Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,635)

Search Parameters:
Keywords = tribological testing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9729 KB  
Article
The Effect of Heat Treatment on the Phase Composition and Tribological Behavior of Thermally Sprayed Al-Based Quasicrystalline Coatings
by Tong Xu, Siyang Gao, Deli Duan, Bowen Zheng and Yongchao Fang
Lubricants 2026, 14(2), 57; https://doi.org/10.3390/lubricants14020057 - 28 Jan 2026
Abstract
Al-Cu-Fe quasicrystalline coatings were prepared using detonation spraying, followed by heat treatment at 450 °C for varying durations. Reciprocating sliding wear tests were conducted using an MTF-5000 tribological tester to investigate the tribological behavior of the coatings with varying phase compositions and contents. [...] Read more.
Al-Cu-Fe quasicrystalline coatings were prepared using detonation spraying, followed by heat treatment at 450 °C for varying durations. Reciprocating sliding wear tests were conducted using an MTF-5000 tribological tester to investigate the tribological behavior of the coatings with varying phase compositions and contents. The results show that heat treatment significantly influences the phase composition and tribological behavior of the quasicrystalline coating. Regarding the phase composition, as the heat treatment duration increased, the phase constitution of the coating evolved from the initial three phases to five phases. The content of the quasicrystalline I phase remained essentially constant with increasing heat treatment time, but exhibited a notable decrease at 241 h mark. For the friction coefficient, shorter heat treatment times resulted in a relatively low range (0.35–0.37), while excessively long heat treatment times led to a significant increase in the friction coefficient (0.44–0.48). Regarding the wear rate, it decreased approximately linearly with increasing heat treatment time, reaching a minimum value after 136 h of treatment. At this point, it is the optimal heat treatment time. In essence, heat treatment modifies the wear mechanism and wear resistance of the coating by altering its phase composition and mechanical properties. Full article
Show Figures

Figure 1

19 pages, 13479 KB  
Article
Friction and Wear of Extrusion Dies Under Extreme Transient High-Temperature Conditions in the Extrusion of a Novel Nickel-Based High-Temperature Powder Alloy
by Baizhi Sun, Jinhui Wang, Yanzhuo Liu, Kongyan Zhang, Yuhua Zhang, Zifeng Liu, Falin Zhang, Guangyun Duan, Hongqiang Du, Yongsheng Wei, Yingnan Shi and Xinmei Hou
Lubricants 2026, 14(2), 55; https://doi.org/10.3390/lubricants14020055 - 27 Jan 2026
Abstract
During the extrusion of novel nickel-based powder superalloy bars, the die is subjected to elevated temperatures, high pressures, and severe friction, which readily lead to abrasive wear and thermal-fatigue damage. These failures deteriorate the quality of the extruded products and significantly shorten the [...] Read more.
During the extrusion of novel nickel-based powder superalloy bars, the die is subjected to elevated temperatures, high pressures, and severe friction, which readily lead to abrasive wear and thermal-fatigue damage. These failures deteriorate the quality of the extruded products and significantly shorten the service life of the die. Frequent repair and replacement of the tooling ultimately increase the overall manufacturing cost. This study investigates the friction and wear behavior of H13 and 5CrNiMo hot-work tool steels under extreme transient high-temperature conditions by combining finite element simulation with tribological testing. The temperature and stress distributions of the billet and key tooling components during extrusion were analyzed using DEFORM-3D. In addition, pin-on-disk friction and wear tests were conducted at 1000 °C to examine the friction coefficient, wear morphology, and subsurface grain structural evolution under various loading conditions. The results show that the extrusion die and die holder experience the highest loads and most severe wear during the extrusion process. For 5CrNiMo tool steel, the wear mechanism under low loads is dominated by mild abrasive wear and oxidative wear, whereas increasing the load causes a transition toward adhesive wear and severe oxidative wear. In contrast, H13 tool steel exhibits a transition from abrasive wear to severe oxidative wear. In 5CrNiMo steel, friction-induced recrystallization, grain refinement, and softening lead to the formation of a mechanically mixed layer, which, together with a stable third-body layer, markedly reduces and stabilizes the friction coefficient. H13 steel, however, undergoes surface strain localization and spalling, resulting in persistent fluctuations in the friction coefficient. The toughness and adhesion of the oxide film govern the differences in wear mechanisms between the two steels. Owing to its higher Cr, V, and Mo contents, H13 forms a dense but highly brittle oxide scale dominated by Cr and Fe oxides at 1000 °C. This oxide layer readily cracks and delaminates under frictional shear and thermal cycling. The repeated spalling exposes the fresh surface to further oxidation, accompanied by recurrent adhesion–delamination cycles. Consequently, the subsurface undergoes alternating intense shear and transient load variations, leading to localized dislocation accumulation and cracking, which suppresses the progression of continuous recrystallization. Full article
(This article belongs to the Special Issue Friction and Wear Mechanism Under Extreme Environments)
Show Figures

