the wall can exert significant influences. The two near-wall tandem cylinders exhibit three wake states: stretching mode, attachment mode, and impinging mode. The force coefficients on the upstream cylinder are significantly affected by the wall for G/D ≤ 0.6. The downstream cylinder is mainly influenced by the upstream cylinder. For G/D > 0.6, the force coefficients on the two cylinders exhibit a similar variation trend. In the parallel arrangement, the two cylinders exhibit four wake states in different G/D and T/D ranges: double stretching mode, hetero-vortex scale mode, unilateral vortex mode, and free vortex mode. Moreover, the two parallel cylinders in the hetero-vortex scale or free vortex mode have two states: synchronous in-phase state and synchronous out-of-phase state. The mean drag coefficients on the two cylinders decrease, while the mean lift coefficients exhibit opposite variation trends, as the T/D grows. Full article
(This article belongs to the Special Issue Hydrodynamic Research of Marine Structures)
Show Figures

Figure 1

18 pages, 8350 KiB  
Article
Spacing Ratio Effects on the Evolution of the Flow Structure of Two Tandem Circular Cylinders in Proximity to a Wall
by Xiang Qiu, Xuezhi Ji, Jiankang Zhou, Jiahua Li, Yizhou Tao and Yulu Liu
J. Mar. Sci. Eng. 2024, 12(5), 721; https://doi.org/10.3390/jmse12050721 - 26 Apr 2024
Cited by 1 | Viewed by 1181
Abstract
The flow around two tandem circular cylinders in proximity to a wall is investigated using particle image velocimetry (PIV) for Re = 2 × 103. The spacing ratios L/D are 1, 2, and 5, and the gap ratios G [...] Read more.
The flow around two tandem circular cylinders in proximity to a wall is investigated using particle image velocimetry (PIV) for Re = 2 × 103. The spacing ratios L/D are 1, 2, and 5, and the gap ratios G/D are 0.3, 0.6, and 1. The proper orthogonal decomposition (POD) method and λci vortex identification method are used to investigate the evolution of flow structure, and the influences of L/D and G/D on flow physics are shown. At L/D = 2 and G/D = 0.3, a “pairing” process occurs between the wall shear layer and the upstream cylinder’s lower shear layer, resulting in a small separation bubble behind the upstream cylinder. At L/D = 1, the Strouhal number (St) increases with decreasing G/D. At three gap ratios, the St gradually decreases as L/D increases. At G/D = 0.3, there is nearly a 49.98% decrease from St = 0.3295 at L/D = 1 to St = 0.1648 at L/D = 5, which is larger than the reductions in cases of G/D = 0.6 and G/D = 1. The effects of L/D on the evolution of flow structure at G/D = 0.6 are revealed in detail. At L/D = 1, the vortex shedding resembles that of the single cylinder. As L/D increases to 2, a squarish flow structure is formed between two cylinders, and a small secondary vortex is formed due to induction of the lower shear layer of the upstream cylinder. At L/D = 5, there is a vortex merging process between the upper wake vortices of the upstream and downstream cylinders, and the lower wake vortex of the upstream cylinder directly impinges the downstream cylinder. In addition, the shear layers and wake vortices of the upstream cylinder interact with the wake of the downstream cylinder as L/D increases, resulting in reductions in velocity fluctuations, and the production and turbulent diffusion of turbulent kinetic energy are decreased behind the downstream cylinder. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 14550 KiB  
Article
Study of Hydrokinetic Energy Harvesting of Two Tandem Three Rigidly Connected Cylinder Oscillators Driven by Fluid-Induced Vibration
by Haocheng Chao, Zhumei Luo, Tao Yang and Guanghe Dong
J. Mar. Sci. Eng. 2024, 12(3), 515; https://doi.org/10.3390/jmse12030515 - 20 Mar 2024
Cited by 2 | Viewed by 1589
Abstract
This study utilizes a bidirectional fluid–structure interaction numerical method to investigate the hydrodynamic and energy harvesting characteristics of two tandem three rigidly connected cylinder oscillators with different inter-oscillator spacing ratios. The analysis considers inter-oscillator spacing ratios of 8, 12, and 16 within a [...] Read more.
This study utilizes a bidirectional fluid–structure interaction numerical method to investigate the hydrodynamic and energy harvesting characteristics of two tandem three rigidly connected cylinder oscillators with different inter-oscillator spacing ratios. The analysis considers inter-oscillator spacing ratios of 8, 12, and 16 within a reduced velocity range of U* = 2–13 (equivalent to flow velocities of 0.18–1.16 m/s). The research explores the hydrodynamic interference features, energy harvesting variations, and the efficiency and density of energy harvesting of both upstream and downstream three-cylinder oscillators. The findings indicate that with increasing reduced velocity and inter-oscillator spacing ratio, the mutual interference between upstream and downstream oscillators diminishes. Wake patterns observed in the two series-connected three-cylinder oscillators include 2P, 2S, and 2T patterns, with fragmented vortices and banded vortices at specific reduced velocities. The most significant disparity in energy harvesting efficiency between upstream and downstream oscillators is observed at U* = 9. Full article
(This article belongs to the Special Issue Sustainable Utilization of Marine Renewable Energy)
Show Figures

