Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (397)

Search Parameters:
Keywords = tumor angiogenic factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4437 KiB  
Article
HOXA5 as a Dual Modulator of Tumor Biology in Endometrial Cancer
by Yi-Kai Fu, Ching-Yu Shih, Chiao-Yin Cheng, Hua Ho and Yen-Lin Chen
Cancers 2025, 17(15), 2473; https://doi.org/10.3390/cancers17152473 - 26 Jul 2025
Viewed by 291
Abstract
Background/Objectives: Endometrial cancer (EC) is the most prevalent gynecological malignancy, with increasing incidence and mortality. HOXA5, a developmental transcription factor, has been linked to prognosis in various cancers, but its role in EC remains unclear. This study aimed to evaluate the prognostic [...] Read more.
Background/Objectives: Endometrial cancer (EC) is the most prevalent gynecological malignancy, with increasing incidence and mortality. HOXA5, a developmental transcription factor, has been linked to prognosis in various cancers, but its role in EC remains unclear. This study aimed to evaluate the prognostic potential of HOXA5 in EC and to explore its association with common tumor-related proteins. Methods: We analyzed 75 EC tissue samples using immunohistochemistry to evaluate HOXA5 expression and its association with clinicopathological features and tumor-related biomarkers, including Ki-67, CD31, and fibronectin. Statistical analyses included logistic regression and Kaplan–Meier survival analysis. Results: High HOXA5 expression was significantly associated with elevated Ki-67 levels (p = 0.001) but paradoxically correlated with improved overall survival (p = 0.026). CD31 and fibronectin levels were significantly lower in the high-HOXA5 group (p = 0.007 and p = 0.001, respectively), suggesting reduced angiogenic and invasive potential. However, neither marker remained significant in multivariable analysis. Conclusions: HOXA5 may exert a dual role in EC by promoting proliferation while limiting tumor progression via suppression of angiogenesis and matrix remodeling. It holds potential as a prognostic biomarker and therapeutic target. Full article
Show Figures

Figure 1

27 pages, 4223 KiB  
Article
Prolyl Hydroxylase Inhibitor-Mediated HIF Activation Drives Transcriptional Reprogramming in Retinal Pigment Epithelium: Relevance to Chronic Kidney Disease
by Tamás Gáll, Dávid Pethő, Annamária Nagy, Szilárd Póliska, György Balla and József Balla
Cells 2025, 14(14), 1121; https://doi.org/10.3390/cells14141121 - 21 Jul 2025
Viewed by 509
Abstract
Chronic kidney disease (CKD)-associated anemia is a global health concern and is linked to vascular and ocular complications. Hypoxia-inducible factor (HIF) stabilizers, or HIF prolyl hydroxylase inhibitors (PHIs), are promising candidates for the treatment of CKD-associated anemia. Since hypoxia and angiogenesis are involved [...] Read more.
Chronic kidney disease (CKD)-associated anemia is a global health concern and is linked to vascular and ocular complications. Hypoxia-inducible factor (HIF) stabilizers, or HIF prolyl hydroxylase inhibitors (PHIs), are promising candidates for the treatment of CKD-associated anemia. Since hypoxia and angiogenesis are involved in eye diseases, this study examined the effects of HIF-PHIs on metabolism and gene expression in retinal pigment epithelium (RPE) cells. Results revealed that PHIs differentially induced angiogenic (VEGFA, ANG) and glycolytic (PDK1, GLUT1) gene expression, with Roxadustat causing the strongest transcriptional changes. However, Roxadustat-induced angiogenic signals did not promote endothelial tube formation. Moreover, it did not induce oxidative stress, inflammation, or significant antioxidant gene responses in ARPE-19 cells. Roxadustat also reduced the inflammatory cytokine response to tumor necrosis factor-α, including IL-6, IL-8, and MCP-1, and did not exacerbate VEGF expression under high-glucose conditions. Overall, Roxadustat triggered complex gene expression changes without promoting inflammation or oxidative stress in RPE cells. Despite these findings, ophthalmologic monitoring is advised during PHI treatment in CKD patients receiving HIF-PHIs. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

