Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (76)

Search Parameters:
Keywords = tunnel groundwater condition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4927 KB  
Article
The Effect of Hydrogeological Heterogeneity on Groundwater Flow Field at Tunnel Site: A 2D Synthetic Study of Single and Multiple Tunnels
by Zhijie Cai, Weini Hu, Xiujie Wu, Zhongyuan Xu and Yifei Ma
Hydrology 2026, 13(2), 44; https://doi.org/10.3390/hydrology13020044 - 27 Jan 2026
Viewed by 112
Abstract
The rapid expansion of tunnel construction in mountainous regions faces significant challenges due to the heterogeneity of surrounding rocks caused by faults, fractures, and karst features, which strongly affect groundwater seepage. Traditional homogeneous assumptions are inadequate for accurately predicting tunnel water inflow, while [...] Read more.
The rapid expansion of tunnel construction in mountainous regions faces significant challenges due to the heterogeneity of surrounding rocks caused by faults, fractures, and karst features, which strongly affect groundwater seepage. Traditional homogeneous assumptions are inadequate for accurately predicting tunnel water inflow, while current heterogeneous assumptions primarily focus on the permeability of the medium near a single tunnel. This study employs 2D numerical modeling based on the Kexuecheng Tunnel in Chongqing, China, to investigate the effects of geological heterogeneity on tunnel discharge and groundwater drawdown. A methodological advancement of this work lies in the quantification of the impact of non-permeability heterogeneity, stratigraphic continuity, and dip angles on groundwater under multi-tunnel conditions. Four stratigraphic continuities (R = 60 m, 120 m, 180 m, 240 m) and four dip angles (θ = 0°, 30°, 60°, 90°) are considered for permeability variations. Results demonstrate that heterogeneous formations produce irregular discharge and non-uniform groundwater drawdown, closely reflecting field conditions. Increased stratum continuity intensifies discharge and drawdown at smaller dip angles, while combined variations yield complex hydraulic responses. In multi-tunnel settings, reduced spacing amplifies discharge and drawdown, exacerbating groundwater impacts. Compared with homogeneous conditions, heterogeneous formations yield higher water inflow and uneven drawdown. The findings underscore the necessity of accounting for geological heterogeneity and tunnel interactions in hydrogeological evaluations and design. In addition to permeability, stratigraphic continuity and dip angles during simulation validation, especially in multi-tunnel configurations, enhance safety and reduce engineering risks. Full article
(This article belongs to the Topic Water-Soil Pollution Control and Environmental Management)
Show Figures

Figure 1

18 pages, 3795 KB  
Article
Excavation Stability of Tunnel Structure in Water-Rich Areas
by Zhuanding Gong, Xuedong Fu and Xuansheng Cheng
Appl. Sci. 2026, 16(2), 902; https://doi.org/10.3390/app16020902 - 15 Jan 2026
Viewed by 110
Abstract
To investigate the influence of different water-rich conditions on tunnel excavation stability, three typical working conditions were designed based on the engineering characteristics of tunnels in water-rich areas (with groundwater levels 70 m, 55 m, and 40 m from the tunnel bottom, respectively). [...] Read more.
To investigate the influence of different water-rich conditions on tunnel excavation stability, three typical working conditions were designed based on the engineering characteristics of tunnels in water-rich areas (with groundwater levels 70 m, 55 m, and 40 m from the tunnel bottom, respectively). Numerical simulation research on tunnel excavation stability was carried out using the finite difference method. The results show that the influence of surrounding rock mechanical strength indexes on pore water pressure distribution is significantly greater than that of water-rich conditions; under the action of pore water pressure, the displacements of different parts of the tunnel structure exhibit differentiated characteristics, with the displacement of the arch foot being larger than that of the vault; the tunnel bottom is a high-risk area for geological hazards such as shear failure and mud burst, which requires key prevention and control. The research results can provide data support and technical reference for disaster early warning and support design optimization of tunnel projects in water-rich areas. Full article
Show Figures