Figure 1

23 pages, 3718 KB  
Article
Microstructural Observations, Mechanical Hierarchy, and Tribological Performance in CrFeMoV-Alx High-Entropy Alloys
by Anthoula Poulia, Maria-Nikoleta Zygogianni, Christina Mathiou, Emmanuel Georgatis, Stavros Kiape, Spyros Kamnis and Alexander E. Karantzalis
Crystals 2026, 16(2), 88; https://doi.org/10.3390/cryst16020088 - 27 Jan 2026
Abstract
This work investigates the synthesis, thermodynamic phase stability and microstructural, mechanical and tribological behavior of the CrFeMoV alloy system and its Al-modified derivatives, CrFeMoV-Al2 and CrFeMoV-Al6, which belong to the family of high- and medium-entropy alloys. The studied systems were produced via Vacuum [...] Read more.
This work investigates the synthesis, thermodynamic phase stability and microstructural, mechanical and tribological behavior of the CrFeMoV alloy system and its Al-modified derivatives, CrFeMoV-Al2 and CrFeMoV-Al6, which belong to the family of high- and medium-entropy alloys. The studied systems were produced via Vacuum Arc Melting (VAM), followed by a comprehensive characterization. Thermodynamic and geometric phase-formation models were employed to predict the formation of BCC/Β2 solid solutions and the potential emergence of σ-type intermetallic compounds. An ML model was also employed to further predict elemental interactions and phase evolution. These predictions were experimentally confirmed via X-ray diffraction analysis, which verified the presence of a BCC matrix in all compositions, the presence of σ-phase precipitates whose volume fraction systematically reduced with Al inclusion and the gradual increase in the B2 phase with the increase in the Al content. Scanning electron microscopy and EDX analyses uncovered noticeable dendritic segregation, with Mo and Fe enrichment in dendrite cores and in interdendritic regions, respectively. Cr, V, and Al were more uniformly distributed. Mechanical property data derived by micro hardness testing demonstrated a high hardness of 816 HV for the base alloy, ascribed to σ-phase strengthening, followed by a progressive reduction in this value to 802 HV and 756 HV in Al-containing alloys due to the attenuation of σ-phase formation and the gradual increase in the B2 phase. Dry sliding wear results unveiled a positive correlation between wear resistance and hardness, confirming the beneficial role of intermetallic strengthening. Finally, nanoindentation tests shed light on the nanoscale mechanical response, confirming the trends observed at the microscale. Overall, the combination of thermodynamic modeling and experimental analysis provide a robust framework for understanding phase stability, microstructural evolution, and mechanical performance in Al-alloyed CrFeMoV high-entropy systems, while highlighting the potential of controlled Al additions to tailor microstructure and properties. Full article
Show Figures