19 pages, 3181 KiB  
Article
Overexpression of BDNF and uPA Combined with the Suppression of Von Hippel–Lindau Tumor Suppressor Enhances the Neuroprotective Activity of the Secretome of Human Mesenchymal Stromal Cells in the Model of Intracerebral Hemorrhage
by Stalik S. Dzhauari, Alexandra L. Primak, Nataliya A. Basalova, Natalia I. Kalinina, Anna O. Monakova, Kirill D. Bozov, Arkadiy Ya. Velichko, Maria E. Illarionova, Olga A. Grigorieva, Zhanna A. Akopyan, Vladimir S. Popov, Pavel G. Malkov, Anastasia Yu. Efimenko, Vsevolod A. Tkachuk and Maxim N. Karagyaur
Int. J. Mol. Sci. 2025, 26(14), 6697; https://doi.org/10.3390/ijms26146697 - 12 Jul 2025
Viewed by 377
Abstract
Nerve tissue damage is an unsolved problem in modern neurology and neurosurgery, which prompts the need to search for approaches to stimulate neuroprotection and regeneration of neural tissue. Earlier we have shown that the secretome of human mesenchymal stromal cells (MSCs) stimulates rat [...] Read more.
Nerve tissue damage is an unsolved problem in modern neurology and neurosurgery, which prompts the need to search for approaches to stimulate neuroprotection and regeneration of neural tissue. Earlier we have shown that the secretome of human mesenchymal stromal cells (MSCs) stimulates rat survival, reduces the severity of neurological deficits, and decreases the volume of brain damage in a hemorrhagic stroke model. A significant disadvantage of using the MSC secretome is the need to concentrate it (at least 5–10 fold) to achieve appreciable pharmacological activity. This increases the cost of obtaining clinically applicable amounts of secretome and slows down the clinical translation of this technology. Here, we created a number of genetically modified human MSC cultures, including immortalized MSCs and those with hyperexpression of brain-derived neurotrophic factor (BDNF) and urokinase-type plasminogen activator (uPA) and with suppressed expression of Von Hippel–Lindau tumor suppressor (VHL), and we evaluated the pharmacological activity of their secretomes in a model of intracerebral hemorrhage (ICH) in rats. The secretome of MSCs immortalized by hyperexpression of the catalytic subunit of human telomerase (hTERT) revealed neuroprotective activity indistinguishable from that of primary MSC cultures, yet it still required 10-fold concentration to achieve neuroprotective efficacy. The secretome of MSC culture with combined hyperexpression of BDNF and uPA and suppressed expression of Von Hippel–Lindau tumor suppressor even without additional concentration reduced the severity of neurological disorders and decreased brain lesion volume in the ICH model. The secretomes of MSCs with separate overexpression of BDNF and uPA or suppression of VHL had no such effect or, on the contrary, revealed a toxic effect in the ICH model. Presumably, this may be due to an imbalance in the representation of individual growth factors in the secretome of genetically modified MSCs, which individually may lead to undesirable effects in damaged nervous tissue, such as increased permeability of the blood–brain barrier (under the influence of pro-angiogenic factors) or neural cell apoptosis (due to an excess of neurotrophic factors). The obtained data show that genetic modification of MSC cultures can enhance or alter the therapeutic activity of their secretomes, which can be used in the creation of promising sources of biopharmaceutical substances. Full article
Show Figures

Figure 1

17 pages, 1349 KiB  
Article
Polarized Macrophages Show Diverse Pro-Angiogenic Characteristics Under Normo- and Hyperglycemic Conditions
by Mahnaz Shariatzadeh, César Payán-Gómez, Julia Kzhyshkowska, Willem A. Dik and Pieter J. M. Leenen
Int. J. Mol. Sci. 2025, 26(10), 4846; https://doi.org/10.3390/ijms26104846 - 19 May 2025
Viewed by 413
Abstract
Angiogenesis plays a crucial role in solid tumor growth. Ischemia and inflammation induce various angiogenic mediators, and patient metabolic conditions importantly influence this process. Macrophages closely interact with the vascular system and regulate angiogenesis through pro/anti-angiogenic factors. Traditionally, pro-angiogenic activity has been attributed [...] Read more.
Angiogenesis plays a crucial role in solid tumor growth. Ischemia and inflammation induce various angiogenic mediators, and patient metabolic conditions importantly influence this process. Macrophages closely interact with the vascular system and regulate angiogenesis through pro/anti-angiogenic factors. Traditionally, pro-angiogenic activity has been attributed to M2-like macrophages. We question this, as recent evidence suggests that also M1-like macrophages can be pro-angiogenic. Therefore, the aim is to identify the pro/anti-angiogenic gene expression profiles of human polarized macrophages unbiasedly. We also examine the effect of hyperglycemia on angiogenic gene expression, reflecting its role in diabetes and other metabolic conditions. Bioinformatic analysis was performed on the angiogenesis-related gene expression profiles of CD14+ monocyte-derived M1(IFN-γ)- and M2(IL-4)-polarized macrophages. The top differentially expressed genes were selected for validation. Macrophages were generated in vitro and polarized to M1(IFN-γ) and M2(IL-4/IL-6) cells under standard/hyperglycemic conditions. After immunophenotypic confirmation, selected gene expression was quantified using qPCR. IL-4 and IL-6 induce distinct M2-like phenotypes with mixed pro/anti-angiogenic gene expression. Remarkably, IFN-γ stimulation also increases several pro-angiogenic genes. Hyperglycemia affects the angiogenic expression profile in both M1- and M2-like macrophages, although distinctive identities remain intact. The pro-angiogenic phenotype is not limited to M2-polarized macrophages. Both M1- and M2-like macrophages express complex pro/anti-angiogenic gene profiles, which are only mildly influenced by hyperglycemia. Full article
(This article belongs to the Special Issue The Role of Macrophages in Tumors)
Show Figures