Figure 1

21 pages, 5372 KB  
Article
Hydrological Response of an Enclosed Karst Groundwater System to Drainage Induced by Tunnel Excavation in a Typical Anticline Geo-Structure
by Xiantao Xu, Qian Zhao, Xiangsheng Kong, Lei Zhang, Xiaojie Zhang, Tao Yu, Xiaowei Zhang and Qiang Xia
Water 2026, 18(1), 87; https://doi.org/10.3390/w18010087 - 29 Dec 2025
Viewed by 387
Abstract
The drainage of groundwater in mountainous tunnel projects always leads to substantial decline of the regional water table, which may induce numerous environmental issues, such as spring depletion, surface subsidence, vegetation degradation, and impacts on local water supplies, especially in the enclosed karst [...] Read more.
The drainage of groundwater in mountainous tunnel projects always leads to substantial decline of the regional water table, which may induce numerous environmental issues, such as spring depletion, surface subsidence, vegetation degradation, and impacts on local water supplies, especially in the enclosed karst aquifers of anticlines in the area, such as the Jura mountain type. A systematic hydrological monitoring was conducted during the excavation of the Wufu Tunnel in Chongqing, China. The monitoring data includes discharge rate and water level collected from tunnels, boreholes, coal mines, springs, and ponds, respectively. Hydrological responses of karst aquifers and surface water bodies to tunnel drainage and precipitation were investigated by statistical analysis, Mann–Kendall test, heat map, and wavelet analysis. Results show that the enclosed karst water system has strong hydraulic connections and good water storage conditions. Tunnel drainage is the dominant factor causing dynamic changes at monitoring points, while the influence of rainfall is relatively limited. Borehole water levels and coal mine drainage have a close correlation with tunnel inflow, while springs are influenced by both rainfall and tunnel drainage. Few pond monitoring points are related to rainfall. Tunnel drainage has transformed the regional groundwater dynamic conditions, causing local groundwater flow direction reversal and reconstructing the groundwater recharge-flow-discharge pattern. Full article
Show Figures

Figure 1

20 pages, 5145 KB  
Article
Mechanisms of Karst Ground Collapse Under Groundwater Fluctuations: Insights from Physical Model Test and Numerical Simulation
by Yongchun Luo, Ling Yang and Yujian Xing
Water 2025, 17(24), 3588; https://doi.org/10.3390/w17243588 - 18 Dec 2025
Viewed by 506
Abstract
Karst ground collapses triggered by groundwater fluctuations pose a significant threat to the safety and stability of tunnel engineering. In this study, taking the Yakouzai Tunnel as a case, a combination of physical model tests and numerical simulations was employed to investigate the [...] Read more.
Karst ground collapses triggered by groundwater fluctuations pose a significant threat to the safety and stability of tunnel engineering. In this study, taking the Yakouzai Tunnel as a case, a combination of physical model tests and numerical simulations was employed to investigate the mechanisms of groundwater-induced karst collapse. A self-designed physical model device reproduced the full process of soil cavity initiation, expansion, and roof failure. Numerical simulations were further conducted to analyze the evolution of pore water pressure, stress distribution, and displacement under both groundwater drawdown and rise conditions. The results indicate that concentrated seepage erosion at the cavity arch foot is the primary driver of cavity initiation, with cyclic suffusion promoting its progressive expansion. Rapid groundwater drawdown generates vacuum suction that markedly reduces roof stability and may induce sudden collapse, whereas groundwater rise, although providing partial support to the roof, intensifies shear stress concentration and leaves the cavity in an unstable state. The findings highlight that karst collapse is governed by the coupled effects of seepage erosion, arching degradation, differential settlement, and vacuum suction, providing a scientific basis for monitoring, prediction, and mitigation of karst hazards. Full article
Show Figures