Figure 1

19 pages, 3189 KB  
Article
The Use of Rheological and Tribological Techniques for Texture Assessment of Ambient Yoghurt
by Shuli Hu, Hui Li, Hongliang Li, Hairan Ma, Yajun Fei, Xiuying Wu, Wenbin Zhu, Jianshe Chen and Shuanghong Li
Foods 2026, 15(3), 440; https://doi.org/10.3390/foods15030440 - 26 Jan 2026
Viewed by 104
Abstract
Background: Ambient yoghurt, also known as room-temperature yoghurt, has gained increasing attention due to its convenience in distribution and consumption without needing cold storage. To ensure extended shelf life, ambient yoghurt normally undergoes an additional heat treatment during manufacturing, the post-fermentation sterilisation [...] Read more.
Background: Ambient yoghurt, also known as room-temperature yoghurt, has gained increasing attention due to its convenience in distribution and consumption without needing cold storage. To ensure extended shelf life, ambient yoghurt normally undergoes an additional heat treatment during manufacturing, the post-fermentation sterilisation process (typically at 65–85 °C), which may induce the formation of fine particle aggregates and result in undesirable textural attributes, particularly graininess. Assessing textural attributes of such products remains a challenge. Methods: By mimicking the oral behaviour of ambient yoghurt, this study uses rheological as well as tribological techniques for objective assessment of the textural sensations of slipperiness and graininess. Various experimental conditions, including the amount of saliva incorporation, sliding speed, and ball-contact and plate-contact lubrication, were examined, and results were analysed against perceived texture by panellists. Main findings: The results indicate that viscosity changes are closely associated with perceived slipperiness under the tested conditions. The friction coefficient obtained from a plate-contact tribometer shows a positive correlation with the sensation of graininess (Pearson’s r was 0.74, p < 0.05, N = 8). It was also observed that a 20% saliva incorporation showed the closest agreement with sensory perception, although this observation should be interpreted cautiously due to the limited sample size. Implications: Results obtained from this work indicate the feasibility of using rheology and tribology techniques for texture prediction in ambient yoghurt. The findings are exploratory in nature, and further studies with larger sample sets are required to validate the proposed approach. The methodology presented here may serve as a reference framework for investigating texture perception in other dairy systems. Full article
Show Figures

Figure 1

15 pages, 3850 KB  
Article
The Influence of Electron Beam Treatment on the Structure and Properties of the Surface Layer of the Composite Material AlMg3-5SiC
by Shunqi Mei, Roman Mikheev, Pavel Bykov, Igor Kalashnikov, Lubov Kobeleva, Andrey Sliva and Egor Terentyev
Lubricants 2026, 14(2), 50; https://doi.org/10.3390/lubricants14020050 - 25 Jan 2026
Viewed by 133
Abstract
The influence of electron beam treatment parameters (electron gun speed, electron beam current, scanning frequency, and sweep type) on the structure and properties of the surface layer of the composite material AlMg3-5SiC has been investigated. Composite specimens of AlMg3 alloy reinforced with [...] Read more.
The influence of electron beam treatment parameters (electron gun speed, electron beam current, scanning frequency, and sweep type) on the structure and properties of the surface layer of the composite material AlMg3-5SiC has been investigated. Composite specimens of AlMg3 alloy reinforced with 5 wt.% silicon carbide particles were manufactured via the stir casting process. Experimentally, processing modes with heat input from 120 to 240 J/mm yield a modified layer thickness from 74 to 1705 µm. Heat input should not exceed 150 J/mm to ensure a smooth and defect-free surface layer. The macro- and microstructure were examined using optical microscopy. Brinell hardness was measured. Friction and wear tests were performed under dry sliding friction conditions using the “bushing on plate” scheme. This evaluated the tribological properties of the composite material in its original cast state and after modifying treatment. Due to the matrix alloy structure refinement by 5–10 times, the surface layer’s hardness increases by 11% after treatment. The modified specimens have superior tribological properties to the initial ones. Wear rate reduces by 17.5%, the average friction coefficient reduces by 32%, and the root mean squared error of the friction coefficient, which measures friction process stability, reduces by 50% at a specific load of 2.5 MPa. Therefore, the electron beam treatment process is a useful method for producing high-quality and uniform wear-resistant aluminum matrix composite surface layers. Full article
Show Figures

