Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = tropic SST

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 13488 KiB  
Review
Numeric Modeling of Sea Surface Wave Using WAVEWATCH-III and SWAN During Tropical Cyclones: An Overview
by Ru Yao, Weizeng Shao, Yuyi Hu, Hao Xu and Qingping Zou
J. Mar. Sci. Eng. 2025, 13(8), 1450; https://doi.org/10.3390/jmse13081450 - 29 Jul 2025
Viewed by 236
Abstract
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview [...] Read more.
Extreme surface winds and wave heights of tropical cyclones (TCs)—pose serious threats to coastal community, infrastructure and environments. In recent decades, progress in numerical wave modeling has significantly enhanced the ability to reconstruct and predict wave behavior. This review offers an in-depth overview of TC-related wave modeling utilizing different computational schemes, with a special attention to WAVEWATCH III (WW3) and Simulating Waves Nearshore (SWAN). Due to the complex air–sea interactions during TCs, it is challenging to obtain accurate wind input data and optimize the parameterizations. Substantial spatial and temporal variations in water levels and current patterns occurs when coastal circulation is modulated by varying underwater topography. To explore their influence on waves, this study employs a coupled SWAN and Finite-Volume Community Ocean Model (FVCOM) modeling approach. Additionally, the interplay between wave and sea surface temperature (SST) is investigated by incorporating four key wave-induced forcing through breaking and non-breaking waves, radiation stress, and Stokes drift from WW3 into the Stony Brook Parallel Ocean Model (sbPOM). 20 TC events were analyzed to evaluate the performance of the selected parameterizations of external forcings in WW3 and SWAN. Among different nonlinear wave interaction schemes, Generalized Multiple Discrete Interaction Approximation (GMD) Discrete Interaction Approximation (DIA) and the computationally expensive Wave-Ray Tracing (WRT) A refined drag coefficient (Cd) equation, applied within an upgraded ST6 configuration, reduce significant wave height (SWH) prediction errors and the root mean square error (RMSE) for both SWAN and WW3 wave models. Surface currents and sea level variations notably altered the wave energy and wave height distributions, especially in the area with strong TC-induced oceanic current. Finally, coupling four wave-induced forcings into sbPOM enhanced SST simulation by refining heat flux estimates and promoting vertical mixing. Validation against Argo data showed that the updated sbPOM model achieved an RMSE as low as 1.39 m, with correlation coefficients nearing 0.9881. Full article
(This article belongs to the Section Ocean and Global Climate)
Show Figures

Figure 1

17 pages, 3919 KiB  
Article
On the Links Between Tropical Sea Level and Surface Air Temperature in Middle and High Latitudes
by Sergei Soldatenko, Genrikh Alekseev and Yaromir Angudovich
Atmosphere 2025, 16(8), 913; https://doi.org/10.3390/atmos16080913 - 28 Jul 2025
Viewed by 197
Abstract
Change in sea level (SL) is an important indicator of global warming, since it reflects alterations in several components of the climate system at once. The main factors behind this phenomenon are the melting of glaciers and thermal expansion of ocean water, with [...] Read more.
Change in sea level (SL) is an important indicator of global warming, since it reflects alterations in several components of the climate system at once. The main factors behind this phenomenon are the melting of glaciers and thermal expansion of ocean water, with the latter contributing about 40% to the overall rise in SL. Rising SL indirectly indicates an increase in ocean heat content and, consequently, its surface temperature. Previous studies have found that tropical sea surface temperature (SST) is critical to regulating the Earth’s climate and weather patterns in high and mid-latitudes. For this reason, SST and SL in the tropics can be considered as precursors of both global climate change and the emergence of climate anomalies in extratropical latitudes. Although SST has been used in this capacity in a number of studies, similar research regarding SL had not been conducted until recently. In this paper, we examine the links between SL in the tropical North Atlantic and North Pacific Oceans and surface air temperature (SAT) at mid- and high latitudes, with the aim of assessing the potential of SL as a predictor in forecasting SAT anomalies. To identify similarities between the variability of tropical SL and SST and that of SAT in high- and mid-latitude regions, as well as to estimate possible time lags, we applied factor analysis, clustering, cross-correlation and cross-spectral analyses. The results reveal a structural similarity in the internal variability of tropical SL and extratropical SAT, along with a significant lagged relationship between them, with a time lag of several years. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