Figure 1

22 pages, 11489 KB  
Article
Comprehensive Detection of Groundwater-Affected Ancient Underground Voids During Old Town Renewal: A Case Study from Wuhan, China
by Jie Zhou, Wei Feng, Peng Guan, Junsheng Liu, Huilan Zhang and Zixiong Wang
Water 2025, 17(23), 3356; https://doi.org/10.3390/w17233356 - 24 Nov 2025
Viewed by 882
Abstract
Ancient underground voids present non-trivial hazards to urban redevelopment, particularly where groundwater conditions change during construction. We propose a staged, groundwater-aware workflow that integrates in-void mapping with area-scale geophysics and explicitly links water state to imaging performance. Following exposure of an undocumented masonry [...] Read more.
Ancient underground voids present non-trivial hazards to urban redevelopment, particularly where groundwater conditions change during construction. We propose a staged, groundwater-aware workflow that integrates in-void mapping with area-scale geophysics and explicitly links water state to imaging performance. Following exposure of an undocumented masonry tunnel in a foundation pit in Wuhan (China), we acquired underwater CCTV and sonar during water-filled conditions, and, after drainage, collected ground-penetrating radar (GPR, 75–150 MHz) and ultra-high-density electrical resistivity tomography (UHD-ERT, 1 m electrode spacing) data. Calibration lines over the breach anchored the depth/geometry and reduced interpretational non-uniqueness. Analytical estimates using Archie-type and CRIM relations, together with observed signatures, indicate that drainage increased resistivity and reduced electromagnetic attenuation, improving UHD-ERT contrast and GPR penetration. The merged evidence resolves a straight-walled arch (~1.8 m wide × ~1.9 m high) at ~4–5 m depth with a sealed end 4 m south of the breach. Sonar confirms a northward segment measuring 45 ± 2 m to a sealed wall; a GPR void-type anomaly at ~57 m along trend represents a candidate continuation that remains unverified with current access. Within the resolution and sensitivity of the 2D survey, no additional voids were detected elsewhere on site. This case demonstrates that coupling in-void CCTV/sonar with post-drainage GPR and UHD-ERT, organized by hydrologic stage, yields engineering-grade constraints for risk control. The workflow and boundary conditions provide a transferable template for water-influenced, urban environments. Full article
Show Figures

Figure 1

20 pages, 2091 KB  
Article
Risk Classification of Large Deformation in Soft-Rock Tunnels Using an Improved Matter–Element Extension Model with Asymmetric Proximity
by Shuangqing Ma, Yongli Xie, Junling Qiu, Jinxing Lai and Hao Sun
Buildings 2025, 15(21), 3943; https://doi.org/10.3390/buildings15213943 - 1 Nov 2025
Viewed by 538
Abstract
An integrated evaluation framework merging the analytic hierarchy process (AHP) and an improved matter–element extension model based on asymmetric proximity is developed to classify large deformation risk levels in soft-rock tunnel construction. From geological surveys and real-time monitoring, ten core indicators spanning three [...] Read more.
An integrated evaluation framework merging the analytic hierarchy process (AHP) and an improved matter–element extension model based on asymmetric proximity is developed to classify large deformation risk levels in soft-rock tunnel construction. From geological surveys and real-time monitoring, ten core indicators spanning three dimensions—geology (surrounding rock grade, groundwater condition, strength–stress ratio, adverse geological condition), design (excavation cross-sectional shape, excavation span, excavation cross-sectional area), and support (support stiffness, support installation timing, construction step length)—are selected. AHP constructs and validates a judgment matrix to derive subjective weights for each indicator. Within a three-tier hierarchy (indicator, criterion, and target layers), the asymmetric proximity quantifies each tunnel’s proximity to the matter–element representing predefined risk levels. Risk levels are then automatically assigned by selecting the maximum composite proximity. Application to representative soft-rock tunnel cases confirms the method’s high accuracy, stability, and operational feasibility, closely matching field observations. This framework enables precise risk stratification and intuitive visualization, offering critical technical support for optimizing tunnel design and operations, and ultimately enhancing the safety, resilience, and sustainability of large-scale infrastructure. Full article
(This article belongs to the Special Issue Advanced Research in Cement and Concrete)
Show Figures