Figure 1

27 pages, 7548 KB  
Article
Eco-Friendly Illite as a Sustainable Solid Lubricant in Calcium Grease: Evaluating Its Thermal Stability, Tribological Performance, and Energy Efficiency
by Maria Steffy, Shubrajit Bhaumik, Nabajit Dev Choudhury, Viorel Paleu and Vitalie Florea
Materials 2026, 19(3), 464; https://doi.org/10.3390/ma19030464 - 23 Jan 2026
Viewed by 289
Abstract
This study investigates the influence of the additive illite on the thermal, tribological, and energy efficiency characteristics of calcium grease (CG) at different concentrations (0.05 wt.%, 0.1 wt.%, 0.2 wt.%, 0.4 wt.%, 0.6 wt.%, and 0.8 wt.%). Thermo-gravimetric analysis under inert and oxidative [...] Read more.
This study investigates the influence of the additive illite on the thermal, tribological, and energy efficiency characteristics of calcium grease (CG) at different concentrations (0.05 wt.%, 0.1 wt.%, 0.2 wt.%, 0.4 wt.%, 0.6 wt.%, and 0.8 wt.%). Thermo-gravimetric analysis under inert and oxidative atmospheres revealed that illite enhances thermal stability by increasing inorganic residue under N2, but promotes oxidative degradation under O2, limiting practical thermal use to around 400 °C. Grease with 0.1 wt.% illite (CGI2) performed well in tribological tests by reducing the coefficient of friction and wear scar diameter by 53% and 57%, respectively, compared to the base grease. Fleischer’s energy-based wear model showed that all grease samples operated within the mixed friction regime, and CGI2 exhibited a 93% higher apparent frictional energy density and a substantially lower wear intensity that was 47% lower than the base grease, indicating improved energy dissipation and wear resistance. All samples had the same weld load (1568 N), but CGI2 had a 21% higher load–wear index than the base grease in the extreme-pressure test, indicating better load-carrying capacity. In the energy consumption test, a 6% reduction in current consumption was observed in CGI2 in comparison with the base grease. Overall, illite at an optimal concentration significantly enhances lubrication performance, wear protection, and energy efficiency. Full article
(This article belongs to the Section Green Materials)
Show Figures

Graphical abstract

19 pages, 5147 KB  
Article
The Influence of Applying PVD Coatings on Adhesion Wear Resistance of Quenching and Tempering Steels
by Ivica Kladarić, Stjepan Golubić, Danko Ćorić and Andrijana Milinović
Metals 2026, 16(2), 130; https://doi.org/10.3390/met16020130 - 23 Jan 2026
Viewed by 77
Abstract
The article examines the effect of different types of two-layer nanostructured coatings (cVIc and nACVIc) deposited on three types of steel substrates, 45S20, C45E, and 42CrMo4, to determine the resistance to adhesive wear of the substrate/coating system. The samples underwent different heat treatments, [...] Read more.
The article examines the effect of different types of two-layer nanostructured coatings (cVIc and nACVIc) deposited on three types of steel substrates, 45S20, C45E, and 42CrMo4, to determine the resistance to adhesive wear of the substrate/coating system. The samples underwent different heat treatments, including normalising, quenching, and quenching and tempering, followed by PVD (physical vapour deposition) treatment at temperatures of 450 °C (cVIc) and 460 °C (nACVIc). The thickness of the cVIc layers for all three steels ranged from 0.9 to 3.4 μm, while the thickness of the nACVIc layers on all steels was slightly greater, ranging from 1.9 to 3.1 μm. Tribological tests were conducted using the pin-on-disc method, and the results were statistically analysed. Results indicate that steel grade, heat treatment, and PVD coating significantly affect adhesive wear resistance, with the type of PVD coating showing the strongest influence. For all three steels, quenched and uncoated samples exhibited the lowest adhesion wear index values. Normalised and quenched with or without tempering steels coated with cVIc layer exhibit higher resistance to adhesive wear due to better adhesion of the layer compared to the nACVIc coating. Full article
Show Figures