Figure 1

35 pages, 5451 KiB  
Review
Innate Immunity and Platelets: Unveiling Their Role in Chronic Pancreatitis and Pancreatic Cancer
by Juliane Blümke, Moritz Schameitat, Atul Verma, Celina Limbecker, Elise Arlt, Sonja M. Kessler, Heike Kielstein, Sebastian Krug, Ivonne Bazwinsky-Wutschke and Monika Haemmerle
Cancers 2025, 17(10), 1689; https://doi.org/10.3390/cancers17101689 - 17 May 2025
Viewed by 1406
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer, characterized by a highly desmoplastic tumor microenvironment. One main risk factor is chronic pancreatitis (CP). Progression of CP to PDAC is greatly influenced by persistent inflammation promoting genomic [...] Read more.
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive and lethal forms of cancer, characterized by a highly desmoplastic tumor microenvironment. One main risk factor is chronic pancreatitis (CP). Progression of CP to PDAC is greatly influenced by persistent inflammation promoting genomic instability, acinar–ductal metaplasia, and pancreatic intraepithelial neoplasia (PanIN) formation. Components of the extracellular matrix, including immune cells, can modulate this progression phase. This includes cells of the innate immune system, such as natural killer (NK) cells, macrophages, dendritic cells, mast cells, neutrophils, and myeloid-derived suppressor cells (MDSCs), either promoting or inhibiting tumor growth. On one hand, innate immune cells can trigger inflammatory responses that support tumor progression by releasing cytokines and growth factors, fostering tumor cell proliferation, invasion, and metastasis. On the other hand, they can also activate immune surveillance mechanisms, which can limit tumor development. For example, NK cells are cytotoxic innate lymphoid cells that are able to kill tumor cells, and active dendritic cells are crucial for a functioning anti-tumor immune response. In contrast, mast cells and MDSCs rather support a pro-tumorigenic tumor microenvironment that is additionally sustained by platelets. Once thought to play a role in hemostasis only, platelets are now recognized as key players in inflammation and cancer progression. By releasing cytokines, growth factors, and pro-angiogenic mediators, platelets help shape an immunosuppressive microenvironment that promotes fibrotic remodeling, tumor initiation, progression, metastasis, and immune evasion. Neutrophils and macrophages exist in different functional subtypes that can both act pro- and anti-tumorigenic. Understanding the complex interactions between innate immune cells, platelets, and early precursor lesions, as well as PDAC cells, is crucial for developing new therapeutic approaches that can harness the immune and potentially also the coagulation system to target and eliminate tumors, offering hope for improved patient outcomes. Full article
(This article belongs to the Special Issue Management of Pancreatic Cancer)
Show Figures