Figure 1

24 pages, 11789 KB  
Article
Mechanical Performance Degradation and Microstructural Evolution of Grout-Reinforced Fractured Diorite Under High Temperature and Acidic Corrosion Coupling
by Yuxue Cui, Henggen Zhang, Tao Liu, Zhongnian Yang, Yingying Zhang and Xianzhang Ling
Buildings 2025, 15(19), 3547; https://doi.org/10.3390/buildings15193547 - 2 Oct 2025
Viewed by 619
Abstract
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and [...] Read more.
The long-term stability of grout-reinforced fractured rock masses in acidic groundwater environments after tunnel fires is critical for the safe operation of underground engineering. In this study, grouting reinforcement tests were performed on fractured diorite specimens using a high-strength fast-anchoring agent (HSFAA), and their mechanical degradation and microstructural evolution mechanisms were investigated under coupled high-temperature (25–1000 °C) and acidic corrosion (pH = 2) conditions. Multi-scale characterization techniques, including uniaxial compression strength (UCS) tests, X-ray computed tomography (CT), scanning electron microscopy (SEM), three-dimensional (3D) topographic scanning, and X-ray diffraction (XRD), were employed systematically. The results indicated that the synergistic thermo-acid interaction accelerated mineral dissolution and induced structural reorganization, resulting in surface whitening of specimens and decomposition of HSFAA hydration products. Increasing the prefabricated fracture angles (0–60°) amplified stress concentration at the grout–rock interface, resulting in a reduction of up to 69.46% in the peak strength of the specimens subjected to acid corrosion at 1000 °C. Acidic corrosion suppressed brittle disintegration observed in the uncorroded specimens at lower temperature (25–600 °C) by promoting energy dissipation through non-uniform notch formation, thereby shifting the failure modes from shear-dominated to tensile-shear hybrid modes. Quantitative CT analysis revealed a 34.64% reduction in crack volume (Vca) for 1000 °C acid-corroded specimens compared to the control specimens at 25 °C. This reduction was attributed to high-temperature-induced ductility, which transformed macroscale crack propagation into microscale coalescence. These findings provide critical insights for assessing the durability of grouting reinforcement in post-fire tunnel rehabilitation and predicting the long-term stability of underground structures in chemically aggressive environments. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

17 pages, 3397 KB  
Article
Challenges in the Detection of Water-Filled Cavities in Karst Environments Using Electrical Resistivity Tomography
by Sergio Negri and Dora Francesca Barbolla
Geosciences 2025, 15(9), 349; https://doi.org/10.3390/geosciences15090349 - 5 Sep 2025
Cited by 2 | Viewed by 1980
Abstract
Electrical resistivity tomography (ERT) is one of the most commonly used geophysical methods for imaging the distribution of electrical resistivity in the subsurface. It is often employed to characterise heterogeneity in karst regions and locate cavities and conduits below the surface. The resistivity [...] Read more.
Electrical resistivity tomography (ERT) is one of the most commonly used geophysical methods for imaging the distribution of electrical resistivity in the subsurface. It is often employed to characterise heterogeneity in karst regions and locate cavities and conduits below the surface. The resistivity contrast between the host rock and the cavity depends on the material filling the cavity. Air has a high electrical resistivity and should therefore produce strong reflections and refractions off cavity walls. However, cavities are not always easily detectable. A decrease in resistivity contrast at the interface between rock and air may result from different physical conditions relating to pore saturation, fracturing and stress near the cavity walls. Our first goal is to understand how extensive fracturing and hydrogeological conditions in the first subsurface layers can affect electric current flow in the presence of a karst tunnel. We use the commercial Res2Dmod software 3.0 to simulate an ERT on several ground models. The results, which are based on hydrogeological models, are presented for several conditions of a karst conduit: empty; full of water within a homogeneous background; and below the groundwater level in the presence of extensive fractures in the shallow layer above it. Full article
(This article belongs to the Section Geophysics)
Show Figures