Graphical abstract

16 pages, 5622 KB  
Article
Tailoring the Microstructure and Properties of HiPIMS-Deposited DLC-Cr Nanocomposite Films via Chromium Doping
by Jicheng Ding, Wenjian Zhuang, Qingye Wang, Qi Wang, Haijuan Mei, Dongcai Zhao, Xingguang Liu and Jun Zheng
Nanomaterials 2026, 16(2), 150; https://doi.org/10.3390/nano16020150 - 22 Jan 2026
Viewed by 85
Abstract
Chromium-doped diamond-like carbon (DLC-Cr) nanocomposite films were successfully deposited using a high-power impulse magnetron sputtering (HiPIMS) system. The Cr content in the films was controlled by adjusting the Cr target powers. The influence of Cr content on the microstructure, mechanical properties, tribological performance, [...] Read more.
Chromium-doped diamond-like carbon (DLC-Cr) nanocomposite films were successfully deposited using a high-power impulse magnetron sputtering (HiPIMS) system. The Cr content in the films was controlled by adjusting the Cr target powers. The influence of Cr content on the microstructure, mechanical properties, tribological performance, and wettability of the films was systematically investigated. The results show that the Cr content and deposition rate of the films increased with increases in the target power. The surface topography of the films evolved from smooth to rough as the Cr target increased from 10 W to 70 W. At low Cr doping rates, the film mainly exhibited an amorphous structure, whereas the nanocomposite structure was formed at proper Cr doping rates. Raman and XPS analyses revealed that Cr incorporation altered the ID/IG ratio and promoted the formation of Cr-C bonds, leading to a more graphitic and nanocomposite-like structure. The nanoindentation results show that an optimal Cr content enhances both hardness and elastic modulus, while higher Cr concentrations lead to a decline in mechanical strength due to more graphitization and decreasing stress. Tribological tests exhibited a significant reduction in the friction coefficient (0.21) and wear rate (0.63 × 10−14 m3/N·m) at a moderate Cr level. Additionally, the surface wettability evolved toward enhanced hydrophilicity with increasing Cr power, as evidenced by reduced water contact angles and increased surface energy. These findings demonstrate that controlled Cr incorporation effectively tailors the structure, stress state, and surface chemistry of DLC films, offering a tunable pathway to achieving optimal mechanical performance and tribological stability for advanced engineering applications. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

20 pages, 5518 KB  
Article
First-Principles Calculation and Experimental Study on Interface Stability, Electronic Characteristics, and Mechanical Properties of WC-Co-Y Cemented Carbide
by Zewen Li, Hao Chen, Liyong Chen, Jianbo Zhang, Fan Zhang and Xiaolong Xie
Materials 2026, 19(2), 441; https://doi.org/10.3390/ma19020441 - 22 Jan 2026
Viewed by 106
Abstract
This study aims to clarify the optimization mechanism of yttrium (Y) doping on the interfacial bonding and macroscopic properties of WC/Co cemented carbides, with the goal of achieving materials that combine high hardness, high toughness, and excellent wear resistance through interfacial regulation. Combining [...] Read more.
This study aims to clarify the optimization mechanism of yttrium (Y) doping on the interfacial bonding and macroscopic properties of WC/Co cemented carbides, with the goal of achieving materials that combine high hardness, high toughness, and excellent wear resistance through interfacial regulation. Combining first-principles calculations and experimental verification, the interfacial energy, density of states, and charge density of WC/Co and WC/CoY interfaces were systematically investigated. Three alloys (WC-10Co, WC-10Co-0.5Y, and WC-10Co-1Y) were prepared, and the effects of Y addition were quantitatively evaluated through microstructural characterization, mechanical testing, and tribological experiments. The calculation results indicate that Y doping reduces interfacial energy, enhances interfacial bonding, and increases surface energy, which contributes to improved toughness. At the atomic scale, the orbital hybridization between Y and W promotes the formation of strong covalent bonds at the interface, thereby enhancing interfacial bonding strength. The experimental results show that the introduction of Y significantly improves the overall performance of the material, with the alloy containing 0.5 wt.% Y exhibiting the best performance. Its Vickers hardness reaches (1454 ± 1.3) HV, fracture toughness is (9.84 ± 0.15) MPa·m1/2, and the wear rate is as low as 0.794 × 10−5 mm3·N−1·m−1. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Graphical abstract