Figure 1

12 pages, 3731 KiB  
Article
Study on VIV Behavior of Two 5:1 Rectangular Cylinders in Tandem Based on Correlation Analysis
by Kai Ma, Changyong Zhang, Xinzhi Dang and Guoquan Zhang
Buildings 2024, 14(1), 85; https://doi.org/10.3390/buildings14010085 - 28 Dec 2023
Cited by 3 | Viewed by 1292
Abstract
To investigate the vortex-induced vibration (VIV) characteristics of two rectangular cylinders with a width-to-depth ratio of 5:1 in a tandem arrangement, sectional model wind tunnel tests that measure vibration responses and pressure distributions simultaneously were adopted. The ratio of the spacing between the [...] Read more.
To investigate the vortex-induced vibration (VIV) characteristics of two rectangular cylinders with a width-to-depth ratio of 5:1 in a tandem arrangement, sectional model wind tunnel tests that measure vibration responses and pressure distributions simultaneously were adopted. The ratio of the spacing between the cylinders to its width is 1.2. The analyses were performed considering VIV responses as well as the distribution characteristics of mean and rms pressure coefficients. Additionally, the time-frequency domain statistical parameters like correlation and contribution coefficients, phase lags between distributed and general vortex excited forces (VEFs), and amplitudes of VEF coefficients at predominant frequencies were calculated to analyze the physical VIV mechanism of two 5:1 rectangular cylinders in tandem. This study indicates that the influence of incidence angles on the dynamic responses is notable; the contribution of the distributed VEFs acting on the trailing surface of the upstream cylinder and the leading surface of the downstream one is significant to VIVs of the cylinders from wind pressure distribution characteristics and correlation analyses. Full article
(This article belongs to the Special Issue Improvement Technology on Building Seismic Toughness)
Show Figures

Figure 1

21 pages, 10116 KiB  
Article
Analysis of the Force Characteristics of Two Tandem Cylinders by Internal Waves over Slope Topography
by Yin Wang, Xiahui Xiong, Chenhui Zhang, Lingling Wang, Xiaobin Wu, Hua Wang, Zhi Liu and Chunling Wang
Water 2023, 15(18), 3259; https://doi.org/10.3390/w15183259 - 13 Sep 2023
Viewed by 1451
Abstract
Large-amplitude internal waves (IWs) with strong lateral shear forces can cause destructive effects on marine engineering structures. In this study, a large eddy simulation (LES) method was employed to simulate the generation and propagation of IWs in a three-dimensional numerical wave tank, and [...] Read more.
Large-amplitude internal waves (IWs) with strong lateral shear forces can cause destructive effects on marine engineering structures. In this study, a large eddy simulation (LES) method was employed to simulate the generation and propagation of IWs in a three-dimensional numerical wave tank, and the pressure distribution, flow field characteristics, and force behaviors of two tandem cylinders under the coupling effect of the IWs and slope terrain were studied. The influence mechanism of the normalized value of center-to-center spacing (L) and the diameter of the cylinder (D), i.e., (L/D), on the strength of the vortex disturbance between cylinders was studied by comparing the simulation results of two tandem cylinders with those of a single cylinder (SC) to further explore the mechanical response characteristics of the upstream cylinder (P1) and downstream cylinder (P2). The simulation results showed that the vortex interaction between cylinders is the critical factor that affects the forces acting on the cylinders. The strength of the vortex disturbance could be distinguished by the dimensionless critical center-to-center spacing between cylinders (Lc/D = 3.0). When L/DLc/D, the vortex disturbance was severe, causing P1 and P2 to experience significant horizontal positive forces and negative forces, respectively. In the case of L/D > Lc/D, the forces acting on both cylinders gradually returned to those on a single cylinder. Full article
(This article belongs to the Special Issue Computational Methods in River Hydraulics and Density-Stratified Flow)
Show Figures