Figure 1

20 pages, 2893 KiB  
Article
A Study on the Levels of Selected Proangiogenic Proteins in Human Tissues and Plasma in Relation to Brain Glioma
by Zuzanna Zielinska, Julia Giełażyn, Zofia Dzieciol-Anikiej, Janusz Dzieciol, Piotr Mrozek, Joanna Reszec-Gielazyn and Ewa Gorodkiewicz
Int. J. Mol. Sci. 2025, 26(10), 4802; https://doi.org/10.3390/ijms26104802 - 16 May 2025
Viewed by 455
Abstract
Brain glioma is one of the most common malignant tumors of brain tissue. It is characterized by rich vascularization, which indicates the significant participation of angiogenesis in its growth and development. In its first stages, the disease is very often asymptomatic, and late [...] Read more.
Brain glioma is one of the most common malignant tumors of brain tissue. It is characterized by rich vascularization, which indicates the significant participation of angiogenesis in its growth and development. In its first stages, the disease is very often asymptomatic, and late diagnosis significantly limits possibilities of treatment. Tumor angiogenesis, i.e., the formation of new vessels, requires the presence of angiogenic compounds that will enable tumor progression by creating a path for the supply of nutrients. The proangiogenic compounds involved in the development of glioma include hypoxia-inducible factor 1α (HIF-1α), angiopoietin-2 (ANG-2), and interleukin-1β (IL-1β). The aim of this study was to analyze changes in the levels of these proteins in plasma samples of patients diagnosed with brain glioma in stages G1 to G4, and in a control group, using SPRi biosensors. The results obtained in plasma were compared with the concentrations obtained during the analysis of tissue homogenates from patients with glioma in stages G2 to G4. A statistically significant difference in plasma concentrations was obtained between the patient group and the control group. The concentrations of the markers in tissue homogenate samples were statistically higher than in blood plasma. There was no significant effect of gender, diet, smoking, or the patient’s general health condition (Karnofsky score) on the course of the disease. These factors do not directly increase the risk of developing brain glioma. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Graphical abstract

28 pages, 15072 KiB  
Article
Unravelling Paclitaxel Resistance in Gastric Cancer: The Role of Small Extracellular Vesicles in Epithelial Mesenchymal Transition and Extracellular Matrix Remodelling
by Giorgia Panzetta, Annalisa Schirizzi, Francesco Balestra, Maria De Luca, Nicoletta Depalo, Federica Rizzi, Angela Dalia Ricci, Giampiero De Leonardis, Claudio Lotesoriere, Gianluigi Giannelli, Rosalba D’Alessandro and Maria Principia Scavo
Cancers 2025, 17(8), 1360; https://doi.org/10.3390/cancers17081360 - 18 Apr 2025
Viewed by 827
Abstract
Background: Gastric cancer (GC) is a highly aggressive disease often complicated by resistance to chemotherapy agents like paclitaxel (PTX), which targets microtubules to induce apoptosis. Resistance arises through complex molecular mechanisms, including the overexpression of pro-angiogenic factors (VEGFA, ANG-2), activation of survival pathways [...] Read more.
Background: Gastric cancer (GC) is a highly aggressive disease often complicated by resistance to chemotherapy agents like paclitaxel (PTX), which targets microtubules to induce apoptosis. Resistance arises through complex molecular mechanisms, including the overexpression of pro-angiogenic factors (VEGFA, ANG-2), activation of survival pathways (PDGFRβ, PPARγ), and epithelial-mesenchymal transition (EMT) driven by proteins such as VIM, E-CAD, N-CAD, and FLOT-1. The extracellular matrix (ECM), regulated by COL1A1 and influenced by PPARγ, acts as a physical barrier to drug penetration. Small extracellular vesicles (sEVs) have emerged as critical mediators of intercellular communication and may influence these resistance pathways. Methods: This study investigated the role of sEVs isolated from metastatic GC patients treated with Ramucirumab and PTX. Patients were stratified by progression-free survival (PFS) into rapidly progressing (RP) and controlled disease (CD) groups. sEVs from these patients were applied to HCEC-1CT and HEPA-RG cell lines. Cell viability assays, gene and protein expression analyses, and bioinformatic studies were conducted to assess the impact of sEVs on resistance-related markers. Results: Results showed that sEVs from CD patients reduced the expression of markers associated with drug resistance, while sEVs from RP patients increased these markers, promoting angiogenesis, EMT, and ECM remodeling. These changes correlated with enhanced cell survival and resistance phenotypes. Bioinformatic analyses confirmed that sEVs modulate inflammation, ECM dynamics, and EMT pathways. Conclusions: In conclusion, sEVs from metastatic GC patients significantly influence chemoresistance and tumor progression. Targeting sEV-mediated signaling may offer novel therapeutic strategies to overcome resistance and improve treatment outcomes in gastric cancer. Full article
(This article belongs to the Special Issue Extracellular Matrix Proteins in Cancer)
Show Figures