14 pages, 1816 KiB  
Article
Relationship Between Sea Surface Temperature, Weather Events, and Location and the Morphology of Ceratodictyon (Lomentariaceae, Rhodophyta) on Primarily Mexican Pacific-Based Herbarium Data
by Nataly Quiroz-González, Luz Elena Mateo-Cid, Angela Catalina Mendoza-González, Luis Gabriel Aguilar-Estrada, Bernardo Córdova-Cárdenas and Oscar Ochoa-Rodríguez
Diversity 2025, 17(8), 523; https://doi.org/10.3390/d17080523 - 28 Jul 2025
Viewed by 206
Abstract
Temperature affects the morphology, physiology, and distribution of marine macroalgae, as supported by studies that used long-term data from herbaria. In the present study, sea surface temperature (SST), latitudinal distribution, and La Niña or El Niño years were correlated to the morphology of [...] Read more.
Temperature affects the morphology, physiology, and distribution of marine macroalgae, as supported by studies that used long-term data from herbaria. In the present study, sea surface temperature (SST), latitudinal distribution, and La Niña or El Niño years were correlated to the morphology of two macroalgal species of the Mexican Pacific: Ceratodictyon tenue and C. variabile. Twenty-four morphological characteristics were evaluated, and 95 samples from 1965 to 2013 in the Escuela Nacional de Ciencias Biológicas herbarium were reviewed. In 2017, 2023, and 2024, 12 specimens were sampled at three locations. Low positive correlations were found between thallus diameter and SST for C. tenue, while low positive correlations were detected for thallus length and medullary cell diameter vs. SST and medullary cell length vs. year for C. variabile. Significant relationships were found between the thallus length and cortical cell diameter of C. variabile with latitude and SST. It is concluded that SST contributes to changes in morphology, but is not the only factor that affects them. For the first time in a tropical area, the present study explores whether there is a relationship between SST, latitudinal distribution, and El Niño and La Niña years and the morphology of a genus of red algae. Full article
(This article belongs to the Special Issue Diversity and Ecology of Algae in a Changing World)
Show Figures

Figure 1

16 pages, 5628 KiB  
Article
Contrasting Impacts of North Pacific and North Atlantic SST Anomalies on Summer Persistent Extreme Heat Events in Eastern China
by Jiajun Yao, Lulin Cen, Minyu Zheng, Mingming Sun and Jingnan Yin
Atmosphere 2025, 16(8), 901; https://doi.org/10.3390/atmos16080901 - 24 Jul 2025
Viewed by 284
Abstract
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) [...] Read more.
Under global warming, persistent extreme heat events (PHEs) in China have increased significantly in both frequency and intensity, posing severe threats to agriculture and socioeconomic development. Combining observational analysis (1961–2019) and numerical simulations, this study investigates the distinct impacts of Northwest Pacific (NWP) and North Atlantic (NA) sea surface temperature (SST) anomalies on PHEs over China. Key findings include the following: (1) PHEs exhibit heterogeneous spatial distribution, with the Yangtze-Huai River Valley as the hotspot showing the highest frequency and intensity. A regime shift occurred post-2000, marked by a threefold increase in extreme indices (+3σ to +4σ). (2) Observational analyses reveal significant but independent correlations between PHEs and SST anomalies in the tropical NWP and mid-high latitude NA. (3) Numerical experiments demonstrate that NWP warming triggers a meridional dipole response (warming in southern China vs. cooling in the north) via the Pacific–Japan teleconnection pattern, characterized by an eastward-retreated and southward-shifted sub-tropical high (WPSH) coupled with an intensified South Asian High (SAH). In contrast, NA warming induces uniform warming across eastern China through a Eurasian Rossby wave train that modulates the WPSH northward. (4) Thermodynamically, NWP forcing dominates via asymmetric vertical motion and advection processes, while NA forcing primarily enhances large-scale subsidence and shortwave radiation. This study elucidates region-specific oceanic drivers of extreme heat, advancing mechanistic understanding for improved heatwave predictability. Full article
Show Figures