Figure 1

19 pages, 3847 KB  
Article
Bayesian Network-Driven Risk Assessment and Reinforcement Strategy for Shield Tunnel Construction Adjacent to Wall–Pile–Anchor-Supported Foundation Pit
by Yuran Lu, Bin Zhu and Hongsheng Qiu
Buildings 2025, 15(17), 3027; https://doi.org/10.3390/buildings15173027 - 25 Aug 2025
Viewed by 1221
Abstract
With the increasing demand for urban rail transit capacity, shield tunneling has become the predominant method for constructing underground metro systems in densely populated cities. However, the spatial interaction between shield tunnels and adjacent retaining structures poses significant engineering challenges, potentially leading to [...] Read more.
With the increasing demand for urban rail transit capacity, shield tunneling has become the predominant method for constructing underground metro systems in densely populated cities. However, the spatial interaction between shield tunnels and adjacent retaining structures poses significant engineering challenges, potentially leading to excessive ground settlement, structural deformation, and even stability failure. This study systematically investigates the deformation behavior and associated risks of retaining systems during adjacent shield tunnel construction. An orthogonal multi-factor analysis was conducted to evaluate the effects of grouting pressure, grout stiffness, and overlying soil properties on maximum surface settlement. Results show that soil cohesion and grouting pressure are the most influential parameters, jointly accounting for over 72% of the variance in settlement response. Based on the numerical findings, a Bayesian network model was developed to assess construction risk, integrating expert judgment and field monitoring data to quantify the conditional probability of deformation-induced failure. The model identifies key risk sources such as geological variability, groundwater instability, shield steering correction, segmental lining quality, and site construction management. Furthermore, the effectiveness and cost-efficiency of various grouting reinforcement strategies were evaluated. The results show that top grouting increases the reinforcement efficiency to 34.7%, offering the best performance in terms of both settlement control and economic benefit. Sidewall grouting yields an efficiency of approximately 30.2%, while invert grouting shows limited effectiveness, with an efficiency of only 11.6%, making it the least favorable option in terms of both technical and economic considerations. This research provides both practical guidance and theoretical insight for risk-informed shield tunneling design and management in complex urban environments. Full article
Show Figures

Figure 1

15 pages, 2779 KB  
Article
Groundwater Flow Impact in Complex Karst Regions Considering Tunnel Construction Conditions: A Case Study of the New Construction Project at XLS Tunnel
by Zhou Chen, Hongtu Zhang, Qi Shen, Zihao Chen, Kai Wang and Changsheng Chen
Water 2025, 17(16), 2383; https://doi.org/10.3390/w17162383 - 12 Aug 2025
Viewed by 1252
Abstract
Tunneling in structurally complex, tectonically active regions such as southwest China poses significant environmental risks to groundwater, especially in heterogeneous karst fault systems where conventional prediction methods often fail. This study innovatively coupled MODFLOW’s STREAM package (for simulating karst conduit networks) and DRAIN [...] Read more.
Tunneling in structurally complex, tectonically active regions such as southwest China poses significant environmental risks to groundwater, especially in heterogeneous karst fault systems where conventional prediction methods often fail. This study innovatively coupled MODFLOW’s STREAM package (for simulating karst conduit networks) and DRAIN package (for tunnel inflow prediction) within a 3D groundwater model to assess hydrogeological impacts in complex mountainous terrain. The simulations show that an uncased tunnel lining causes significant groundwater changes under natural conditions, with predicted inflows reaching 34,736 m3/d. Conventional cement grouting (permeability: 1 × 10−5 cm/s; thickness: 10 m) mitigates the effects considerably and reduces the inflows in the tunnel sections by 27–97%. Microfine cement grouting (5 × 10−6 cm/s; 10 m thickness) further improves performance by achieving a 49–98% reduction in inflows and limiting the reduction in spring discharge to ≤13.28%. These results establish a valid theoretical framework for predicting groundwater impacts in heterogeneous terrain and demonstrate that targeted seepage control—particularly grouting with microfine cement—effectively protects groundwater-dependent ecosystems during infrastructure development. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

12 pages, 1839 KB  
Article
A Knowledge–Data Dual-Driven Groundwater Condition Prediction Method for Tunnel Construction
by Yong Huang, Wei Fu and Xiewen Hu
Information 2025, 16(8), 659; https://doi.org/10.3390/info16080659 - 1 Aug 2025
Viewed by 490
Abstract
This paper introduces a knowledge–data dual-driven method for predicting groundwater conditions during tunnel construction. Unlike existing methods, our approach effectively integrates trend characteristics of apparent resistivity from detection results with geological distribution characteristics and expert insights. This dual-driven strategy significantly enhances the accuracy [...] Read more.
This paper introduces a knowledge–data dual-driven method for predicting groundwater conditions during tunnel construction. Unlike existing methods, our approach effectively integrates trend characteristics of apparent resistivity from detection results with geological distribution characteristics and expert insights. This dual-driven strategy significantly enhances the accuracy of the prediction model. The intelligent prediction process for tunnel groundwater conditions proceeds in the following steps: First, the apparent resistivity data matrix is obtained from transient electromagnetic detection results and standardized. Second, to improve data quality, trend characteristics are extracted from the apparent resistivity data, and outliers are eliminated. Third, expert insights are systematically integrated to fully utilize prior information on groundwater conditions at the construction face, leading to the establishment of robust predictive models tailored to data from various construction surfaces. Finally, the relevant prediction segment is extracted to complete the groundwater condition forecast. Full article
Show Figures