Figure 1

21 pages, 8944 KiB  
Article
Numerical Study of Flow around Two Circular Cylinders in Tandem, Side-By-Side and Staggered Arrangements
by Gracjan M. Skonecki and James M. Buick
Fluids 2023, 8(5), 148; https://doi.org/10.3390/fluids8050148 - 7 May 2023
Cited by 7 | Viewed by 4508
Abstract
Simulations are presented for flow around pairs of circular cylinders at a Reynolds number of 3900. The flow is assumed to be two-dimensional and incompressible in nature and the simulations are performed using a RANS (Reynolds Averaged Navier Stokes) approach with a k [...] Read more.
Simulations are presented for flow around pairs of circular cylinders at a Reynolds number of 3900. The flow is assumed to be two-dimensional and incompressible in nature and the simulations are performed using a RANS (Reynolds Averaged Navier Stokes) approach with a k-ε model. Simulations are performed for three different configurations of the cylinders: A tandem configuration where the line joining the centre of the cylinders is parallel to the mean flow direction; side-by-side, where the centre line is perpendicular to the mean flow direction; and staggered where the centre line is an angle α to the flow direction. Simulation results are presented for cylinder separations ranging from 1.125 to 4 diameters and for values of α between 10° and 60°. The results are presented and discussed in terms of the lift and drag coefficients, the Strouhal number, the vorticity field and the flow regimes observed. The results and flow regimes are also compared to previous observations at lower Reynolds numbers to investigate the Reynolds number dependence of the phenomena. Full article
(This article belongs to the Collection Advances in Turbulence)
Show Figures

Figure 1

22 pages, 19861 KiB  
Article
Experimental Analysis of the Space Ratio Influence on the Excitation Frequencies of One and Two Cylinders Free to Vibrate in Tandem Arrangement
by Roberta Fátima Neumeister, Adriane Prisco Petry and Sergio Viçosa Möller
Vibration 2022, 5(4), 770-791; https://doi.org/10.3390/vibration5040045 - 7 Nov 2022
Cited by 4 | Viewed by 1981
Abstract
The present study aims to investigate the dominant frequency ranges of a cylinder free to vibrate transversally to the flow positioned in the first, the second or in both positions of the tandem assembly for L/D = 1.26, 1.4, 1.6, and 3.52 with [...] Read more.
The present study aims to investigate the dominant frequency ranges of a cylinder free to vibrate transversally to the flow positioned in the first, the second or in both positions of the tandem assembly for L/D = 1.26, 1.4, 1.6, and 3.52 with the increase in the flow velocity. Accelerometers and hot wire anemometers were the experimental tools applied in this study. The range of study encompassed the reduced velocity with values from 6 to 72 and Reynolds number from 7.1 × 103 to 2.4 × 104. Fourier transform, continuous wavelet transform, magnitude-square coherence, and wavelet coherence were applied to analyze the cylinder acceleration results for all L/D and wake velocity values studied. The results show that the amplitudes of vibration are below 1.5% of the diameter for all the cases, except for the lower L/D, where the amplitude increases. The first cylinder free to vibrate presents the highest amplitudes observed. Fourier and continuous wavelet analysis showed high energy associated with the two natural frequencies of the system and a third frequency, which may be associated with the flow excitation. In the second cylinder free to vibrate, energy spreads across the monitored spectrum, justifying the smaller amplitudes but the energy level increases with increasing L/D and may be associated with wake-induced vibration. The cases with both cylinders free to vibrate show that the relation between the assembly parameters of each cylinder is relevant to the vibration response and the excitation frequency range. The results showed that even with a clear excitation in a higher frequency, the main energy in the vibration signals is in the natural frequency range. Full article
(This article belongs to the Special Issue Aeroacoustics and Advanced Noise Control)
Show Figures