Figure 1

17 pages, 2373 KiB  
Article
Analytical Workflow for Tracking Aquatic Biomass Responses to Sea Surface Temperature Changes
by Teodoro Semeraro, Jessica Titocci, Lorenzo Liberatore, Flavio Monti, Francesco De Leo, Gianmarco Ingrosso, Milad Shokri and Alberto Basset
Environments 2025, 12(7), 210; https://doi.org/10.3390/environments12070210 - 20 Jun 2025
Viewed by 507
Abstract
Ocean ecosystem services provisioning is driven by phytoplankton, which form the base of the ocean food chain in aquatic ecosystems and play a critical role as the Earth‘s carbon sink. Phytoplankton is highly sensitive to temperature, making it vulnerable to the effects of [...] Read more.
Ocean ecosystem services provisioning is driven by phytoplankton, which form the base of the ocean food chain in aquatic ecosystems and play a critical role as the Earth‘s carbon sink. Phytoplankton is highly sensitive to temperature, making it vulnerable to the effects of temperature variations. The aim of this research was to develop and test a workflow analysis to monitor the impact of sea surface temperature (SST) on phytoplankton biomass and primary production by combining field and remote sensing data of Chl-a and net primary production (NPP) (as proxies of phytoplankton biomass). The tropical zone was used as a case study to test the procedure. Firstly, machine learning algorithms were applied to the field data of SST, Chl-a and NPP, showing that the Random Forest was the most effective in capturing the dataset’s patterns. Secondly, the Random Forest algorithm was applied to MODIS SST images to build Chl-a and NPP time series. The time series analysis showed a significant increase in SST which corresponded to a significant negative trend in Chl-a concentrations and NPP variation. The recurrence plot of the time series revealed significant disruptions in Chl-a and NPP evolutions, potentially linked to El Niño–Southern Oscillation (ENSO) events. Therefore, the analysis can help to highlight the effects of temperature variation on Chl-a and NPP, such as the long-term evolution of the trend and short perturbation events. The methodology, starting from local studies, can support broader spatial–temporal-scale studies and provide insights into future scenarios. Full article
Show Figures

Figure 1

12 pages, 2196 KiB  
Article
Post-El Niño Influence on Summer Monsoon Rainfall in Sri Lanka
by Pathmarasa Kajakokulan and Vinay Kumar
Water 2025, 17(11), 1664; https://doi.org/10.3390/w17111664 - 30 May 2025
Viewed by 830
Abstract
Sri Lanka typically experiences anomalously wet conditions during the summer following El Niño events, but this response varies due to El Niño complexity. This study investigates the impact of post-El Niño conditions on Sri Lanka’s Monsoon rainfall, contrasting summers after fast- and slow-decaying [...] Read more.
Sri Lanka typically experiences anomalously wet conditions during the summer following El Niño events, but this response varies due to El Niño complexity. This study investigates the impact of post-El Niño conditions on Sri Lanka’s Monsoon rainfall, contrasting summers after fast- and slow-decaying El Niño events. Results indicate that fast-decaying El Niño events lead to wet and cool summers while slow-decaying events result in dry and warm summers. These contrasting responses are linked to sea surface temperature (SST) changes in the central to eastern Pacific. During the fast-decaying El Niño, the transition to La Niña generates strong easterlies in the central and eastern Pacific, enhancing moisture convergence, upward motion, and cloud cover, resulting in wetter conditions over Sri Lanka. During the fast-decaying El Niño, enhanced precipitation over the Maritime Continent acts as a diabatic heating source, inducing Gill-type easterly wind anomalies over the tropical Pacific. These winds promote coupled feedbacks that accelerate the transition to La Niña, strengthening moisture convergence and upward motion over Sri Lanka. Conversely, slow-decaying El Niño events are associated with cooling in the western North Pacific and warming in the Indian Ocean, which promotes the development of the western North Pacific anticyclone, suppressing upward motion and reducing cloud cover, leading to conditions over Sri Lanka. Changes in the Walker circulation further contribute to these distinct rainfall patterns, highlighting its influence on regional climate dynamics. These findings enhance our understanding of the seasonal predictability of rainfall in Sri Lanka during post-El Niño Summers. Full article
Show Figures