23 pages, 6943 KB  
Article
Influence of Nano-Sized Ceramic Reinforcement Content on the Powder Characteristics and the Mechanical, Tribological, and Corrosion Properties of Al-Based Alloy Nanocomposites
by Müslim Çelebi, Aykut Çanakçı and Sezai Kütük
Coatings 2026, 16(1), 143; https://doi.org/10.3390/coatings16010143 - 22 Jan 2026
Viewed by 93
Abstract
In this study, B4C nanoparticles were incorporated into AA2024, one of the aluminum alloys with superior mechanical and wear properties, with the aim of further enhancing its mechanical, tribological, and corrosion performance. The nanocomposites were produced using mechanical milling followed by [...] Read more.
In this study, B4C nanoparticles were incorporated into AA2024, one of the aluminum alloys with superior mechanical and wear properties, with the aim of further enhancing its mechanical, tribological, and corrosion performance. The nanocomposites were produced using mechanical milling followed by powder metallurgy techniques. The effects of nano-sized B4C additions on powder characteristics, microstructure, and physical, mechanical, tribological, and corrosion properties were systematically investigated through microhardness, density, SEM, XRD, bulk hardness, wear, and corrosion tests. B4C was added at weight fractions of 0–2 wt.%, and all samples were mechanically milled for 8 h. The results revealed a gradual reduction in powder particle size and a corresponding increase in particle microhardness with increasing B4C content. The sample reinforced with 2 wt.% nano-B4C exhibited an approximately 80% increase in hardness and around a 55% improvement in tensile strength compared to the unreinforced alloy. Wear resistance was significantly enhanced, showing up to an 8-fold improvement under a 5 N load and a 6-fold improvement under a 25 N load. Furthermore, corrosion resistance nearly doubled with the addition of B4C nanoparticles. Full article
Show Figures

Figure 1

14 pages, 9051 KB  
Article
The Effect of Laser Surface Hardening on the Microstructural Characteristics and Wear Resistance of 9CrSi Steel
by Zhuldyz Sagdoldina, Daryn Baizhan, Dastan Buitkenov, Gulim Tleubergenova, Aibek Alibekov and Sanzhar Bolatov
Materials 2026, 19(2), 423; https://doi.org/10.3390/ma19020423 - 21 Jan 2026
Viewed by 112
Abstract
This study presents a systematic investigation of laser surface hardening of 9CrSi tool steel with the aim of establishing the relationships between processing parameters, microstructural evolution, and resulting mechanical and tribological properties under the applied laser conditions. The influence of laser power, modulation [...] Read more.
This study presents a systematic investigation of laser surface hardening of 9CrSi tool steel with the aim of establishing the relationships between processing parameters, microstructural evolution, and resulting mechanical and tribological properties under the applied laser conditions. The influence of laser power, modulation frequency, and scanning speed on the hardened layer depth, microstructure, and surface properties was analyzed. Laser treatment produced a martensitic surface layer with varying fractions of retained austenite, while the transition zone consisted of martensite, granular pearlite, and carbide particles. X-ray diffraction identified the presence of α′-Fe, γ-Fe, and Fe3C phases, with peak broadening associated with increased lattice microstrain induced by rapid self-quenching. The surface microhardness increased from approximately 220 HV0.1 in the untreated state to 950–1000 HV0.1 after laser hardening, with hardened layer thicknesses ranging from about 500 to 750 µm depending on the processing regime. Instrumented indentation showed higher elastic modulus values for all hardened conditions. Tribological tests under dry sliding conditions revealed reduced coefficients of friction and more than an order-of-magnitude decrease in wear rate compared with untreated steel. The results provide a parameter–microstructure–performance map for laser-hardened 9CrSi steel, demonstrating how variations in laser processing conditions affect hardened layer characteristics and functional performance. Full article
Show Figures