Figure 1

26 pages, 12410 KiB  
Article
Experimental Investigation on Flow-Induced Rotation of Two Mechanically Tandem-Coupled Cylinders
by Fang Liu, Weipeng Feng, Xiang Yan, Danjie Ran, Nan Shao, Xiaoqun Wang and Defeng Yang
Appl. Sci. 2022, 12(20), 10604; https://doi.org/10.3390/app122010604 - 20 Oct 2022
Cited by 8 | Viewed by 1914
Abstract
The flow-induced rotational motion of tandem double cylinders has rarely been studied in existing papers. In order to further study the flow-induced rotation (FIR) of two mechanically tandem-coupled cylinders, an FIR device was designed in this paper, and the theoretical basis of this [...] Read more.
The flow-induced rotational motion of tandem double cylinders has rarely been studied in existing papers. In order to further study the flow-induced rotation (FIR) of two mechanically tandem-coupled cylinders, an FIR device was designed in this paper, and the theoretical basis of this system was established. On this basis, a series of variable spacing ratio (L/D) tests were carried out in a recirculating water tunnel. The range of L/D was 4.0 ≤ L/D ≤ 9.0. The main experimental conclusions can be summarized as follows: (1) When L/D = 4.0 and 4.5, the rotational response was similar to vortex-induced vibration (VIV), which is different from typical VIV, in that the rotational oscillation would appear to be a re-growth region when velocitycontinued to increase after the oscillation entered the lower branch of VIV. Additionally, the oscillation was at a low level and the maximum arc length ratio (A*) was less than 0.55 in these two cases; (2) For L/D = 5.0, 5.5 and 6.0, the rotational responses all showed typical VIV. When the oscillation reached a high level, the maximum A* was more than 0.85 for each case; (3) When L/D = 7.0, 8.0 and 9.0, the rotational responses still presented typical VIV. The oscillation was at a medium level, and the maximum A* was between 0.53 and 0.72, but these three cases had a wider synchronization interval than the other cases, and the range showed an increasing trend with the growth of L/D. Full article
(This article belongs to the Special Issue Advances in Applied Marine Sciences and Engineering)
Show Figures

Figure 1

25 pages, 13738 KiB  
Article
Numerical Investigation of Flow around Two Tandem Cylinders in the Upper Transition Reynolds Number Regime Using Modal Analysis
by Anastasiia Nazvanova, Guang Yin and Muk Chen Ong
J. Mar. Sci. Eng. 2022, 10(10), 1501; https://doi.org/10.3390/jmse10101501 - 15 Oct 2022
Cited by 7 | Viewed by 3261
Abstract
Flow around two tandem cylinders at Re = 3.6 × 106 for different center-to-center spacing ratio (L/D) is investigated numerically using two-dimensional (2D) Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations combined with a standard kω SST turbulence [...] Read more.
Flow around two tandem cylinders at Re = 3.6 × 106 for different center-to-center spacing ratio (L/D) is investigated numerically using two-dimensional (2D) Unsteady Reynolds-Averaged Navier–Stokes (URANS) equations combined with a standard kω SST turbulence model. The instantaneous flow structures around the cylinders, hydrodynamic forces on the cylinders and Strouhal number (St) are analyzed and discussed. Dynamic Mode Decomposition (DMD) is used to extract the spatiotemporal information of the coherent flow structures in the wake regions behind the upstream (UC) and downstream (DC) cylinders. A sparsity-promoted algorithm is implemented to select the dominant modes which contribute the most to the dynamics of the system. Based on the dominant modes, a reduced-order representation of the flows is built. A comparison of the lift and drag force–time histories, obtained by simulation results and the reduced-order representations, shows a high capability of the latter to reproduce the surrounding flow and hydrodynamic properties of the tandem cylinders at the high Reynolds number. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