Figure 1

12 pages, 3793 KiB  
Article
Semi-Annual Climate Modes in the Western Hemisphere
by Mark R. Jury
Climate 2025, 13(6), 111; https://doi.org/10.3390/cli13060111 - 27 May 2025
Viewed by 437
Abstract
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from [...] Read more.
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from the north Atlantic to the east Pacific; channeling was evident over the southwestern Caribbean. The eigenvector loading maximum for precipitation reflected an equatorial trough, while the semi-annual SST formed a dipole with loading maxima in upwelling zones off Angola (10 E) and Peru (80 W). Weakened Caribbean trade winds and strengthened tropical convection correlated with a warm Atlantic/cool Pacific pattern (R = 0.46). Wavelet spectral analysis of principal component time scores found a persistent 6-month rhythm disrupted only by major El Nino Southern Oscillation events and anomalous mid-latitude conditions associated with negative-phase Arctic Oscillation. Historical climatologies revealed that 6-month cycles of wind, precipitation, and sea temperature were tightly coupled in the Western Hemisphere by heat surplus in the equatorial ocean diffused by meridional overturning Hadley cells. External forcing emerged in early 2010 when warm anomalies over Canada diverted the subtropical jet, suppressing subtropical trade winds and evaporative cooling and intensifying the equatorial trough across the Western Hemisphere. Climatic trends of increased jet-stream instability suggest that the semi-annual amplitude may grow over time. Full article
Show Figures

Figure 1

17 pages, 4204 KiB  
Article
Decadal Modulation of Summertime Northwestern Pacific Subtropical High Linked to Indian Ocean Basin Warming
by Takashi Mochizuki and Yuta Ando
Climate 2025, 13(6), 106; https://doi.org/10.3390/cli13060106 - 24 May 2025
Viewed by 722
Abstract
The Northwestern Pacific Subtropical High (NPSH), usually enhanced by the basin-scale warming of the Indian Ocean (IOBW), plays a major role in controlling the summertime East Asian climate. To assess factors contributing to the decadal modulation of the NPSH and IOBW relationship in [...] Read more.
The Northwestern Pacific Subtropical High (NPSH), usually enhanced by the basin-scale warming of the Indian Ocean (IOBW), plays a major role in controlling the summertime East Asian climate. To assess factors contributing to the decadal modulation of the NPSH and IOBW relationship in recent years, we conducted sensitivity experiments using an atmospheric general circulation model. We particularly focused on decadal-scale differences between the periods of 1982–2001 and 2002–2021, with the contribution of the climatological sea surface temperature (SST) as the background, in combination with the tropical Pacific SST anomaly in relation to the rapid or slow decay of the El Niño Southern Oscillation (ENSO). The results indicate that the IOBW-related SST anomalies in the Indian and tropical Pacific Oceans—which, overall, represent the well-known characteristics of the so-called Indo-western Pacific Ocean Capacitor effects—cooperatively enhanced the NPSH in the earlier period (1982–2001). On the other hand, the suppressed and westward-shifted SST anomalies in the tropical Pacific Ocean and the resultant changes in the diabatic heating of cumulus convection suppressed the NPSH enhancement in recent years (2002–2021). These results indicate that the modulation in the NPSH responses linked to the IOBW is primarily due to the so-called ENSO diversity rather than climatology. Full article
(This article belongs to the Section Climate Dynamics and Modelling)
Show Figures

Figure 1

22 pages, 29320 KiB  
Article
Synergistic Effects of Ocean Background and Tropical Cyclone Characteristics on Tropical Cyclone-Induced Sea Surface Cooling in the Western North Pacific
by Rao Rao, Chengcheng Yu, Peng Bai and Bo Li
J. Mar. Sci. Eng. 2025, 13(5), 955; https://doi.org/10.3390/jmse13050955 - 14 May 2025
Viewed by 324
Abstract
Tropical cyclones (TCs) induce intense mixing in the upper ocean, which significantly impacts sea surface temperature (SST) and marine environment. Previous studies have shown that TCs can cause a decrease in sea surface temperature (DSST), while further research is required to elucidate the [...] Read more.
Tropical cyclones (TCs) induce intense mixing in the upper ocean, which significantly impacts sea surface temperature (SST) and marine environment. Previous studies have shown that TCs can cause a decrease in sea surface temperature (DSST), while further research is required to elucidate the factors influencing SST changes. This study employs satellite observations and reanalysis data from the western North Pacific during 2002–2020 to investigate the relationship between DSST and the ocean background state (BG). In addition, by incorporating TC characteristics, we construct indices to explore the synergistic effects of TCs and BG on DSST, enabling a more comprehensive understanding of the mechanisms governing DSST variability. The results indicate that DSST exhibits significant monthly variations, with the maximum DSST in September for coastal regions and in August for offshore regions. Regardless of TC characteristics, when the mixed layer depth (MLD) exceeds 60 m or thermocline depth (TD) exceeds 115 m, it is difficult for the DSST to exceed 1 °C. In both coastal and offshore regions, MLD and TD exhibit moderate negative correlations with DSST, with values around −0.3. When TC characteristics are incorporated, these correlations rise to approximately 0.6, highlighting the importance of jointly considering BG and TC effects in characterizing DSST. The findings of this study provide theoretical support for improving the capability to predict DSST changes before the TC approaches the coast. Full article
(This article belongs to the Special Issue Air-Sea Interaction and Marine Dynamics)
Show Figures