Figure 1

21 pages, 3513 KB  
Article
An Improved Optimal Cloud Entropy Extension Cloud Model for the Risk Assessment of Soft Rock Tunnels in Fault Fracture Zones
by Shuangqing Ma, Yongli Xie, Junling Qiu, Jinxing Lai and Hao Sun
Buildings 2025, 15(15), 2700; https://doi.org/10.3390/buildings15152700 - 31 Jul 2025
Viewed by 802
Abstract
Existing risk assessment approaches for soft rock tunnels in fault-fractured zones typically employ single weighting schemes, inadequately integrate subjective and objective weights, and fail to define clear risk. This study proposes a risk-grading methodology that integrates an enhanced game theoretic weight-balancing algorithm with [...] Read more.
Existing risk assessment approaches for soft rock tunnels in fault-fractured zones typically employ single weighting schemes, inadequately integrate subjective and objective weights, and fail to define clear risk. This study proposes a risk-grading methodology that integrates an enhanced game theoretic weight-balancing algorithm with an optimized cloud entropy extension cloud model. Initially, a comprehensive indicator system encompassing geological (surrounding rock grade, groundwater conditions, fault thickness, dip, and strike), design (excavation cross-section shape, excavation span, and tunnel cross-sectional area), and support (support stiffness, support installation timing, and construction step length) parameters is established. Subjective weights obtained via the analytic hierarchy process (AHP) are combined with objective weights calculated using the entropy, coefficient of variation, and CRITIC methods and subsequently balanced through a game theoretic approach to mitigate bias and reconcile expert judgment with data objectivity. Subsequently, the optimized cloud entropy extension cloud algorithm quantifies the fuzzy relationships between indicators and risk levels, yielding a cloud association evaluation matrix for precise classification. A case study of a representative soft rock tunnel in a fault-fractured zone validates this method’s enhanced accuracy, stability, and rationality, offering a robust tool for risk management and design decision making in complex geological settings. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

20 pages, 2336 KB  
Article
Microbial DNA-Based Monitoring of Underground Crude Oil Storage Bases Using Water-Sealed Rock-Cavern Tanks
by Ayae Goto, Shunichi Watanabe, Katsumasa Uruma, Yuki Momoi, Takuji Oomukai and Hajime Kobayashi
Water 2025, 17(15), 2197; https://doi.org/10.3390/w17152197 - 23 Jul 2025
Viewed by 1084
Abstract
Strategic petroleum reserves are critical for energy security. In Japan, 0.5 million kiloliters of crude oil (12% of the state-owned reserves) is stored using underground rock-cavern tanks, which comprise unlined horizontal tunnels bored into bedrock. Crude oil is held within the tank by [...] Read more.
Strategic petroleum reserves are critical for energy security. In Japan, 0.5 million kiloliters of crude oil (12% of the state-owned reserves) is stored using underground rock-cavern tanks, which comprise unlined horizontal tunnels bored into bedrock. Crude oil is held within the tank by water inside the tank, the pressure of which is kept higher than that of the crude oil by natural groundwater and irrigation water. This study applied microbial DNA-based monitoring to assess the water environments in and around national petroleum-stockpiling bases (the Kuji, Kikuma, and Kushikino bases) using the rock-cavern tanks. Forty-five water samples were collected from the rock-cavern tanks, water-supply tunnels, and observation wells. Principal-component analysis and hierarchical clustering indicated that microbial profiles of the water samples reflect the local environments of their origins. Particularly, the microbial profiles of water inside the rock-cavern tanks were distinct from other samples, revealing biological conditions and hence environmental characteristics within the tanks. Moreover, the clustering analysis indicated distinct features of water samples that have not been detected by other monitoring methods. Thus, microbial DNA-based monitoring provides valuable information on the in situ environments of rock-cavern tanks and can serve as an extremely sensitive measurement to monitor the underground oil storage. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