Figure 1

20 pages, 2130 KB  
Article
Microstructural, Hardness, and Abrasive Wear Properties of Functionally Graded Al/ZrB2 Composites Produced by In Situ Centrifugal Casting
by İbrahim Güney, Ömer Faruk Demirok, Yunus Emre Benkli, Çağlar Yüksel and Ömer Savaş
Metals 2026, 16(1), 125; https://doi.org/10.3390/met16010125 - 21 Jan 2026
Viewed by 183
Abstract
Functionally graded aluminum matrix composites are of interest for applications requiring region-dependent mechanical and tribological performance. In this study, the micro-structure, hardness, and abrasive wear properties of functionally graded Al/ZrB2 compo-site materials produced by an in situ centrifugal casting method were investigated. [...] Read more.
Functionally graded aluminum matrix composites are of interest for applications requiring region-dependent mechanical and tribological performance. In this study, the micro-structure, hardness, and abrasive wear properties of functionally graded Al/ZrB2 compo-site materials produced by an in situ centrifugal casting method were investigated. The ZrB2 reinforcement phase was synthesized in situ within the molten aluminum matrix, and functional grading was achieved through the action of centrifugal force during solidification. Samples taken from cylindrical castings were characterized using optical microscopy, scanning electron microscopy (SEM), X-Ray diffraction (XRD), density measurements, Brinell hardness testing, and abrasive wear experiments. Phase analyses con-firmed the successful in situ formation of ZrB2 and verified that the phase distribution in-creased toward the direction of centrifugal force. Hardness increased with reinforcement content, rising from approximately 28 HB in the matrix-rich region to 68 HB and 72 HB in regions reinforced with 12% and 15% ZrB2, respectively. Abrasive wear behavior was evaluated using the pin-on-disk method, and a Taguchi L (35) orthogonal array was employed for experimental design. Statistical analyses showed that the composite region was the most influential parameter affecting wear performance, followed by abrasive particle size and applied load, while sliding distance and sliding speed were not statistically significant. These findings demonstrate that in situ centrifugal casting is an effective approach for producing functionally graded Al/ZrB2 composites with improved hardness and wear resistance. Full article
Show Figures

Figure 1

15 pages, 6527 KB  
Article
Tribological Performance of Grease-Coated Rubber in High-Pressure Hydrogen Storage Applications
by Sheng Ye, Haijie Zhi, Wenqiang Wu, Sohail Yasin, Chaohua Gu, Jianfeng Shi and Sheng Zeng
Polymers 2026, 18(2), 284; https://doi.org/10.3390/polym18020284 - 21 Jan 2026
Viewed by 135
Abstract
Rubber materials undergo continuous wear in high-pressure seal applications. To address the risk of adhesive wear and consequent leakage of rubber seals operating under reciprocating sliding in high-pressure hydrogen storage and refueling systems, this study employed high-pressure hydrogen tribology testing. Ball-on-disk reciprocating tests [...] Read more.
Rubber materials undergo continuous wear in high-pressure seal applications. To address the risk of adhesive wear and consequent leakage of rubber seals operating under reciprocating sliding in high-pressure hydrogen storage and refueling systems, this study employed high-pressure hydrogen tribology testing. Ball-on-disk reciprocating tests were conducted using a 316L stainless-steel ball against silica-filled nitrile butadiene rubber (NBR), and the friction response and wear-morphology evolution were compared under ambient air, 1 MPa hydrogen (H2), 50 MPa H2, 50 MPa nitrogen (N2), and grease-coated conditions. Under dry sliding, the coefficient of friction (COF) of NBR in air and hydrogen ranged from 1.34 to 1.44, whereas it decreased markedly to 0.942 in 50 MPa N2. The wear volume under the four dry conditions was concentrated in the range of ~0.292–0.320 mm3. After grease coating, the steady-state COF in air and at 50 MPa H2 dropped to 0.099 and 0.105, respectively, and the wear features changed from ridge-like wear patterns/tear pits to regular, smooth indentations with slight running marks. The results demonstrate that a lubricating film can effectively separate direct metal–rubber contact and suppress stick–slip, enabling a low-friction, low-wear, and highly stable interface in high-pressure hydrogen, and providing a practical engineering route for reliable operation of rubber seals in hydrogen service. Full article
Show Figures