Figure 1

11 pages, 16684 KiB  
Article
Tropical Sea Surface Temperature and Sea Level as Candidate Predictors for Long-Range Weather and Climate Forecasting in Mid-to-High Latitudes
by Genrikh Alekseev, Sergei Soldatenko, Natalia Glok, Natalia Kharlanenkova, Yaromir Angudovich and Maksim Smirnov
Climate 2025, 13(5), 84; https://doi.org/10.3390/cli13050084 - 27 Apr 2025
Cited by 1 | Viewed by 557
Abstract
Sea surface temperature (SST) is considered a strong indicator of climate change, being an essential parameter for long-range weather and climate forecasting. Another important indicator of climate change is sea level (SL), which has a longer history of systematic instrumental observations. This paper [...] Read more.
Sea surface temperature (SST) is considered a strong indicator of climate change, being an essential parameter for long-range weather and climate forecasting. Another important indicator of climate change is sea level (SL), which has a longer history of systematic instrumental observations. This paper aims to examine the relationships between low-latitude variations in ocean characteristics (SST and SL) and surface air temperature (SAT) anomalies in the Arctic and mid-latitudes, and discuss the possibility of using SST and SL as predictors to forecast seasonal SAT anomalies. Archives of meteorological observations, atmospheric and oceanic reanalyses, and long-term series of tide gauge data on SL were used in this study. An analysis of relationships between seasonal SAT in different mid-to-high latitude regions and SST made it possible to identify areas in the ocean that have the greatest influence on SAT patterns. The most commonly identified area is located in the tropical North Atlantic. Another area was found in the Indo-Pacific warm pool. The predictive potential of the relationships identified between ocean characteristics (SST and SL) and SAT will be used to build deep learning models aimed at predicting climate variability in mid-to-high latitudes. Full article
Show Figures

Figure 1

20 pages, 8438 KiB  
Article
Primary Interannual Variability Modes of Summer Moisture Transports in the Tibetan Plateau
by Junhan Lan, Hong-Li Ren, Jieru Ma and Bin Chen
Remote Sens. 2025, 17(9), 1508; https://doi.org/10.3390/rs17091508 - 24 Apr 2025
Viewed by 416
Abstract
Moisture transports play a key role in maintaining the hydrometeorological cycle and forming its climate variability over the Tibetan Plateau (TP), also known as the “Asian water tower”. This study focuses on understanding the interannual variability mode characteristics of moisture transport in the [...] Read more.
Moisture transports play a key role in maintaining the hydrometeorological cycle and forming its climate variability over the Tibetan Plateau (TP), also known as the “Asian water tower”. This study focuses on understanding the interannual variability mode characteristics of moisture transport in the TP in boreal summer, using satellite-based analysis and reanalysis data from 1983 to 2022 with a combined empirical orthogonal function (EOF) analysis. We identified the first two primary interannual modes of TP summer water vapor fluxes, which are primarily characterized by zonal and meridional dipole patterns, respectively. The zonal pattern of the TP water vapor flux dominates the TP and East Asian summer rainfall variability, while the meridional pattern of the TP water vapor flux tends to be a result of the South Asian summer rainfall and its circulation anomalies. The tropical Indo-Pacific sea surface temperature (SST) variations, such as El Niño and Indian Ocean SST modes, have significantly delayed relationships with the interannual variability modes of the summer water vapor fluxes over the TP, indicating a significant modulation effect of the low-latitude oceanic variability on the interannual variations in TP summer moisture transport. These results deepen our understanding of the relationship between TP moisture transport and summer monsoonal rainfall variability, as well as the influence of the tropical oceans. Full article
Show Figures