13 pages, 6867 KB  
Article
A Closed-Form Solution for Water Inflow into Deeply Buried Arched Tunnels
by Yunbo Wei, Qiang Chang and Kexun Zheng
Water 2025, 17(14), 2121; https://doi.org/10.3390/w17142121 - 16 Jul 2025
Viewed by 549
Abstract
The analytical solutions for groundwater inflow into tunnels are usually developed under the condition of circular tunnels. However, real-world tunnels often have non-circular cross-sections, such as arched, lens-shaped, or egg-shaped profiles. Accurately assessing water inflow for these diverse tunnel shapes remains challenging. To [...] Read more.
The analytical solutions for groundwater inflow into tunnels are usually developed under the condition of circular tunnels. However, real-world tunnels often have non-circular cross-sections, such as arched, lens-shaped, or egg-shaped profiles. Accurately assessing water inflow for these diverse tunnel shapes remains challenging. To address this gap, this study developed a closed-form analytical solution for water inflow into a deeply buried arched tunnel using the conformal mapping method. When the tunnel circumference degenerates to a circle, the analytical solution degenerates to the widely used Goodman’s equation. The solution also showed excellent agreement with numerical simulations carried out using COMSOL. Based on the analytical solution, the impact of various factors on water inflow Q was further discussed: (1) Q decreases as the boundary distance D increases. And the boundary inclination angle (απ/2) significantly affects Q only when the boundary is close to the tunnel (D<20); (2) Q increases quickly with the upper arc radius r1, while it shows minimal variation with the change in the lower arc radius r2. The findings provide a theoretical foundation for characterizing water inflow into arched tunnels, thereby supporting improved tunnel planning and grouting system design. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

18 pages, 6753 KB  
Article
Deformation Analysis of 50 m-Deep Cylindrical Retaining Shaft in Composite Strata
by Peng Tang, Xiaofeng Fan, Wenyong Chai, Yu Liang and Xiaoming Yan
Sustainability 2025, 17(13), 6223; https://doi.org/10.3390/su17136223 - 7 Jul 2025
Cited by 1 | Viewed by 978
Abstract
Cylindrical retaining structures are widely adopted in intercity railway tunnel engineering due to their exceptional load-bearing performance, no need for internal support, and efficient utilization of concrete compressive strength. Measured deformation data not only comprehensively reflect the influence of construction and hydrogeological conditions [...] Read more.
Cylindrical retaining structures are widely adopted in intercity railway tunnel engineering due to their exceptional load-bearing performance, no need for internal support, and efficient utilization of concrete compressive strength. Measured deformation data not only comprehensively reflect the influence of construction and hydrogeological conditions but also directly and clearly indicate the safety and stability status of structure. Therefore, based on two geometrically similar cylindrical shield tunnel shafts in Shenzhen, the surface deformation, structure deformation, and changes in groundwater outside the shafts during excavation were analyzed, and the deformation characteristics under the soil–rock composite stratum were summarized. Results indicate that the uneven distribution of surface surcharge and groundwater level are key factors causing differential deformations. The maximum horizontal deformation of the shafts wall is less than 0.05% of the current excavation depth (H), occurring primarily in two zones: from H − 20 m to H + 20 m and in the shallow 0–10 m range. Vertical deformations at the wall top are mostly within ±0.2% H. Localized groundwater leakage in joints may lead to groundwater redistribution and seepage-induced fine particle migration, exacerbating uneven deformations. Timely grouting when leakage occurs and selecting joints with superior waterproof sealing performance are essential measures to ensure effective sealing. Compared with general polygonal foundation pits, cylindrical retaining structures can achieve low environmental disturbances while possessing high structural stability. Full article
(This article belongs to the Special Issue Sustainable Development and Analysis of Tunnels and Underground Works)
Show Figures

Figure 1

Back to TopTop