Figure 1

18 pages, 8088 KB  
Article
A Potentially Repairable Composite Coating for Significantly Enhancing Wear and Corrosion Resistance of Magnesium Alloy
by Yueyu Huang, Ruilin Zeng, Shequan Wang, Ninghua Long, Yingpeng Zhang, Qun Wang and Chidambaram Seshadri Ramachandran
Lubricants 2026, 14(1), 44; https://doi.org/10.3390/lubricants14010044 - 20 Jan 2026
Viewed by 240
Abstract
The AZ31 magnesium alloy is an attractive lightweight metallic material, but its low corrosion resistance and wear resistance significantly limit its widespread application in fields such as aerospace, the automotive industry, and mechanical engineering. Moreover, most coating systems currently cannot restore their original [...] Read more.
The AZ31 magnesium alloy is an attractive lightweight metallic material, but its low corrosion resistance and wear resistance significantly limit its widespread application in fields such as aerospace, the automotive industry, and mechanical engineering. Moreover, most coating systems currently cannot restore their original functions and dimensions after localized damage. Based on this, this study combined cold spray (CS), micro-arc oxidation (MAO), and magnetron sputtering (MS) to develop a high-performance and repairable composite modification strategy. First, a 5056 aluminum alloy coating was prepared on AZ31 via CS, followed by the growth of a hard alumina (Al2O3) coating via MAO and a diamond-like carbon (DLC) coating via MS on the 5056 aluminum alloy surface. The microstructure, phase composition, hardness, tribological properties, and electrochemical corrosion behavior of the coatings were evaluated using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS), X-ray diffraction (XRD), Vickers hardness testing, ball-on-disk dry sliding wear testing, and potentiodynamic polarization testing in a 3.5% sodium chloride solution. The CS 5056 aluminum alloy coating reduced the corrosion current density of AZ31 from 4.098 × 10−5 A/cm2 to 2.714 × 10−6 A/cm2. The MAO alumina coating increased the hardness of AZ31 from 68.60 HV0.05 to 1614.00 HV0.05 and decreased the wear rate from 1.703 × 106 μm3/(N·m) to 2.038 × 103 μm3/(N·m). The DLC coating further reduced the average coefficient of friction of the alumina coating from 0.48 to 0.27, decreased the wear rate to 6.979 × 102 μm3/(N·m), and lowered the corrosion current density from 3.020 × 10−6 A/cm2 to 8.860 × 10−9 A/cm2. This indicates that the three-phase composite coating achieves synergistic improvements in the corrosion and wear resistance of AZ31 through complementary advantages. Additionally, the thick CS aluminum alloy underlayer provides potential repairability, enabling the restoration of function and dimensions after damage without compromising the magnesium substrate. Overall, the proposed 5056Al/Al2O3/DLC composite coating strategy offers a reliable protective approach for AZ31 components and is expected to further expand their application fields. Full article
Show Figures

Figure 1

18 pages, 3761 KB  
Article
Effect of Fiber Material on Tribological Performance of Filament-Winding Composite Materials in a Water-Lubricated Environment
by Yicong Yu, Zhijun Chen and Zhiwei Guo
Polymers 2026, 18(2), 269; https://doi.org/10.3390/polym18020269 - 19 Jan 2026
Viewed by 307
Abstract
Water-lubricated bearings are critical components in marine propulsion systems, necessitating materials with exceptional tribological properties to ensure reliability. Filament-winding technology is an effective molding method for enhancing the comprehensive properties of polymers, and the selection of fiber materials has a significant impact on [...] Read more.
Water-lubricated bearings are critical components in marine propulsion systems, necessitating materials with exceptional tribological properties to ensure reliability. Filament-winding technology is an effective molding method for enhancing the comprehensive properties of polymers, and the selection of fiber materials has a significant impact on the performance of polymers. In this study, three types of polyurethane (PU) matrix filament-winding composites were fabricated via filament-winding technology. Under water-lubricated conditions, a friction test (disk-to-disk) with a duration of 2 h was performed, followed by systematic observations of the resultant wear behavior. The results indicate that aramid fibers exhibited the superior reinforcing effect on the PU matrix, effectively suppressing wear while enhancing mechanical properties. Specifically, under the conditions of 0.5 MPa-250 r/min (0.314 m/s), the minimum friction coefficient of the aramid fiber-wound composite material was 0.093, which was 57.73% lower than that of pure polyurethane. Under the conditions of 0.7 MPa-50 r/min (0.0628 m/s), the wear mass of the sample was limited to only 1.5 mg, which was 12% lower than that of polyurethane. This research can provide a practical reference for the application of filament-wound composite materials in water-lubricated bearings. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

Back to TopTop