Figure 1

23 pages, 7345 KiB  
Article
Dynamical Mechanisms of Rapid Intensification and Multiple Recurvature of Pre-Monsoonal Tropical Cyclone Mocha over the Bay of Bengal
by Prabodha Kumar Pradhan, Sushant Kumar, Lokesh Kumar Pandey, Srinivas Desamsetti, Mohan S. Thota and Raghavendra Ashrit
Meteorology 2025, 4(2), 9; https://doi.org/10.3390/meteorology4020009 - 27 Mar 2025
Viewed by 996
Abstract
Cyclone Mocha, classified as an Extremely Severe Cyclonic Storm (ESCS), followed an unusual northeastward trajectory while exhibiting a well-defined eyewall structure. It experienced rapid intensification (RI) before making landfall along the Myanmar coast. It caused heavy rainfall (~90 mm) and gusty winds (~115 [...] Read more.
Cyclone Mocha, classified as an Extremely Severe Cyclonic Storm (ESCS), followed an unusual northeastward trajectory while exhibiting a well-defined eyewall structure. It experienced rapid intensification (RI) before making landfall along the Myanmar coast. It caused heavy rainfall (~90 mm) and gusty winds (~115 knots) over the coastal regions of Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) countries, such as the coasts of Bangladesh and Myanmar. The factors responsible for the RI of the cyclone in lower latitudes, such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), vertical wind shear (VWS), and mid-tropospheric moisture content, are studied using the National Ocean and Atmospheric Administration (NOAA) SST and National Center for Medium-Range Weather Forecasting (NCMRWF) Unified Model (NCUM) global analysis. The results show that SST and TCHP values of 30 °C and 100 (KJ cm−2) over the Bay of Bengal (BoB) favored cyclogenesis. However, a VWS (ms−1) and relative humidity (RH; %) within the range of 10 ms−1 and >70% also provided a conducive environment for the low-pressure system to transform into the ESCS category. The physical mechanism of RI and recurvature of the Mocha cyclone have been investigated using forecast products and compared with Cooperative Institute for Research in the Atmosphere (CIRA) and Indian Meteorological Department (IMD) satellite observations. The key results indicate that a dry air intrusion associated with a series of troughs and ridges at a 500 hPa level due to the western disturbance (WD) during that time was very active over the northern part of India and adjoining Pakistan, which brought north-westerlies at the 200 hPa level. The existence of troughs at 500 and 200 hPa levels are significantly associated with a Rossby wave pattern over the mid-latitude that creates the baroclinic zone and favorable for the recurvature and RI of Mocha cyclone clearly represented in the NCUM analysis. Moreover the Q-vector analysis and steering flow (SF) emphasize the vertical motion and recurvature of the Mocha cyclone so as to move in a northeast direction, and this has been reasonably well represented by the NCUM model analysis and the 24, 7-, and 120 h forecasts. Additionally, a quantitative assessment of the system indicates that the model forecasts of TC tracks have an error of 50, 70, and 100 km in 24, 72, and 120 h lead times. Thus, this case study underscores the capability of the NCUM model in representing the physical mechanisms behind the recurving and RI over the BoB. Full article
Show Figures

Figure 1

16 pages, 9568 KiB  
Article
Decadal Variability of Tropical Cyclone Genesis Factors over the Arabian Sea During Post-Monsoon Season
by Prabodha Kumar Pradhan, Vinay Kumar, Akhilesh Kumar Mishra, Lokesh Kumar Pandey and Nagarjuna Rao Dabbugottu
Meteorology 2025, 4(2), 8; https://doi.org/10.3390/meteorology4020008 - 21 Mar 2025
Viewed by 1133
Abstract
Arabian Sea (AS) and Bay of Bengal (BoB) cyclones around the Indian subcontinent cause widespread floods and other natural hazards. There is no single convincing answer to this puzzle in the era of global warming. The warming of the western and central Indian [...] Read more.
Arabian Sea (AS) and Bay of Bengal (BoB) cyclones around the Indian subcontinent cause widespread floods and other natural hazards. There is no single convincing answer to this puzzle in the era of global warming. The warming of the western and central Indian Ocean is one of the few prominent features of local warming. The availability of moisture in the atmosphere in the last decade is an important factor in the rapid intensification and strengthening of tropical cyclones (TCs) before landfall. Essentially, the AS basin has shown an upward trend in the number and intensity of very severe cyclones during the period of 2009–2019. The decadal variation (1991–2001, 2002–2011, and 2012–2021) in SST, vorticity, wind shear, and moisture is primarily responsible for the genesis and intensification of cyclones during the post-monsoon season (October–November–December) over the AS. The results showed that slight changes in wind conditions, such as increased wind shear and the northward shift of the Asian Jet Stream over the region, facilitate TC formation. Full article
Show Figures