Figure 1

14 pages, 730 KiB  
Review
The Potential Therapeutic Role of Beta-Caryophyllene as a Chemosensitizer and an Inhibitor of Angiogenesis in Cancer
by Emad A. Ahmed
Molecules 2025, 30(8), 1751; https://doi.org/10.3390/molecules30081751 - 14 Apr 2025
Cited by 2 | Viewed by 1953
Abstract
The natural, highly lipophilic bicyclic sesquiterpenes, Beta-Caryophyllene (BCP), was highlighted in several recent preclinical studies to enhance chemo-sensitization in chemo-resistant tumors and to efficiently inhibit angiogenesis and cancer cells’ ability to invade and metastasize. Previous studies have researched the reasons for the synergistic [...] Read more.
The natural, highly lipophilic bicyclic sesquiterpenes, Beta-Caryophyllene (BCP), was highlighted in several recent preclinical studies to enhance chemo-sensitization in chemo-resistant tumors and to efficiently inhibit angiogenesis and cancer cells’ ability to invade and metastasize. Previous studies have researched the reasons for the synergistic effect of Beta-Caryophyllene in combination therapy and its role as a chemosensitizer and an inhibitor of angiogenesis through investigating the involved mechanisms and signaling molecules. These include the lipophilic nature of BCP, the selective interaction of BCP with CB2, the binding affinity of BCP to the receptor binding sites at the angiogenic vascular endothelial growth factor, and the upstream effect on JAK1/STAT3 pathway and other signaling pathways. Herein, the BCP role in enhancing chemo-sensitization of chemo-resistant tumors and in inhibiting angiogenesis and cancer cells’ ability to invade and metastasize are highlighted. Beta-Caryophyllene appears to be a promising candidate in treating cancer when co-supplemented with drugs such as cisplatin, gemcitabine and sorafenib. Clinical trials are needed to validate the potential therapeutic effect of BCP as a co-supplementary drug in cancer therapy, helping to sensitize cancer response to drugs, modulating signaling pathways, and lowering the drugs’ doses besides working as anti-angiogenetic drug. Full article
(This article belongs to the Special Issue Anticancer Natural Products)
Show Figures

Figure 1

22 pages, 3057 KiB  
Review
Sulfonamides a Promising Hit for Cancer Therapy Through VEGFR-2 Inhibition
by Eleftherios Charissopoulos and Eleni Pontiki
Biomedicines 2025, 13(4), 772; https://doi.org/10.3390/biomedicines13040772 - 21 Mar 2025
Viewed by 890
Abstract
Vascular endothelial growth factor receptor-2 (VEGFR-2), a tyrosine kinase receptor (TKR), plays a crucial role in angiogenesis and is overexpressed in most cancers. It is important for tumor angiogenesis, facilitating essential angiogenic cellular processes, such as promoting endothelial cell survival, proliferation, migration, and [...] Read more.
Vascular endothelial growth factor receptor-2 (VEGFR-2), a tyrosine kinase receptor (TKR), plays a crucial role in angiogenesis and is overexpressed in most cancers. It is important for tumor angiogenesis, facilitating essential angiogenic cellular processes, such as promoting endothelial cell survival, proliferation, migration, and vascular permeability. Consequently, VEGFR-2 has become one of the main targets for anti-angiogenic therapy, with its inhibition serving as a crucial strategy for developing new drugs to mitigate angiogenesis-dependent cancers. Small-molecule drugs targeting VEGFR-2, approved by the USFDA, are exhibiting the development of drug resistance during chemotherapy, with cardiac-related side effects being consistently reported. In conclusion, it is important to develop novel strategies to enhance the efficacy of VEGFR-2 inhibitors and eliminate their adverse effects. Multifunctional drugs that target multiple pathways present a promising strategy, enhancing efficacy while minimizing side effects. Sulfonamide derivatives are extensively used in medicinal chemistry and modern drug discovery due to their variety of pharmacological activities. The present review focuses on novel compounds endowed with potential VEGFR-2 inhibition, four of which additionally present carbonic anhydrase inhibitory activity. Full article
(This article belongs to the Special Issue Recent Advances in Drug Synthesis and Drug Discovery)
Show Figures