48 pages, 11931 KiB  
Review
Flow-Induced Vibrations of Single and Multiple Heated Circular Cylinders: A Review
by Ussama Ali, Md. Islam, Isam Janajreh, Yap Fatt and Md. Mahbub Alam
Energies 2021, 14(24), 8496; https://doi.org/10.3390/en14248496 - 16 Dec 2021
Cited by 65 | Viewed by 5101
Abstract
This study is an effort to encapsulate the fundamentals and major findings in the area of fluid-solid interaction, particularly the flow-induced vibrations (FIV). Periodic flow separation and vortex shedding stretching downstream induce dynamic fluid forces on the bluff body and results in oscillatory [...] Read more.
This study is an effort to encapsulate the fundamentals and major findings in the area of fluid-solid interaction, particularly the flow-induced vibrations (FIV). Periodic flow separation and vortex shedding stretching downstream induce dynamic fluid forces on the bluff body and results in oscillatory motion of the body. The motion is generally referred to as flow-induced vibrations. FIV is a dynamic phenomenon as the motion, or the vibration of the body is subjected to the continuously changing fluid forces. Sometimes FIV is modeled as forced vibrations to mimic the vibration response due to the fluid forces. FIV is a deep concern of engineers for the design of modern heat exchangers, particularly the shell-and-tube type, as it is the major cause for the tube failures. Effect of important parameters such as Reynolds number, spacing ratio, damping coefficient, mass ratio and reduced velocity on the vibration characteristics (such as Strouhal number, vortex shedding, vibration frequency and amplitude, etc.) is summarized. Flow over a bluff body with wakes developed has been studied widely in the past decades. Several review articles are available in the literature on the area of vortex shedding and FIV. None of them, however, discusses the cases of FIV with heat transfer. In particular systems, FIV is often coupled to heat transfer, e.g., in nuclear power plants, FIV causes wear and tear to heat exchangers, which can eventually lead to catastrophic failure. As the circular shape is the most common shape for tubes and pipes encountered in practice, this review will only focus on the FIV of circular cylinders. In this attempt, FIV of single and multiple cylinders in staggered arrangement, including tandem and side-by-side arrangement is summarized for heated and unheated cylinder(s) in the one- and two-degree of freedom. The review also synthesizes the effect of fouling on heat transfer and flow characteristics. Finally, research prospects for heated circular cylinders are also stated. Full article
(This article belongs to the Special Issue Wake, Energy, and Heat 2021)
Show Figures

Figure 1

21 pages, 13339 KiB  
Article
Surface Roughness Effects on Flows Past Two Circular Cylinders in Tandem Arrangement at Co-Shedding Regime
by Paulo Guimarães de Moraes and Luiz Antonio Alcântara Pereira
Energies 2021, 14(24), 8237; https://doi.org/10.3390/en14248237 - 7 Dec 2021
Cited by 14 | Viewed by 3361
Abstract
This paper contributes by investigating surface roughness effects on temporal history of aerodynamic loads and vortex shedding frequency of two circular cylinders in tandem arrangement. The pair of cylinders is immovable; of equal outer diameter, D; and its geometry is defined by the [...] Read more.
This paper contributes by investigating surface roughness effects on temporal history of aerodynamic loads and vortex shedding frequency of two circular cylinders in tandem arrangement. The pair of cylinders is immovable; of equal outer diameter, D; and its geometry is defined by the dimensionless center-to-center pitch ratio, L/D. Thus, a distance of L/D = 4.5 is chosen to characterize the co-shedding regime, where the two shear layers of opposite signals, originated from each cylinder surface, interact generating counter-rotating vortical structures. A subcritical Reynolds number of Re = 6.5 × 104 is chosen for the test cases, which allows some comparisons with experimental results without roughness effects available in the literature. Two relative roughness heights are adopted, nominally ε/D = 0.001 and 0.007, aiming to capture the sensitivity of the applied numerical approach. Recent numerical results published in the literature have reported that the present two-dimensional model of surface roughness effects is able to capture both drag reduction and full cessation of vortex shedding for an immovable cylinder near a moving ground. That roughness model was successfully blended with a Lagrangian vortex method using sub-grid turbulence modeling. Overall, the effects of relative roughness heights on flows past two cylinders reveal changing of behavior of the vorticity dynamics, in which drag reduction, intermittence of vortex shedding, and wake destruction are identified under certain roughness effects. This kind of study is very useful for engineering conservative designs. The work is also motivated by scarcity of results previous discussing flows past cylinders in cross flow with surface roughness effects. Full article
(This article belongs to the Special Issue Turbulence and Fluid Mechanics)
Show Figures

Figure 1

Back to TopTop