Figure 1

19 pages, 4359 KiB  
Article
Consistent Coupled Patterns of Teleconnection Between Rainfall in the Ogooué River Basin and Sea Surface Temperature in Tropical Oceans
by Sakaros Bogning, Frédéric Frappart, Valentin Brice Ebode, Raphael Onguene, Gil Mahé, Michel Tchilibou, Jacques Étamé and Jean-Jacques Braun
Water 2025, 17(5), 753; https://doi.org/10.3390/w17050753 - 4 Mar 2025
Viewed by 932
Abstract
This study investigates teleconnections between rainfall in the Ogooué River Basin (ORB) and sea surface temperature (SST) in the tropical ocean basins. The Maximum Covariance Analysis (MCA) is used to determine coupled patterns of SST in the tropical oceans and rainfall in the [...] Read more.
This study investigates teleconnections between rainfall in the Ogooué River Basin (ORB) and sea surface temperature (SST) in the tropical ocean basins. The Maximum Covariance Analysis (MCA) is used to determine coupled patterns of SST in the tropical oceans and rainfall in the ORB, depicting regions and modes of SST dynamics that influence rainfall in the ORB. The application of MCA to rainfall and SST fields results in three coupled patterns with squared covariance fractions of 84.5%, 76.5%, and 77.5% for the Atlantic, Pacific, and Indian tropical basins, respectively. Computation of the correlations of the Savitzky–Golay-filtered resulting expansion coefficients reached 0.65, 0.5 and 0.72, respectively. The SST variation modes identified in this study can be related to the Atlantic Meridional Mode for the tropical Atlantic and the El Niño Southern Oscillation for the tropical Pacific. Over the Indian Ocean, it is a homogeneous mode over the entire basin, instead of the popular dipole mode. Then, the time-dependent correlation method is used to remove any ambiguity on the relationships established from the MCA. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

19 pages, 4267 KiB  
Article
Investigation on the Linkage Between Precipitation Trends and Atmospheric Circulation Factors in the Tianshan Mountains
by Chen Chen, Yanan Hu, Mengtian Fan, Lirui Jia, Wenyan Zhang and Tianyang Fan
Water 2025, 17(5), 726; https://doi.org/10.3390/w17050726 - 1 Mar 2025
Cited by 1 | Viewed by 945
Abstract
The Tianshan Mountains are located in the hinterland of the Eurasian continent, spanning east to west across China, Kazakhstan, Kyrgyzstan, and Uzbekistan. As the primary water source for Central Asia’s arid regions, the Tianshan mountain system is pivotal for regional water security and [...] Read more.
The Tianshan Mountains are located in the hinterland of the Eurasian continent, spanning east to west across China, Kazakhstan, Kyrgyzstan, and Uzbekistan. As the primary water source for Central Asia’s arid regions, the Tianshan mountain system is pivotal for regional water security and is highly sensitive to the nuances of climate change. Utilizing ERA5 precipitation datasets alongside 24 atmospheric circulation indices, this study delves into the variances in Tianshan’s precipitation patterns and their correlation with large-scale atmospheric circulation within the timeframe of 1981 to 2020. We observe a seasonally driven dichotomy, with the mountains exhibiting increasing moisture during the spring, summer, and autumn months, contrasted by drier conditions in winter. There is a pronounced spatial variability; the western and northern reaches exhibit more pronounced increases in precipitation compared to their eastern and southern counterparts. Influences on Tianshan’s precipitation patterns are multifaceted, with significant factors including the North Pacific Pattern (NP), Trans-Niño Index (TNI), Tropical Northern Atlantic Index (TNA*), Extreme Eastern Tropical Pacific SST (Niño 1+2*), North Tropical Atlantic SST Index (NTA), Central Tropical Pacific SST (Niño 4*), Tripole Index for the Interdecadal Pacific Oscillation [TPI(IPO)], and the Western Hemisphere Warm Pool (WHWP*). Notably, NP and TNI emerge as the predominant factors driving the upsurge in precipitation. The study further reveals a lagged response of precipitation to atmospheric circulatory patterns, underpinning complex correlations and resonance cycles of varying magnitudes. Our findings offer valuable insights for forecasting precipitation trends in mountainous terrains amidst the ongoing shifts in global climate conditions. Full article
Show Figures

Figure 1

Back to TopTop