Figure 1

30 pages, 1360 KiB  
Review
Angiogenesis in Glioblastoma—Treatment Approaches
by Agnieszka Nowacka, Maciej Śniegocki, Wojciech Smuczyński, Dominika Bożiłow and Ewa Ziółkowska
Cells 2025, 14(6), 407; https://doi.org/10.3390/cells14060407 - 11 Mar 2025
Cited by 5 | Viewed by 1986
Abstract
Glioblastoma, the most common primary malignant brain tumor in adults, carries a poor prognosis, with a median survival of just 15 months, significantly impacting patients’ quality of life. The aggressive growth of these highly vascularized tumors relies heavily on angiogenesis, driven primarily by [...] Read more.
Glioblastoma, the most common primary malignant brain tumor in adults, carries a poor prognosis, with a median survival of just 15 months, significantly impacting patients’ quality of life. The aggressive growth of these highly vascularized tumors relies heavily on angiogenesis, driven primarily by vascular endothelial growth factor-A. Therefore, VEGF signaling pathway has become a prime therapeutic target in GBM treatment over the past decade. While anti-angiogenic treatment showed promise, agents like bevacizumab have ultimately failed to improve overall survival. This highlights the presence of compensatory angiogenic mechanisms that bypass VEGF inhibition, necessitating further investigation into resistance mechanisms and the development of more effective therapeutic strategies. This review examined the current landscape of anti-angiogenic agents for GBM, analyzed the mechanisms driving resistance to these therapies, and explored potential strategies for enhancing their effectiveness. Full article
(This article belongs to the Special Issue Therapeutic Targets in Glioblastoma)
Show Figures

Figure 1

18 pages, 3075 KiB  
Article
Interplay Between TGFβ1 Signaling and Cancer-Testis Antigen MAGEB2: A New Thorn in Cancer’s Side?
by Ashley Colemon, Carlan V. Romney, Angelle D. Jones, Clarke Bagsby, Richala Jackson and Saumya Ramanathan
Int. J. Mol. Sci. 2025, 26(6), 2448; https://doi.org/10.3390/ijms26062448 - 9 Mar 2025
Viewed by 997
Abstract
The Melanoma Antigen Gene (MAGE) family of proteins is the largest family of cancer-testis antigens (CTAs) and shares a MAGE homology domain (MHD). MAGE proteins are divided into Type I and Type II MAGEs depending on their chromosomal location and expression patterns. Type [...] Read more.
The Melanoma Antigen Gene (MAGE) family of proteins is the largest family of cancer-testis antigens (CTAs) and shares a MAGE homology domain (MHD). MAGE proteins are divided into Type I and Type II MAGEs depending on their chromosomal location and expression patterns. Type I MAGEs are true CTAs. MAGEB2 is a Type I MAGE, belonging to the MAGEB subfamily, and unlike some MAGE proteins, has not been found to bind to and enhance E3 ligase activity. MAGEB2 has been discovered to be an RNA-binding protein that serves to protect spermatogonial cells in the testis from extraneous stressors. We have discovered that MAGEB2 is necessary and sufficient for the proliferation of cells and is expressed by the differential DNA methylation of its gene promoter. Furthermore, we identified JunD as the transcription factor that regulates MAGEB2 expression. When expressed, MAGEB2 suppresses transforming grown factor-β1 (TGFβ1) signaling by decreasing mRNA levels of Thrombospondin-1 (TSP-1). TSP-1 is an anti-angiogenic protein that activates TGFβ1. Restoring levels of TSP-1 or TGFβ1 results in the inability of MAGEB2 to drive proliferation, suggesting that MAGEB2-expressing tumors might be more susceptible to therapies that induce or activate TSP-1 or TGFβ1 signaling. Full article
(This article belongs to the Special Issue Targeting Epigenetic Network in Cancer)
Show Figures

Figure 1

15 pages, 3827 KiB  
Article
Antagonizing the S1P-S1P3 Axis as a Promising Anti-Angiogenic Strategy
by Sofia Avnet, Emi Mizushima, Beatrice Severino, Maria Veronica Lipreri, Antonia Scognamiglio, Angela Corvino, Nicola Baldini and Margherita Cortini
Metabolites 2025, 15(3), 178; https://doi.org/10.3390/metabo15030178 - 5 Mar 2025
Cited by 1 | Viewed by 933
Abstract
Background: Angiogenesis, the process of new blood vessel formation, is critically regulated by a balance of pro- and anti-angiogenic factors. This process plays a central role in tumor progression and is modulated by tumor cells. Sphingosine-1-phosphate (S1P), a bioactive lipid signaling molecule acting [...] Read more.
Background: Angiogenesis, the process of new blood vessel formation, is critically regulated by a balance of pro- and anti-angiogenic factors. This process plays a central role in tumor progression and is modulated by tumor cells. Sphingosine-1-phosphate (S1P), a bioactive lipid signaling molecule acting via G-protein-coupled receptors (S1PR1–5), has emerged as a key mediator of vascular development and pathological angiogenesis in cancer. Consequently, targeting the S1P-S1PRs axis represents a promising strategy for antiangiogenic therapies. This study explores S1PR3 as a potential therapeutic target in osteosarcoma, the most common primary bone malignancy, which we have previously demonstrated to secrete S1P within the acidic tumor microenvironment. Methods: The effects of KRX-725-II and its derivatives, Tic-4-KRX-725-II and [D-Tic]4-KRX-725-II—pepducins acting as S1PR3 antagonists as allosteric modulators of GPCR activity—were tested on metastatic osteosarcoma cells (143B) for proliferation and migration inhibition. Anti-angiogenic activity was assessed using endothelial cells (HUVEC) through proliferation and tubulogenesis assays in 2D, alongside sprouting and migration analyses in a 3D passively perfused microfluidic chip. Results: S1PR3 inhibition did not alter osteosarcoma cell growth or migration. However, it impaired endothelial cell tubulogenesis up to 75% and sprouting up to 30% in respect to controls. Conventional 2D assays revealed reduced tubule nodes and length, while 3D microfluidic models demonstrated diminished sprouting area and maximum migration distance, indicating S1PR3’s role in driving endothelial cell differentiation. Conclusions: These findings highlight S1PR3 as a critical regulator of angiogenesis and posit its targeting as a novel anti-angiogenic strategy, particularly for aggressive, S1P-secreting tumors with pronounced metastatic potential and an acidic microenvironment. Full article
(This article belongs to the Special Issue Cell Death and Cancer Metabolism)
Show Figures

Figure 1

47 pages, 3606 KiB  
Review
A Review of FDA-Approved Multi-Target Angiogenesis Drugs for Brain Tumor Therapy
by Iuliana Mihaela Buzatu, Ligia Gabriela Tataranu, Carmen Duta, Irina Stoian, Oana Alexandru and Anica Dricu
Int. J. Mol. Sci. 2025, 26(5), 2192; https://doi.org/10.3390/ijms26052192 - 28 Feb 2025
Viewed by 1968
Abstract
Neovascularization is an important process in brain tumor development, invasion and metastasis. Several research studies have indicated that the VEGF signaling target has potential for reducing angiogenesis in brain tumors. However, targeting VEGF signaling has not met the expected efficacy, despite initial enthusiasm. [...] Read more.
Neovascularization is an important process in brain tumor development, invasion and metastasis. Several research studies have indicated that the VEGF signaling target has potential for reducing angiogenesis in brain tumors. However, targeting VEGF signaling has not met the expected efficacy, despite initial enthusiasm. This is partly because tumors cleverly use alternative growth factor pathways, other than VEGF signaling, to restore angiogenesis. Multi-target inhibitors have been developed to inhibit several receptor kinases that play a role in the development of angiogenesis. By simultaneously affecting various receptor kinases, these treatments can potentially obstruct various angiogenic pathways that are involved in brain cancer advancement, often offering a more holistic strategy than treatments focusing on just one kinase. Since 2009, the FDA has approved a number of multi-kinase inhibitors that target angiogenic growth factor receptors (e.g., VEGFR, PDGFR, FGFR, RET, c-KIT, MET, AXL and others) for treatment of malignant diseases, including brain cancer. Here, we present some recent results from the literature regarding the preclinical and clinical effects of these inhibitors on brain tumors. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapies of Brain Tumors)
Show Figures

Figure 1

20 pages, 4162 KiB  
Article
Anti-Angiogenic Potential of Marine Streptomyces-Derived Lucknolide A on VEGF/VEGFR2 Signaling in Human Endothelial Cells
by Byeoung-Kyu Choi, Min-Hee Jo, Hee Jae Shin and Sun Joo Park
Molecules 2025, 30(5), 987; https://doi.org/10.3390/molecules30050987 - 20 Feb 2025
Cited by 2 | Viewed by 994
Abstract
Angiogenesis, primarily driven by the vascular endothelial growth factor (VEGF) and its receptor, the VEGFR, plays a key role in various pathological processes such as cancer progression. Here, we investigated the anti-angiogenic effects of Lucknolide A (LA), a marine Streptomyces-derived compound, and [...] Read more.
Angiogenesis, primarily driven by the vascular endothelial growth factor (VEGF) and its receptor, the VEGFR, plays a key role in various pathological processes such as cancer progression. Here, we investigated the anti-angiogenic effects of Lucknolide A (LA), a marine Streptomyces-derived compound, and evaluated its potential as a VEGFR2 inhibitor. LA selectively inhibited the proliferation of human endothelial cells EA.hy926 and HUVEC while exhibiting minimal effects on normal fibroblasts and various tumor cells. LA induced S-phase cell cycle arrest and apoptosis in EA.hy926 cells, increasing apoptotic markers p53, Bax, and p21 and decreasing the anti-apoptotic protein Bcl-2, with these effects being further enhanced under VEGF stimulation. Additionally, LA suppressed VEGFR2 phosphorylation and its downstream signaling pathways, including Akt/mTOR/p70S6K, MEK/ERK, Src, FAK, and p38 MAPK, which are crucial for endothelial survival and angiogenesis. Molecular docking studies revealed that LA binds to both inactive (DFG-out, PDB: 4ASD) and active (DFG-in, PDB: 3B8R) VEGFR2 conformations, with a significantly stronger affinity for the active state (−107.96 kcal/mol) than the inactive state (−33.56 kcal/mol), suggesting its potential as a VEGFR2 kinase inhibitor. Functionally, LA significantly inhibited VEGF-induced endothelial migration, tube formation, and microvessel sprouting in both in vitro and ex vivo rat aortic ring assays. Additionally, LA reduced tumor-associated tube formation induced by human breast tumor cells (MDA-MB-231), indicating its potential to suppress VEGF-dependent tumor angiogenesis. These findings suggest that LA is a promising selective anti-angiogenic agent with potential therapeutic applications in angiogenesis-related diseases such as cancer. Full article
(This article belongs to the Special Issue Bioactive Compounds: Applications and Benefits for Human Health)
Show Figures

Graphical abstract

13 pages, 2121 KiB  
Article
Pigment Epithelium-Derived Factor Inhibits Cell Motility and p-ERK1/2 Signaling in Intrahepatic Cholangiocarcinoma Cell Lines
by Veronica Porreca, Eleonora Corbella, Biagio Palmisano, Marco Peres, Pietro Angelone, Cristina Barbagallo, Michele Stella, Giuseppina Mignogna, Gianluca Mennini, Fabio Melandro, Massimo Rossi, Marco Ragusa, Alessandro Corsi, Mara Riminucci, Bruno Maras and Carmine Mancone
Biology 2025, 14(2), 155; https://doi.org/10.3390/biology14020155 - 3 Feb 2025
Cited by 1 | Viewed by 1250
Abstract
Pigment epithelium-derived factor (PEDF) is a multifunctional soluble glycoprotein, primarily known for its potent anti-angiogenic properties. In recent years, its ability to counteract cell proliferation and motility has generated interest in PEDF as a potential tumor suppressor. In the intrahepatic Cholangiocarcinoma (iCCA), PEDF, [...] Read more.
Pigment epithelium-derived factor (PEDF) is a multifunctional soluble glycoprotein, primarily known for its potent anti-angiogenic properties. In recent years, its ability to counteract cell proliferation and motility has generated interest in PEDF as a potential tumor suppressor. In the intrahepatic Cholangiocarcinoma (iCCA), PEDF, Thrombospondin 1 (THBS1), and Thrombospondin 2 (THBS2) are expressed and released into the tumor microenvironment (TME), where they promote lymphangiogenesis at the expense of the neoangiogenic program, aiding the dissemination of cancer cells via lymphatic vessels. Recently, we demonstrated that THBS1 and THBS2 directly affect iCCA cells, exacerbating their malignant behavior, while the direct role of PEDF remains to be elucidated. In this study, through a cell-based assay and molecular analysis, we investigate the direct function of PEDF on two well-established iCCA cell lines. Our results show that PEDF affects cancer cell motility in a paracrine manner, reducing their migratory and invasive capabilities. Notably, our data suggest that the PEDF-induced inhibition of motility in iCCA cells occurs through the MAPK/ERK signaling pathway, as indicated by the reduced phosphorylation of ERK1/2. Overall, this study provides the first evidence of PEDF acting as a tumor suppressor in iCCA. Full article
Show Figures

Figure 1

Back to TopTop